Physical Ecology ENVS 307

Faculty of Natural Resources and Environmental Studies

University of Northern British Columbia

Professor J.D. Ackerman

Click on the following for Information on:


Fall 2001

PROFESOR:             Dr.  J.D. Ackerman Admin 3075 960-5839  ackerman@unbc.ca

OFFICE HOURS:   Wednesday 15:00-16:00, Thursday 13:00-14:00, Friday 11:00-12:00, or by appointment

LOCATION:        Library    5-158 Wednesday & Friday 9:30-10:20
                              Lab Bldg  4-303 Thursday 3:00-6:00

HOMEPAGE:           envs307.htm

COURSE OBJECTIVES:
The diversity of living organisms is a testament to their ability to adapt to changing physical phenomena.
These phenomena also constrain or dictate the ecology of organisms at all levels including their skeletal-support system, their
ability to acquire resources, and their reproduction. This course will focus on the functional commonalty that organisms share in
their response to their ecology. Physical Ecology is an interdisciplinary course that integrates ecological phenomena across
kingdoms (e.g., microbes, plants, and animals), phyla (e.g., invertebrates, and vertebrates), biomes (e.g., terrestrial, aquatic, and aerial), and spatial scales (e.g., pico-, micro- and mesoscale), within a physical perspective.

RESPONSIBILITIES:
1) Student: open mind / willing to discuss and exchange views to participate
                  Academic integrity/offence (see UNBC Calendar)
2) Professor: responsive to students
                  Fair and equitable

PROBLEMS:  See one me or have me recommend someone for you to see.

PREREQUISITE:   BIOL 201, MATH 152 or 100/101, and PHYS 100 or 110/111

COURSE TEXT: Vogel, S. 1994. Life in Moving Fluids 2nd Edition. Princeton University Press, Princeton.

RECOMMENDED:  Vogel, S. 1988. Life’s Devices. Princeton University Press, Princeton.

LAB MANUAL: To be distributed in lab.

EVALUATION:
 
Laboratory: 30% 2  reports + Lab Notebook  (Example by Shelley Rosenthal, 1996) 
Literature Critique 10%  Critique of paper with bibliography
Midterm Exam 15% In Class; includes lab and lecture 
Term Project: 20% Research proposal (see above)
Final Exam:  25% During final exam period; inclusive.
Total
100%
 
  LATE ASSIGNMENTS: Not accepted without prior arrangement (penalty imposed).

LECTURE OUTLINE

I - Preliminaries
Sept   5   (lecture  1) Philosophical Foundations of Physical Ecology
Sept   7   (lecture  2) Evolutionary Ecology

II - Ecomorphology - Size and Shape
Sept 12   (lecture  3)  Allometry I - size and shape and ecology
Sept 14   (lecture  4) Fluctuating Asymmetry
Sept 19   (lecture  5) Statistical Analysis and Inference

III - Structural Ecology
Sept 21  (lecture  6)  Properties of Biomaterials I – Hookian Materials
Sept 26   (lecture  7) Properties of Biomaterials II – Viscoelasticity
Sept 28   (lecture  8)  Structures Mechanics (Flexural Stiffness and Failures)
Oct    3    (lecture  9)  Adhesion Strength and the Environment

Oct    5   (lecture 10) Properties of Fluids I (Fluid Forces and Conditions)
Oct   10   (lecture 11)  Properties of Fluids II (Flow in tubes)
Oct   12   (lecture 12) Locomotion I (Cilia and Flagella)
Oct   17 (lecture 13)  Locomotion II (Hydrostatic Skeletons)
Oct   19  (lecture 14) Locomotion III (Jet Propulsion)
Oct   24  (lecture 15) Locomotion IV (Tail Propulsion)

Oct   26  (lecture 16) Midterm

Oct   31  (lecture 17) Suspension Feeding I (Particle Capture Mechanisms)
Nov     2  (lecture 18)  Suspension Feeding II (Active Suspension Feeding)
Nov    7  (lecture 19)  Suspension Feeding III (Bivalve Suspension Feeding)

VI - Physical Synecology
Nov    9  (lecture 20) Properties of Fluids III (Mass Transport and Canopy Flow
Nov   14  (lecture 21) Reproductive Ecology I (Wind Pollination)
Nov   16  (lecture 22) Reproductive Ecology II (Abiotic Pollination in Aquatic Plants)
Nov   21  (lecture 23) Reproductive Ecology III (Broadcast Spawners)
Nov   23 (lecture 24) Dispersal Ecology I (Passive Dispersal in Plants)
Nov   28 (lecture 25) Dispersal Ecology II (Active: Larval Dispersal and Recruitment)
Nov   30 (lecture 26)  Dispersal Ecology III (1? and 2? dispersal in bivalves)

Please note that the schedule may change.

Sample Lecture Questions

Laboratory Outline

PART I: Ecomorphology
  Laboratory # 1- Orientation

 Morphological Concepts.
  Laboratory # 2 – Allometry
  Laboratory # 3 - Fluctuating Asymmetry
  Laboratory # 4 - Statistical Analyses and inference

PART II: Autoecology
 Structural Ecology
 Laboratory # 5 - Properties of Biomaterials

 Biofluid Mechanic Principles
  Laboratory # 6 - Properties of flow through pipes
  Laboratory # 7 - Transport (Advection and Diffusion)
  Laboratory # 8 – Flow in Streams

 Locomotory and Feeding Ecology
  Laboratory # 9 - Locomotion of Organisms
  Laboratory # 10 - Zooplankton Suspension Feeding

PART III:  Synecology
 Reproductive and Dispersal Ecology
 Laboratory #11 - Abiotic Pollination & External Fertilization
Laboratory #12 – Dispersal of seeds, fruits and larvae
Laboratory # 13 – Perspectives on the future

 Suggested Readings for Lectures

Part I - Physical Aspects of Ecomorphology

Allometry
    LD/Ch. 3 - Size and Shape
    Niklas, K. 1992. Plant Biomechanics.  University of Chicago Press. Pp. 319-322.

Fluctuating Asymmetry
    Palmer, R. 1996.  Waltzing with asymmetry. BioScience  46:518-532.

Statistics
    LD/Appendix I - Notes on Numbers
    Zolman, J.  1993.  Biostatistics.  Oxford University Press.  New York, NY.  343 pp.

Properties of Biomaterials
    LD/Ch.9 - A Matter of Materials
    Niklas, K. 1992. Plant Biomechanics. University of Chicago Press.   Pp. 76-83, 150-54,   346-348.

Biological Structures
LD/Ch.10 - Arranging Structures

Biological Adhesion
    LD/Ch.14/pp. 97-98 - Staying Put and Getting Away

Rheology/Viscous Flow
    LMF/Ch.2 - What is a Fluid and How Much So?
    LMF/Ch. 13 - Flow Within Pipes and Other Structures
    LMF/Ch. 14 - Internal Flows in Organisms

Part II - Physical Aspects of Autecology

Fluid Forces and Conditions
    LD/Ch. 6 - Viscosity and Flow
    LD/Ch. 7 - Pressure and Flow
    LMF/Ch.2 - What is a Fluid and How Much So?
    LMF/Ch. 4 -Pressure and Momentum

Swimming
    Alexander, D.  1990.  Drag coefficients of swimming animals: Effects of using  Different reference areas. Biol. Bull.
       179:186-190.
    Triantafyllou, M. and G. Triantafyllou.  1995.  An efficient swimming machine.   Sci. Amer.  272(3):64-70.
    Webb, P.  1984.  Form and function in fish swimming.  Sci. Amer.  25(1):72- 82.
    LMF/Ch.12 - The Thrust of Flying and Swimming

Flight
    LMF/Ch.11 - Lift, Airfoils, Gliding and Soaring
    LMF/Ch.12 - The Thrust of Flying and Swimming

Passive Suspension Feeding
    LMF/Ch.15 - Flow at Very Low Reynold's Numbers
    Rubenstein, D. and M. Koehl. 1977.  The mechanisms of filter feeding: Some theoretical considerations.  Am. Nat.
       111:981-994.

Active Suspension Feeding
    LMF/Ch.9/pp. 188-192 - Life in Velocity Gradients
    Silvester, N. and M. Slegh.  1984.  Hydrodynamic aspects of particle capture by Mytilus edulis. J. mar. Biol. Ass. U.K.
       64:859-879.

Bivalve Suspension Feeding
    Wildish, D. and D. Kristmanson.  1997.  Benthic Suspension Feeders and Flow.  Cambridge University Press.
        Cambridge, UK.  409 pp.

Part III - Physical Aspects of Synecology

Biofluid Mechanics - Canopies/Large scale
    LMF/Ch.8 - Velocity Gradients and Boundary Layers

Mass Transport
    LD/Ch.8 - Diffusion versus Convection
    LMF/Pg. 196

Wind Pollination
    LMF/Pp. 192, 186
    Niklas, K. 1992. Plant Biomechanics. University of Chicago Press.  Pp. 447-473.

Aquatic Pollination
    Ackerman, J.  1995. Convergence of filiform pollen morphologies in seagrasses: Functional mechanisms.  Evol. Ecol.
        9:139-153.
    Ackerman, J.  1997a. Submarine pollination in the marine Angiosperm Zostera marina (Zosteraceae).  I. The influence of
        floral morphology on fluid flow.  Amer. J. Bot.  84(8):1099-1109.
    Ackerman, J.  1997b. Submarine pollination in the marine angiosperm Zostera marina (Zosteraceae).  II. Pollen transport in
        flow fields and capture by stigmas.  Amer. J. Bot.  84(8):1110-1119.

Broadcast Spawners
    Mead, K. and M. Denny.  1995.  The effects of hydrodynamic shear stress on fertilization and early development of the
        purple sea urchin Strongylocentrotus purpuratusBiol. Bull.  188:46-56.

Passive Dispersal
    LMF/Pp. 13, 228-29, 243-44, 272-73, 339-47

Active Dispersal
    Sammarco, P.  1994.  Larval dispersal and recruitment processes in Great Barrier Reef corals: Analysis and synthesis.  Pp.
        35-71.  In P. Sammarco and M. Heron (editors).  The Biophysics of Marine Larval Dispersal.  American Geophysical
        Union.  Washington, DC.
     LMF/Pp. 183-187

Primary & Secondary Dispersal in Bivalves
    Ackerman, J.  1994.  A review of the early life history of zebra mussels (Dreissena polymorpha): Comparisons with
        marine bivalves.  Can. J. Zool.  72:1169-1179.
    Sigurdsson, J.,  C. Titman and P. Davies.  1976.  The dispersal of young post-larval bivalve molluscs by byssus threads
     Nature.  262:386-387.

Patchiness, fronts, Diffusion/Advection
    LMF/Pp. 222-224, 257, 272, 343-44, 394

Attractants and Pheremones
    Atema, J.  1995.  Chemical signals in the marine environment: Dispersal,  detection, and temporal analysis.
        Proc. Natl. Acad. Sci.  92:62-66.
    LD/Pg. 160

Predator/prey, Convergence
    Okubo, A. 1980. Diffusion and Ecological Problems. Springer.

Please Note:
    LD = Vogel, S. 1988. Life's Devices. Princeton University Press.
    LMF = Vogel, S. 1994. Life in Moving Fluids, 2nd Ed. Princeton University Press.

RESERVE READINGS

GENERAL READING Selected World-Wide Web Resources



to Joe Ackerman's Courses Homepage
Last modified on September 14, 2001.