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               Chapter 9:     Ensemble based data assimilation 

   

      Typically there are two kinds of modeling techniques using either observed data 

(statistical modeling) or numerical models (numerical modeling).  In this chapter, 

we will talk the modeling and simulation using both approaches, that is, the 

observations will be incorporated into numerical models for optimal modeling and 

simulation. In statistics, this is called state-space estimation. In the earth science, it 

is called data assimilation. For example, a strict definition of data assimilation in 

atmospheric and oceanic sciences is the process to estimate the state of a dynamic 

system such as atmospheric and oceanic flow by combining the observational and 

model forecast data (Talagrand 1997). 

Intuitionally, one might think that an optimal simulation scheme is to directly 

replace model variables by observations during numerical integrations. Such a 

direct replacement is usually not correct since observations are not perfect and 

contain errors. A simple replacement will introduce observation errors into models, 

and ignore possible impact of observation errors on model behaviors, easily 

resulting in imbalance of model dynamics and physics. Thus, the application of 

observations into numerical models must consider both model and observation 

errors, which play a critical role in the assimilation process. 

We will start to display the assimilation concept by a simple example. A detail 

introduction can be found in Kalnay (2003). 

For an unknown true state value, denoted by   , there are two samples, denoted by 

   (e.g. model simulation) and    (observation), which have the errors    and    , 

respectively. Thus, we have 
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If the measurement or observation is unbiased, and the variances of errors are 
known, i.e.,  

 (  )   (  )        (  )    
      (  )    

              ( ) 

The question here is to seek an optimal estimate, denoted by    (called analysis in 

the assimilation field), for    using    and    . This optimal estimate is the central 

issue of data assimilation. 

There are several methods for this solution, as demonstrated below. 

1. The general framework of several assimilation approaches 

1.1 Least square method  

Denote             .    should be unbiased. i.e.,  (  )   (  ), so    (  )  

   (  )   (  ), and then        , where (1) is invoked. 

The best (optimal) estimate should satisfy the below condition:  

  
   (     )

       

Then,  
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           )    
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 here, we assumed that the errors of    and    are uncorrelated, i.e.,  (    )   . 

Thus, 

   
 

   
      

  
 

  
    

   

 Namely,  
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1.2 Variational approach 

In general, assimilation methods can be classified into two categories: variational 

and sequential. Variational methods such as three-dimensional variational (3D-

VAR) method and four-dimensional variational (4D-Var) method (Dimet and 

Talagrand 1986, Courtier et al. 1998) are batch methods, whereas sequential 

methods such as Kalman filter proposed by Kalman (1961) belong to the estimation 

theory. They both have had great success. The European Centre for Medium-Range 

Weather Forecasts (ECMWF) introduced the first 4D-VAR method into the 

operational global analysis system in November 1997 (Rabier et al. 2000, Mahfouf 

and Rabier 2000, Klinker et al. 2000). The ensemble Kalman filter (EnKF) was first 

introduced into the operational ensemble prediction system by Canadian 

Meteorological Centre (CMC) in January 2005 (Houtekamer et al. 2005). 

Below we will demonstrate the idea of variational assimilation by the above 

example. First, a cost function should be defined for variational assimilation 

approach. For this simple example, we define the cost function as below: 

 ( )  
 

 
 
(    )

 

  
  

(    )
 

  
   

            

                        

( )

( )
 

The solution is to seek an analysis   , determined by    and   , leading to the cost 

function minimum, i.e.,  (  )   minimum. Obviously, we have  

  ( )

   
    

  ( )

   
    

 Substitute with (2), it is  

  ( )

   
 
    

  
 

  

   
 
    

  
 

  

   
                 ( ) 

 Eq. (3) leads to 
  

   
   . Thus, the solution of (4), denoted by   , satisfies  

   
  
 

  
    

    
  
 

  
    

                        ( ) 
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The above is a simple example of the 3D variational assimilation approach, where 

we only consider the analysis error (cost function) for a time point. However, in 

many cases, we need to consider the error growth during a period, i.e., the sum of 

errors during the period, in the cost function (2). For example, the cost function of 

4D-Var is defined as below:  

 ( )  
 

 
∑ 

 

   

( ( )    ( ))
 

  
  

( ( )    ( ))
 

  
             ( ) 

 Meanwhile  ( )  follows a dynamical model, saying  ( )  ∫  
 

  
( ( ))   

 ( (  )) ,where   is a nonlinear dynamical model,   is the integral operator, and    

is the initial time. Thus, the cost function value of (6) is only determined by the 

initial condition. Namely, the objective here is to seek optimal initial condition    

that enables (6) minimum, i.e., minimizing (6) subject to dynamical model  . This is 

a standard conditional extreme problem which can be solved by Lagrange Multiplier 

approach. However the complexity of dynamical model excludes the possibility to 

get the analytical solution. We have to solve the minimum problem by aid of 

numerical methods, e.g., Newton conjugate gradient method. All of numerical 

methods require the gradient value 
  

   
 for solution. 

Again, it is almost impossible for obtaining analytical solution of 
  

   
 due to the 

complexity of  . Usually researchers get the gradient value numerically using an 

approach of tangent-linear and adjoint model. The details on tangent-linear and 

adjoint model can be found in relevant references as cited above. It should be 

noticed that it is very difficult, even intractable sometimes, to construct tangent-

linear and adjoint model in some cases. Thus, more and more researchers have 

started to apply sequential assimilation methods instead of 4D-Var in recent years. 

Next we will introduce the concept of the sequential assimilation method using the 

above example. 
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1.3 Bayesian approach 

Assume    and    are the mean value and standard deviation of the model 

prediction, which implies a prior probability distribution of truth  ,  

 ( )  
 

√    
 
 
(    )

 

   
 
  

 Given the observation    and its standard deviation   , the posterior distribution of 

the truth can be expressed by Bayes’ theorem:  

 ( |  )  
 (  | ) ( )
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  (  ) was ignored in (7) since it is independent of  , and usually plays as a 

normalization factor. The likelihood function  (  | ) ( ) describes the probability 

that the observation becomes    given an estimation of  . It is commonly assumed 

to be Gaussian  (    ). The object here is to estimate the truth by maximizing the 

posteriori probability  ( |  ) (namely, we ask the truth to occur as much as 

possible - maximum probability). Maximizing  ( |  ) is equivalent to maximizing 

the logarithm of the right item of (7), i.e.,  
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Obviously, maximum of  ( |  ) occurs at the minimum of the second item of right 

side hand of (8), i.e., minimum of the cost function   of (2). Thus, under the 

assumption of Gaussian distribution, maximizing a posterior probability (Bayesian 

approach) is equivalence to minimizing cost function (variational assimilation 

approach). Further, if the model   is linear and the probability distribution is 

Gaussian, it can be proved that the Kalman filter is equivalent to 4D-Var adjoint 

assimilation method. 
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2. Optimal Interpolation (OI) and Kalman filter (KF) 

2.1 Optimal Interpolation 

The most special case in data assimilation is that the forecast model is linear and the 

errors are Gaussian. The solution among sequential methods to this case is provided 

by Kalman filter. Typically the Kalman filter applies to the below state-space model: 

            
          

                        
( )
(  )

 

where   and   are linear operator of model and measurement, respectively. The   

is model state and   is the observation, and the subscript implies the time step. The 

   and    are the model errors and observational errors, respectively, which have 

variance:    (  )        
        (  )        

    . The objective here is to 

estimate model state   using  , making it close to true state (unknown) as much as 

possible. 

Assuming the estimate of model state    at a time step is a linear combination of 

model forecast    and observation    , i.e., the filter itself is linear, so  

                               (  ) 

 Eq. (11) is the standard expression of Kalman filter.   is called Kalman gain which 

determines the optimal estimate.        is also call as the innovation. Before 

deriving the  , we denote the covariance matrix of the analysis error    by    , i.e., 

       (  )   where           and     is the true value of model state. 

Similarly, observed errors and forecast errors are defined by            and 

          , respectively. It should be noticed that the forecast error    is 

different from the model error    that is a systematic bias. Also, denote  

      (  )                  (        )                

      (  )                                   
 

 Assuming the observation error is not related to forecast error, so  

    (  )       (  )      
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 Clearly, we ask the   that can lead to    minimum. Subtracting     on both sides of 

eq. (11) leads to the below equation: 

                                            (  ) 

 Namely,  

       (      )                 (  ) 

 and  

         (      )      (      )  

       (      )  (  )  (      )    

     (  )    (      )     (      )(  ) 

  (      )(      )    

              (      )  

          (   )   (      )   

                (  ) 

 Here we used     . The optimal estimate asks the trace of    minimum, namely,  

       (  ) 

  
    

 so  

        (      )     

  

     (      )                                   (  ) 

 Substitute into (14),  

            (   )   (      )  

                (      )  (      )  

       (    )  

 

 where we invoked the below properties:  
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Thus we have the optimal estimate filter:  

                

     (      )   

   (    )  

                      

(  )
(  )
(  )

 

 In the estimate (16) - (18), if the background error covariance   is prescribed, the 

estimate is called optimal interpolation. The OI does not involve state equation (9) 

and   is unchanged during the entire assimilation process. 

2.2 Kalman filter 

Now, we consider   in (17) change with the assimilation cycle. This is more realistic 

since the model prediction errors should be expected to decrease with the 

assimilation. 

From eq. (9), we have  

    
      

      

    
   (   

    )     
  
                 

(  )
(  )

 

 Eq (19) indicates that even the true value is input at a time step, model can’t get a 

true value for next step due to model bias   . Eq (20) shows a standard procedure 

for the model prediction of next step starting from the analysis of previous step. 

Subtracting (19) from (20) produces:  

    
     

                             (  ) 
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 The above equation considers the evolution of the background (prediction) error 

covariance with the time, controlled by the dynamical model operator  . The eqs. 

(16)- (20) plus the above equation constitutes the framework of Kalman filter for eq. 

(9), namely 

 

  
    

          
   

     
 (    

   )   

  
  (    )   

    
     

  

        
      

                     

(  )
(  )
(  )
(  )
(  )

 

 

One Kalman filter cycle is consist of two parts, namely, one analysis step (Eqs. (23) - 

(25)) and one prediction step (Eqs. (26) - (27)). The analysis state   
  and 

covariance   
  are treated as initial conditions for the prediction step, until the next 

observation is available. Sometimes,    is also denoted by   
 

 in Kalman filter 

literatures. The detailed procedure of Kalman filter is like below: 

1.   and   are specified. For convenience,   and   are usually assumed to be 

diagonal matrix. An initial value of   is given, e.g.,     ; 

2.   is calculated using (24); 

3. The analysis    is obtained using (23); 

4. prediction (background) error covariance   is updated to    using (25); 

5. The model (9) is integrated forward using (26), and the prediction error 

covariance for next step is computed using (27); 

6. Repeat step 2 to step 5 till the end of the assimilation period. So, KF is a 

recursive algorithm. 
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2.3 Extended Kalman filter (EKF) 

In deriving Eqs. (13) and (22), we assume the state model   and measurement 

model   are both linear. Further, we also assume the error has Gaussian 

distribution. Therefore, classic KF only works for linear models and Gaussian 

distribution. If the dynamical model and measurement model are not linear, we 

cannot directly apply for KF. Instead, linearization must be performed prior to 

applying for KF. The linearized version of KF is called extended KF (EKF), which 

solves the below state-space estimate problem:  

      (     ) 
    (     ) 

                    (  ) 

 where   and   are nonlinear models. Assume the error is additive noise, i.e.,  

      (  )     
    (  )     

                  (  ) 

 The filter is still assumed to be “linear”, i.e.,  

            (  )   

 Actually, it is not a linear combination of the forecast    and observation    if   is 

not linear. However, we just extend the formulation of Eq (11), and apply it 

intuitively in nonlinear cases. Ignoring high order terms, the following holds 

approximately  

 (    )   ( )  
  

  
    ( )                    (  ) 

 where   is the linearization of  , and      
   

   
. So  

    (  )      (          )      (   )   (      )         

       (      ) 
   
(  )
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 Eq (32) is identical to Eq (11). Similarly, subtracting     on both sides of eq (32) 

leads to the below equation:  

       (      )               (  ) 
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 which is the same as eq. (13). Following the same derivation as that for eq (13), we 

can obtain the equations similar to (16) to (18). Therefore, if the measurement 

model   is nonlinear, the KF can be still applied with a linearization of  . 

Similar to (19) and (20), the state model is as below:  
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  )     

    
   ( (  

 )    )   (  
 ) 
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 Subtracting (34) from (35) produces:  
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 )        
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 where      
   

   
. 

Comparing (21) with (36) reveals that (22) still works here. Thus, the EKF 

can be summarized as below: 
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The procedure to perform EKF is similar to that for KF, as listed above. The 

disparities and similarities between EKF and KF include i) Kalman gain   has the 

same form for both, especially the linear or linearized measurement model should 

be used; ii) the update equation of model error covariance has the same form, with 

linear and linearized state model used; iii) forecast model is different, with KF using 

linear eq. (26) and EKF using nonlinear model (40); iv) the filtering algorithm is 

different, linear measurement model   used in KF (eq. (23)) and nonlinear model   
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in EKF (eq. (37)). It should be noticed that EKF is only an approximate KF for 

nonlinear state model. 

3. Ensemble Kalman filter (EnKF) 

3.1 Basics of EnKF 

A challenge in EKF is to update background (prediction) error covariance by (39) 

and (41), which requires the linearization of nonlinear model. The linearization of 

nonlinear model is often difficult technically, and even intractable in some cases, e.g. 

non-continuous functions existing in models. Another drawback of EKF is to neglect 

the contributions from higher-order statistical moments in calculating the error 

covariance. 

To avoid the linearization of nonlinear model, the ensemble Kalman filter (EnKF) 

was introduced by Evensen et al. (Evensen 1994; Houtekamer and Mitchell 1998), in 

which the prediction (background) error covariance   of (38) are estimated 

approximately using an ensemble of model forecasts. The main concept behind the 

formulation of the EnKF is that if the dynamical model is expressed as a stochastic 

differential equation, the prediction error statistics, which are described by the 

Fokker-Flank equation, can be estimated using ensemble integrations (Evensen 

1994, 1997); thus, the error covariance matrix   can be calculated by integrating 

the ensemble of model states. The EnKF can overcome the EKF drawback that 

neglects the contributions from higher-order statistical moments in calculating the 

error covariance. The major strengths of the EnKF include the following: (i) there is 

no need to calculate the tangent linear model or Jacobian of nonlinear models, which 

is extremely difficult for ocean (or atmosphere) general circulation models (GCMs); 

(ii) the covariance matrix is propagated in time via fully nonlinear model equations 

(no linear approximation as in the EKF); and (iii) it is well suited to modern parallel 

computers (cluster computing) (Keppenne 2000). EnKF has attracted a broad 

attention and been widely used in atmospheric and oceanic data assimilation. 
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Simply saying, EnKF used the below formula to replace (38) and neglected (41) - 

(43) in EKF while other equations are kept the same, i. e,  

  
 

   
∑(  

    )(  
    ) 

 

   

                 (  ) 

 where   
  represents the  -th member of the forecast ensemble of system state 

vector at step  , and   is the ensemble size. The use of (44) avoids processing the  , 

the linearized operator of nonlinear model. In eq. (38), the measurement function   

is still linear or linearized, which causes concern. To avoid the linearization of 

nonlinear measurement function, Houtekamer and Mitchell (2001) and Hamill 

(2006) wrote Kalman gain (38) by  
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 where  (  )  
 

 
∑  (  

 ) 
   . Eq. (45) and (46) allow direct evaluation of the 

nonlinear measurement function   in calculating Kalman gain. However, (45) and 

(46) have not been proven mathematically, and only were given intuitionally. 

Amabadan and Tang (2009), Tang and Amabadan (2009) and Tang et al (2014) 

argued that (45) and (46) approximately hold if and only if  

 (  )   (  ) 

  
                                 

               
(  )
(  )

 

Under the conditions of (47) and (48), Tang et al (2014) argued (45) and (46) 

actually linearize the nonlinear measurement functions   to  . Therefore, direct 

application of the nonlinear measurement function in (45) and (46) in fact imposes 

an implicit linearization process using ensemble members. In next section, we will 

see that (45) and (46) can be modified under a rigorous framework 

Thus, the equations and procedure of EnKF are summarized as below:  
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1. put perturbations on initial conditions and integrate the model, i.e., 

      (     )  where            (ensemble size) and    is the initial 

condition; 

2. using (51), (52) and (53) to calculate Kalman gain  ; 

3. calculate analysis using (49) after   is obtained. It should be noted that each 

ensemble member produces an analysis; the average of all analyses ( ) can be 

obtained; 

4. using (55) to obtain new ensemble members for next round analysis. Here    is 

perturbation on the  -th member. 

5. repeat Step 2 to Step 5 until the end of assimilation period. 

6. It should be noted that the observation should be treated as a random variable 

with the mean equal to 0 and covariance equal to        . This is why 

there is    in (49). Simply,    is often drawn from a normal distribution 

    (   ) 

From the above procedure, we find that eq. (50) is not directly applied here. Instead, 

we use (52) and (53) to calculate  . This is because i) (51) and (52) avoid the 

linearization of nonlinear model; ii) avoid the explicit expression of matrix  , which 

is often very large and cannot be written in current computer sources in many 
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realistic problems. This should be noticed that (51) and (52) avoid writing B 

directly. The measurement function  , projecting model space (dimension) to 

observation space (dimension), greatly reduces the number of dimension. 

3.2 Some remarks on EnKF with large dimensional problems 

Initial perturbation 

The success of EnKF highly depends on the quality of ensemble members produced 

by initial perturbations. It is impractical to represent all possible types of errors 

within the ensemble because of the computational cost, the method of generating 

initial perturbations must be chosen judiciously. i) The first issue is the amplitude of 

initial perturbations. Usually the following two factors are considered when 

selecting the amplitude of initial perturbations: the amplitude of observation error 

and the amplitude of model errors induced by model parameters and uncertainty in 

model physics. If a model is perfect, the amplitude of the perturbations should be 

the same as the amplitude of observation errors. This combined error is used to 

determine the amplitude of perturbations. ii) When the perturbation amplitude is 

determined, the practical initial perturbation field generating each ensemble 

member could be constructed by a normalized pseudorandom field multiplied by 

the prescribed amplitude. Considering the spatial coherence, the pseudorandom 

field is red-noise as proposed by Evensen (2003), summarized as below: 

1. Calculate the statistical characteristics for the pseudorandom field to meet its 

variance of 1 and mean of 0.  

    
∑    (  

    
 )         (    )

∑    (  
    

 )      
                  (  ) 

 where    
   

  
 
   

   
;    

   

  
 
   

   
,   and   are the number of grid points in 

 -axis (lon.) and  -axis (lat.). For example, if your model domain is 114*42, 

      and     . The   and   are wave-number, changing from 1 to the 

maximum value of     and    .    and    are the interval of two adjacent 
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points, often set to 1.    is the de-correlation length. The purpose of (56) is to 

derive the    for the other feature:  

   
 

  ∑    (  
    

 )      
                        (  ) 

2. After   and    are obtained, we can construct a 2-dimension pseudorandom 

field:  

 (     )  ∑
 

√  

   

 
 
(  
    

 )

       (   )  (         )          (  ) 

3.  While   ,    cover the whole domain, (58) produce a     2-dimensional 

random filed with spatial coherence structure and the variance of 1 and mean 

of 0. If the realistic uncertainty (error) has an amplitude  , the perturbation 

should be    . Similarly, (58) is often used for the error perturbation    used in 

(55). 

Sometimes, we need to consider the vertical coherence of pseudorandom fields 

between adjacent levels in oceanic models. A simple method for this purpose is to 

construct the pseudorandom field at the  th level    by following equation:  

         √                         (  ) 

 where    (         ) is the pseudorandom field at the  th level without 

considering vertical coherence, constructed using the above method. Initially, for 

the surface perturbation (   ), the vertical coherence is not considered, i.e.,    , 

since      does not exist. Eq. (59) indicates that a practical pseudorandom at the  th 

level (   ) is composed of    and      . As such the    is correlated with     , i.e., the 

practical pseudorandom fields of two adjacent levels (      and    ) are coherent 

with each other. Their correlation or coherent structure is determined by the 

coefficient        . Eq. (59) generates a sequence that is white in the vertical 

direction if     (i.e.,       ), but a sequence that is perfect correlated in vertical 

if     (i.e.,         ). Eq. (59) is also often used to construct random fields that is 
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temporally coherent, for example, a continuous random noise that has coherence in 

time , as used for    in (55) (Evensen 2003). The random noise    in (55) can also be 

replaced by the random noise imposed in model forcing. For example, the random 

noise is continuously added to wind forcing for oceanic models. Even for some 

atmospheric models with transition processes, there are inherent random noises 

making    not necessary. One important criteria for    and the amplitude   is to 

examine ensemble spread by some sensitivity experiments. 

The computational cost of Kalman gain 

The Kalman gain, as expressed by (51), has dimension of    , where   is the 

number of model variables of observation. In many realistic problems,   is a very 

large number (   , the ensemble size), making the inversion very expensive. 

A simple procedure is to rewrite the Kalman gain  , as below:  

   ̃ ̃   (  ̃ ̃       )                       (  ) 

 where  ̃ indicates the model ensemble predictions removed the ensemble mean 

( ̃     
     , for             ).   

 

 
    was invoked here. If we assume the 

ensemble prediction error (               ̃  ) is not correlated to 

observation error, i.e.,  ̃     , the following is valid (Evensen 2003),  

(  ̃ ̃       )  (  ̃   )(  ̃   )                (  ) 

 where (  ̃   ) has dimension    . Usually ensemble size   is much less than  . 

Using (singular value decomposition) SVD technique, we have  

(  ̃   )        

The Eq. (61) then becomes  

(  ̃ ̃       )                        

 So,  
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(  ̃ ̃       )                              (  ) 

 where   and   are the eigenvector and the square of eigenvalues of (  ̃   ) . 

There are   non-zero eigenvalues for (  ̃   ), therefore the dimension is not large, 

allowing us to efficiently compute the inversion for a global analysis in most 

practical situations. 

Stochastic EnKF and deterministic EnKF 

In EnKF introduced in the previous section, the observation assimilated into 

dynamical model should be treated to be stochastic variable, as expressed by 

      in (49). It is a must if the classic EnKF algorithm, as expressed by (49) – (55), 

is used. It has been proven that if the EnKF assimilates deterministic observations 

(i.e., observation    not changed at each ensemble member), the analysis error 

covariance will be systematically underestimated, typically leading to filter 

divergence, as indicated by below (Houtekamer and Mitchell 1998; Burgers et al. 

1998):  

    (    ) (    )                    (  ) 

 Eq. (63) gives the analysis error covariance if the observed is not perturbed. 

Comparing (63) with (54), a theoretically unbiased estimate,     is always less than 

   . 

However, the perturbed observation approach (i.e.,      ) introduces an 

additional source of sampling error that reduces analysis error covariance accuracy 

and increases the probability of understanding analysis error covariance (Whitaker 

and Hamill 2002; Tippett et al. 2003). Thus an approach that only uses a single 

observation realization but avoids systematical underestimation of analysis error 

covariance was pursued. There are several approaches to implement this goal, as 

summarized by Tippett et al. (2003). Below, we will introduce an approach 

developed by Whitaker and Hamill (2002), called Ensemble square-root filter 

(EnSRF). 
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Denote the deviation of analysis from the analysis mean by  ̃      
 

 . It is easy 

to write  

 ̃   ̃   ̃  ̃    ̃                            (  ) 

 where  ̃      
 

. If a single observation realization is assimilated in all 

ensemble members,  ̃    and  

 ̃   ̃   ̃  ̃  (   ̃ ) ̃   

  

    (   ̃ ) (   ̃ )   

We seek a definition for  ̃ that will result in an ensemble whose analysis error 

covariance satisfies (54), i.e.,  

(   ̃ ) (   ̃ )  (    )                (  ) 

 The solution of (65) is  

 ̃  (  √
 

      
)                           (  ) 

 Therefore, EnSRF is summarized as below: 
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It should be noted that there are two Kalman Gains used in EnSRF, the original   for 

ensemble analysis mean, and a new  ̃ for deviation of analysis from the analysis 

mean. Eq. (67) indicates that one single observation realization of classic EnKF has 

the same ensemble analysis mean as stochastic observations or EnSRF. 

Initially, the term EnKF refers, in particular, to the stochastic ensemble Kalman 

filter, which requires perturbing the observations. Subsequently, several 

deterministic EnKFs that avoid the use of perturbed observations were developed, 

e.g., the ETKF (Bishop et. al., 2001), the EAKF (Anderson, 2001), and the EnSRF. 

These filter designs are labelled as variants of the EnKF because they are also based 

on the Kalman filtering formula and ensemble representations. 

Inflation approach 

The forecast error covariance is defined by (44):  

  
 

   
∑(  

    )(  
    ) 

 

   

 
 

   
 ̃   ̃                 (  ) 



NRES710  Modeling and Simulation Part II: Numerical Modeling               UNBC 

 

 Eq. (77) is an approximation to   using forecast ensemble. Due to limited 

computational source, the ensemble size   is often restricted to a small value for 

many realistic issues. A small ensemble size may cause a very small ensemble 

spread, causing the approximation of   by (77) is seriously underestimated. To 

solve this problem, the   is multiplied by a inflator factor   (slightly greater than 1). 

  is empirically determined, such as some sensitivity experiments, with the typical 

value of 1.01. The     is used to replace   in EnKF formula (49) – (55). This 

approach is equivalent to the below approach: 

  
   (  

    )      

Localization of EnKF 

When EnKF is applied to high-dimensional atmospheric and oceanic models, the 

limited ensemble size will cause the estimated correlations to be noisy (Houtekamer 

and Mitchell, 1998). When the ensemble size is insufficient, it will produce spurious 

correlations between distant locations in the background covariance matrix  . 

Unless they are suppressed, these spurious correlations will cause observations 

from one location to affect the analysis in locations an arbitrarily large distance 

away, in an essentially random manner (Hunt et al., 2007). This need to be remedied 

by the localization method. 

Another reason for using localization is that the treatment of localization artificially 

reduces the spatial domain of influence of observations during the update. The 

localization dramatically reduces the necessary ensemble size, which is very 

important for operational systems. Two most common distance-based localization 

methods used in practice are local analysis and covariance localization. 

Using local analysis, only measurements located within a certain distance from a 

grid point will impact the analysis in this grid point. This allows for an algorithm 

where the analysis is computed grid point by grid point. It was found that severe 

localization could lead to imbalance, but with large enough radius of influence (de-

correlation length) for the measurements, this was not a problem. Hunt et al. (2007) 
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use the local analysis method in their ETKF algorithm, developed a local ensemble 

transform Kalman filter (LETKF). 

To eliminate the small background error covariance associated with remote 

observations, Houtekamer and Mitchell (2001) uses a Schur (element wise) product 

of a correlation function with local support and the covariance of the background 

error calculated from the ensemble. That is, the matrix   in eq. (70) is replaced by 

   , where “ ” represents the elementwise product and the elements   relates to 

the distance of the grid point to the observation   as below : 

 ( )  (     
    

 
)                                         (  ) 

 Here,   is a scalar parameter. To the author’s knowledge, this is the first case that 

the covariance localization is used in EnKF. 

Nowadays, a typical covariance localization approach is to represent prior 

covariances using an element-wise product of ensemble covariance and a 

correlation function with compact support (Gaspari and Cohn 1999). Anderson 

(2009) applied this approach to the Data Assimilation Research Test bed system, 

which has been used for realistic cases. 

Nonlinear Measurement function 
 

   It is clear that the linear assumption is made for the measurement function to 

obtain Eq. (51), as indicated by the linear operator H. To deal with the nonlinear 

measurement function in the EnKF, HM2001 proposed Eqs. (52) and (53) to directly 

evaluate the nonlinear measurement functions.  As discussed in last section, there is 

a gap here, i.e., the lhs (left hand side) of Eqs. (52) and (53) need the linear 

measurement function H, whereas their rhs (right hand sides) directly uses the 

nonlinear function h. HM2001 realized this gap and used the equivalence sign “ ” 
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instead of the equality sign “=” in Eqs. (52) and (53). However, the equivalence is 

primarily based on intuition. Tang et al (2014) examined the equivalence in a 

rigorous, statistical framework. Based on the general form of Kalman Gain that will 

be discussed in next section, they derived a statistical estimation for Kalman gain, 

i.e.,  
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  A comparison of Eqs. (51), (52) and (53) with the above equation reveal that they 

are completely equivalent, if Eq. (47) holds true. From the linearization point of 

view, Eq. (47) holds true if and only if Eq. (48) also holds true. Conversely, the above 

equation were used instead of Eqs. (51) - (53) in the EnKF, the modified Kalman 

gain form should have been more rigorous in the statistical framework, which is 

equivalent to the general Kalman gain forms (83) –(84), without demanding any 

assumption of linearization. Clearly, when the noise is non-additive, the equivalence 

is no longer valid. However, in case of non-additive noise, all Kalman-based filters 

are theoretically invalid due to the non-Gaussian nature of the systems.   

4. General form of ensemble-based filters for Gaussian models 

In proceeding sections, we introduced Kalman based filters. Originally Kalman filter 

applies linear model and linear measurement function. Further, EKF and EnKF were 

developed to address nonlinear models. However the measurement functions are 

still assumed to be linear. Eqs. (52) and (53) can directly evaluate nonlinear 

measurement functions but they were proposed intuitionally and not proven yet. In 

this section, we will present a general form for nonlinear measurement function, 

and further prove eqs. (52) and (53) mathematically using the general form. 
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For generality, we assume the below model:  

      (     ) 

    (     ) 
                            (  ) 

 where   and   are nonlinear operator of model and measurement. The   is model 

state and   is the observation. The    and    are the model errors and observed 

errors, respectively, which have variance:    (  )        
    ,    (  )   

     
    . Assuming the estimate of model state    at a time step is a linear 

combination of model forecast    and observation    , i.e., the filter itself is linear, 

so  

            (  )                     (  ) 

Denote  ̂       ,  ̂       ,  ̂      (  ). We have  

 ̂   ̂    ̂                       (  ) 

                                       
      ̂ ( ̂ )     ( ̂    ̂)( ̂    ̂)  

    ̂ ( ̂ )   ̂  ̂      ̂( ̂ )    ̂ ̂    
 

                                                 ̂ ̂ 
      ̂̂     ̂ ̂ 

   

The optimal estimate asks the trace of    minimum, namely,  

       (  ) 

  
  

   ̂ ̂    ̂ ̂      ̂ ̂   

    ̂ ̂   
  

         ̂  ̂

 

 where we invoked the below properties:  

 (           )

  
  (    )      

 (          )

  
 
 (          )

  
      

 

Thus we have the optimal estimate filter: 
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Eqs. (82)-(85) give a general algorithm for Gaussian nonlinear model and nonlinear 

measurement function. It is also assumed that the noise is additive in eq. (85). The 

first term of eq. (83) can be interpreted as the cross-covariance   ̂ ̂ between the 

state and observation errors, and the remaining expression can be interpreted as 

the error covariance   ̂ ̂  of the difference between model observation and 

observation itself. Here,  ̂ is defined as the error between the noisy observation    

and its prediction  (  ). 

If the model is linear, obviously  

    
     

     

        
      

 

 If the measurement function is linear, i.e.,  

 ̂      (    )                       ̂    

  ̂ ̂    ̂ ̂ 
  

  ̂ ̂     ̂ ̂ 
    

 

 So, Kalman gain  

    ̂ ̂ 
 (   ̂ ̂ 

   )                                (  ) 

 Eq. (86) is identical to eq. (51). Therefore, eq. (51), or KF, EKF and EnKF, is a special 

case of eq. (86) under the assumption of linear measurement function. 
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In the standard KF the state error covariance is updated at each analysis cycle 

during the measurement update process. Updating the error covariance matrix is 

important because it represents the change in forecast error covariance when a 

measurement is performed. The EnKF implementation does not require the 

covariance update equation because it can directly calculate the updated error 

covariance matrix from a set of ensemble members. Evensen (2003) has derived the 

analysis covariance equation, which is consistent with the standard KF error 

covariance to update eq. (39). But the true representation of the updated error 

covariance requires a large ensemble size, which is often computationally infeasible.  

The general form of the Kalma gain makes use of the reformulated error covariance. 

In a broad sense, the above algorithm implicitly uses the prior covariance update 

equation (or the analysis error covariance matrix) to calculate the forecast error 

covariance. Thus, the above algorithm is fully consistent with the time update and 

measurement update formulation of the Kalman filter algorithm. On this basis, one 

can develop a new type of Kalman filter which chooses the ensemble members 

deterministically in such a way that they can capture the statistical moments of the 

nonlinear model accurately. In the next subsection we will discuss the new type of 

Kalman filter, called Sigma-point Kalman filter, based on the above algorithm. 

5. Sigma-Point Kalman filters (SPKF) 

5.1 Basics of SPKF 

EnKF was developed in order to overcome the linearization of nonlinear models. As 

introduced earlier, the idea behind EnKF is to ‘integrate’ Fokker-Plank equation 

using ensemble technique to estimate the forecast error covariance. Theoretically if 

the ensemble size is infinite, the estimate approaches the true value. However in 

reality, we can only use finite ensemble size, even very small size for many 

problems, leading to truncation errors. Thus, some concerns exist such as: how to 

wisely generate finite samples for the optimal estimate of prediction error 

covariance; how much the least ensemble size is for an efficient estimate of error 
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covariance; and how much the true error covariance can be taken into account in 

the EnKF, given an ensemble size. In this section, we will introduce a new ensemble 

technique for EnKF, which is called Sigma-point Kalman filter (SPKF). 

The so-called sigma-point approach is based on deterministic sampling of state 

distribution to calculate the approximate covariance matrices for the standard 

Kalman filter equations. The family of SPKF algorithms includes the unscented 

Kalman filter (UKF; Julier et al. 1995; Wan and van der Merwe 2000), the central 

difference Kalman filter (CDKF; Ito and Xiong 2000), and their square root versions 

(van der Merwe and Wan 2001a,b). Another interpretation of the sigma-point 

approach is that it implicitly performs a statistical linearization (Gelb 1974) of the 

nonlinear model through a weighted statistical linear regression (WSLR) to 

calculate the covariance matrices (van der Merwe and Wan 2001a,b; van der Merwe 

et al. 2004). In SPKF, the model linearization is done through a linear regression 

between a number of points (called sigma points) drawn from a prior distribution of 

a random variable rather than through a truncated Taylor series expansion at a 

single point (van der Merwe et al. 2004). It has been found that this linearization is 

much more accurate than a truncated Taylor series linearization (van der Merwe 

and Wan 2001a). Eqs. (82) - (85) construct a core of SPKF. A central issue here is 

how to generate the optimal ensemble members for applying these equations. There 

are two basic approaches aforementioned, UKF and CDKF. For an  -dimensional 

dynamical system represented by a set of discretized state space equations of (79), 

it has been proven that      ensemble members, constructed by UKF or CDKF, can 

precisely estimate the mean and covariance. We ignore the theoretical proof and 

only outline the UKF scheme as below. 

Denote      sigma-points at time   for producing ensemble members by 

             
          

      
        

  , which is defined according to the following 

expressions:  
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(  )

 

 where            is the sum of the dimensions of model states, model noise 

and measurement noise. The augmented state vector           is a  -dimensional 

vector. √    
  is the covariance of the augmented state vector (analysis) at the 

previous step.  √    
    is the  th row (column) of the weighted matrix square root of 

the covariance matrix (  dimension).   is a scale parameter which will be specified 

later. The key point here is to produce (    ) ensemble members by integrating 

model with      initial conditions of (87)-(89); by these ensemble members the 

filter (82)-(84) will be performed. 

The procedure is summarized as below: 

1. Initially, perturb a small amount, denoted by  ̃  on initial condition   , using 

Evensen (2003) method; also randomly generate perturbation for   and  , 

drawn from normal distributions of  (   )  and  (   ) . Thus, we can 

construct the augmented state vector and corresponding covariance (   );  

  
 
          

  
   ̃  ̃ 

  

     (
  
   
   
   

)  

 

2. From the above formula, we can calculate sigma-points using (87) - (89). Note 

that each set of sigma-points, denoted by    , has dimension  , e. g., the  th 

sigma-point can be expressed by                      . 

3. Using the      sigma-points to integrates state-space model. For the  th 

sigma-point, we have (      
 

  (         ). When   varies from 1 to     , we 

produce      ensemble members, from which analysis mean and covariance 



NRES710  Modeling and Simulation Part II: Numerical Modeling               UNBC 

 

will be obtained, which are in turn used to produce sigma-points for next step 

(   ), to form a recursive algorithm. 

  Supposed we have      ensembles, the analysis mean and the covariance are 

calculated as follows  
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     and   are tuning parameters.       and    . Often   is chosen 0 as 

default value; and    . 

4. From     
 , as well choosing random perturbation for model noise   and 

observation noise  , drawn from Gaussian distribution of  (   ) and  (   ), 

we calculate sigma-points using eqs. (87)-(89), and repeat Step 2 and so on 

until the assimilation is completed for the entire period. 

5.2 Remarks of SPKF 

1. SPKF was introduced into the earth sciences recently (e.g., Ambadan and Tang, 

2009; Luo and Moroz 2009). The main differences between SPKF and EnKF 

include i) SPKF chooses the ensemble members deterministically while EnKF 

uses random perturbation to generate ensemble members; ii) the number of 

sigma-points is a fixed value as     , while the ensemble size in EnKF is 

prespecified; iii) SPKF uses eq. (98) to update the  error covariance matrix, 

while EnKF does not update explicitly the error covariance matrix; iv) sigma-

points are calculated using eqs. (87)-(89) every time when the observation is 

available, while the ensemble members in EnKF only perturbed in the intial 

time.  Recent application of SPKF on a realistic oceanic model indicates that the 

SPKF is better than the EnKF in the similar level of computational cost  (Tang et 

al. 2014) 

2. In SPKF, the number of sigma-points is     , here   is the dimension of the 

augmented state vector          , i.e.,            is the sum of model 

state, model noise and observation noise. Usually   is the order     -    , so the 

computational expense is a huge challenge in SPKF for realistic problems. A 

solution is to use the truncated singular value decomposition (TSVD) to reduce 

the sigma-points. As seen from the eqs. (87) - (89), the     
  is a     matrix, 

thus the dimension of     
  determines the ensemble size. Supposed that     

  

can be expressed as  

    
      

   (    
 )                  (  ) 
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where        (  
    

        
 ) is a diagonal matrix of eigenvalues which are 

sorted in descending order, i.e.,   
    

        
  , and 

    
         

        
            

  . Truncating the first   modes, so we can write the 

sigma-points (87)-(89) as below:  

       
 

    
    

 
  √  

       
 

    
    

 
  √  

       
 

              

(   )
 

(   )
 

(   )

 

            . Thus the ensemble size becomes      . Some fast SVD 

algorithms can be used here such as Lanczos and block Lanczos (Chapter 9 of 

Golub and Loan). The application of the truncated SVD was also found in 

(Hansen 1987; Ehrendorfer and Tribbia 1997). 

3. Further simplification of     
  based on its definition (or Cholesky 

decomposition), i.e.,     
      

  (    
 ) , where     

  is the data which has 

subtracted the ensemble mean. Thus, eqs. (87)-(89) can be written as follows  

       
 

    
    

 
 (     

 ) 

    
    

 
 (     

 ) 

            

 
(   )
 

(   )
(   )

 

where (     
 )     

                     , (  
 )  (  

 
)          

 
 . Eqs. 

(103)-(105) transfer the covariance matrix     
  to data matrix     

  in 

constructing sigma-points. The largest advantage is to avoid explicit expression 

of     
  , which could be a very large matrix beyond memory of current 

computers. However (103)-(105) cannot reduce the ensemble size (2L+1). A 

solution is to decompose such as Principal Component Analysis, as used in 

(Ambadan and Tang, 2009). Further discussions on optimal construction of 

sigma-points should be conducted for a realistic application of SPKF. 
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4. Again, we look at Sigma-point generation, i.e., eqs (100)-(102) or (103)-(105). 

As we defined, an augmented matrix is applied here:          . Without losing 

the generality, we only take eqs (103) - (105) and rewrite them as below:  

[

    
    
    
]  [

    
 
 

]                (   ) 

 

[

    
    
    
]  [

    
 
 

]   [

    
 

    
    

]             (   ) 

 Similarly, we can write (105) using individual variables. From eqs. (106) and 

(107), we can draw, 

– Noise and model state analysis in constructing sigma-points at   step are 

independent. It should be noted that   
  is from eq. (97) and noise are 

draw from a Gaussian distribution. If we assume that noise is taken 

randomly each time,   
  is only relevant to noise which is drawn at time 

step  , and independent with model noise and observation noise drawn 

for analysis of the time step    , thus,      is a diagonal block matrix, 

i.e.,  

     (
  
   
   
   

)                     (   ) 

– There are not update equations for noise so they are randomly taken 

from Gaussian distribution, i.e., the index   in    and    actually does not 

have meaning. Thus, it should be a reasonable assumption that the    

and    ,used for constructing sigma-points at time step    , is not 

related to      (time step of  ), as argued above. Thus, (108) always hold 

unless the noise is designed considering the temporal coherence such as 

red noise in time. 
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– Based on above, the actual ensemble size is      , not     . This is 

because neither model noise nor observation noise can produce 

ensemble alone. Model error    and     
 

 must jointly together to produce 

ensemble members with  . 

  Let us see this in details: at the initial time, initial perturbation on model 

states, plus drawn noise for model errors and measurement errors are 

with mean and variance as follows  

  
 
                (

  
   
   
   

)  

   Theoretically there are  (        )    ensembles, denoted by the 

 th column of      (           ;               ;       

              ) and formula (87) - (89). However, at the  th column, 

the elements of the row, indicating the model inputs (     ) , only have 

the non-zero values of   . Obviously, the sigma-points of zero-values 

makes the update equation         (    ) invalid, thus, the actual 

ensemble size is      . 

5. When truncation technique is applied to reduce the ensemble size, the 

ensemble spread might be shrunk due to relatively small ensemble size. Like 

EnKF, an inflation approach of SPKF might be helpful. It is interested in 

developing such a scheme for SPKF. 

6. Again, we can localize SPKF, like localized EnKF, to solve memory and 

computation issues. 

7. All of the remarks of SPKF are from the authors’ thinking and understanding. It 

is interesting to further test and validate these ideas and properties using 

simple models. 
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6. Beyond Kalman filters: Particle Filter and its derivatives 

6.1 Standard particle filter 

We have introduced the Kalman filter (KF), extended Kalman filter (EKF), ensemble 

Kalman filter (EnKF) and sigma-point Kalman filter (SPKF) in previous sections. All 

of those filters belong to the sequential data assimilation method, i.e., observation 

data is assimilated into the model system as soon as it is available. The Bayesian 

estimation theory provide a general framework of the sequential data assimilation 

methods. If we assume the state space model is  

      (     )
    (     )

 

 the analysis step of a Bayesian-based assimilation method is deduced by Bayes’ 

theorem:  

 (  |  )  
 (  |  ) (  )

 (  )
                           (   ) 

 where  (  ) plays as a normalization factor. 

Recalling section 1.3, eq. (7) actually assumes that the prior probability density 

function  (  )  and the likelihood function  (  |  )  are Gaussian distribution 

functions, and thus the posterior probability density function  (  |  ) is also a 

Gaussian. Based on the Gaussian assumption, the cost function of 3D-Var (i.e., eq. 

(2)) can be derived, and it is equivalent to the Kalman filter (23) - (27). All the 

Kalman-based filters (e.g., EKF, EnKF, EnSRF, SPKF, etc. ) contain the inherent 

Gaussian assumption, and they are derived and validated for Gaussian systems in 

theory. However, this Gaussian assumption is often not held for nonlinear systems. 

Even for an initial Gaussian error, it often becomes non-Gaussian while propagating 

forward with nonlinear models. 

The particle filter (PF) is a sequential data assimilation method which is able to deal 

with the nonlinear, non-Gaussian state estimation problem. Like EnKF, PF also uses 
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an ensemble, but it is used to approximately estimate the full probability density 

function rather than only the error covariance  . An ensemble member is also 

referred to as a particle in PF literatures. 

Suppose the prior probability density is the sum of Dirac-Delta functions  

 (  )  ∑ 

 

   

(     
 )                    (   ) 

 where    
               are particles drawn from  (  ). The posterior probability 

density is derived by applying the Bayes’ theorem (109) directly, that is  

 (  |  )   (  |  ) (  )  ∑    

 

   

 (     
 )             (   ) 

 in which       (  |  
 ) , a normalization step is required to make      , 

             sum up to 1. If we assume the likelihood function is Gaussian,      can 

be computed by  

 (  |  
 )  

 

√  
         (  

 )         (  
 )                    (   ) 

 Or else we can use any specified probability density function of  (  |  ) to compute 

the likelihood. 

With the posterior probability density function  (  |  ), the analysis value and 

covariance can be computed by  

   ∫    ( |  )   ∑      
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 ∑    (  
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 and higher order moments of the posterior state can also be estimated. 
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Before stepping forward to next stage, a resampling step is required to make each 

particle with uniform weight. A typical resampling strategy is the Sequential 

Importance Resampling (SIR), which removes particles with very small weights and 

duplicates those with large weights. A detailed algorithm of SIR can be found in 

(Arulampalam et al., 2002). The resampling algorithm gives the indices and number 

of copies of those particles which should be duplicated, i.e.,  

        
   
→                                       (   ) 

            

After the resampling step, the ensemble is with members equally-weighted as 

   
               , and thus eqs. (110) - (112) can be repeated for the next analysis 

stage. 

In summarize, the algorithm of standard particle filter is below: 

1. generate the initial ensemble    
               as EnKF does. 

2. integrate the model until the observation is available. 

3. using eq. (112) to compute the weight for each particle, and normalize them. 

4. using eq. (113) to obtain the analysis; using eq. (114) to obtain the covariance if 

necessary. 

5. apply the resampling algorithm to derive the resampling indices (eq. (115)), 

and derive the new ensemble    
               . 

6. repeat step 2 to step 5 until the end of assimilation period. 

The standard particle filter (Gordon, 1993) is also known as the bootstrap particle 

filter or SIR particle filter. 
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6.2 Variants of PF 

The particle filter is a highly promising technique because it does not invoke any 

Gaussian assumptions. It has been widely used and studied in many other fields. The 

PF estimates the full probability density function of the forecasted state based on an 

ensemble of states with different weights. However, the PF suffers from the problem 

of filter degeneracy, i.e., the procedure collapses to a very small number of highly 

weighted particles among a horde of almost useless particles carrying a tiny 

proportion of the probability mass. Even if resampling techniques are used, the 

degeneracy cannot be completely avoided with limited ensemble size. The number 

of particles must grow substantially with the dimension of the system to avoid 

degeneracy (Bengtsson, 2003; Synder, 2007), a requirement that is apparently too 

costly for large models such as GCMs. Various efforts have been made to resolve this 

issue, as documented in an excellent overview (Van Leeuwen, 2009). 

Several strategies are often employed to address the problem of filter degeneracy in 

applications of the particle filter. For example, Papadakis et al. (2010) proposed a 

weighted ensemble Kalman filter (WEnKF), which uses an ensemble-based Kalman 

filter as the proposal density, from which the particles are drawn. Van Leeuwen et 

al.  developed a fully nonlinear particle filter by exploiting the freedom of the 

proposal transition density, which ensures not only that all particles ultimately 

occupy high-probability regions of state space but also that most of the particles 

have similar weights. The implicit particle filter uses gradient descent minimization 

combined with random maps to find the region of high probability, avoiding the 

calculation of Hessians. Luo et al. have proposed an efficient particle filter that uses 

residual nudging to prevent the residual norm of the state estimates from exceeding 

a pre-specified threshold. These particle filters were very recently proposed and 

have attracted broad attention in the community of atmos./ocean. data assimilation. 

Below we will briefly introduce the equivalent weights particle filter (EWPF) by Van 

Leeuwen (2011). 
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The equivalent weights particle filter is a fully nonlinear data assimilation method 

which works in a two-stage process. It uses the proposal density to ensure that the 

particles have almost equivalent weights, by which the filter degeneracy can be 

avoided. 

In the standard PF, the particles at time step   are propagated by the original model, 

i.e.,     
   (  

 )    , which implies that the particles at time step     are drawn 

from the transition density  (    |  ). In that case, the weight of each     
  varies 

greatly, and filter degeneracy is very likely to happen. 

In EWPF, another transition density, call the proposal density, is introduced. The 

proposal density depends on the future observation      and all previous particles 

   
              . With the help of proposal density, the particle   

  is propagated 

using a different model  

    
   (  

      )                          (   ) 

 The model   can be anything, for instance, one can add a relaxation term and 

change random forcing:  

    
   (  

 )    
   (      (  

 ))            ( )           (   ) 

 where  ( ) is a function of the time between observations, and each   implies each 

model step without observation. The   is a relaxation term which will “drag” the 

particle towards future observation. In Browne et al. (2015), it is given by  

   ( )                        (   ) 

 where the matrices   and   correspond to the model error covariance and 

observation error covariance respectively. 

The second stage of EWPF involves updating each particle at the observation time 

    via the formula  

    
   (  

 )      
 (      )  (      ( (  

 )))    
           (   ) 
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 where    are scalers computed so as to make the weights of the particles equal. 

Using the expression for weights and setting all weights equal to a target weight 

(e.g.,    )  

    (    |    
 (  ))           

    can be solved by numerical methods. 

Eqs. (117) - (119) show an example of how to construct the proposal model   in 

(116), it can also be done by running 4D-var on each particle (implicit particle 

filter), or using the EnKF as proposal density. Those methods refer to Morzfeld et al. 

(2012) and Papadakis et al. (2010). 

6.3 Remarks of PF 

Combined method of EnKF and PF 

The ensemble Kalman particle filter (EnKPF) is a combination of EnKF and the SIR 

particle filter. It was recently introduced to address non-Gaussian features in data 

assimilation for highly nonlinear systems, by providing a continuous interpolation 

between the EnKF and SIR-PF analysis schemes (Frei and Kunsch, 2013). 

As stated above, both EnKF and PF methods are based on the Bayesian estimation 

theory, but they approximate the probability density function of the state in 

different ways. The EnKF only approximates the mean and covariance of the state 

through a series of equally weighted ensemble members. And the particle filter 

considers the weights of the ensemble members according to the likelihoods. The 

EnKF contains the Gaussian assumption but requires small ensemble size to prevent 

filter degeneracy, which is in contrast with the PF. 

The EnKPF takes advantage of both methods by combining the analysis schemes of 

the EnKF and the SIR-PF using a controllable index (i.e., tuning) parameter. In 

contrast with both the EnKF and the SIR-PF, the analysis scheme of the EnKPF not 

only updates the ensemble members but also considers the weights. 
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Assume that the forecast ensemble   
 
           and the observation data   are 

available and that the forecast covariance    can be calculated using the ensemble, 

the analysis scheme of EnKPF is given below: 

1. Choose         and apply the EnKF which is based on the inflated observation 

error covariance     as follows:  

  ( )      (         )        (        )   

     
 
   ( )(     

 
) 

  
 

 
  ( )   ( )

  

          

(   )
(   )

(   )

 

2. Compute the weights    for each updated member    as follows:  

    (      
 

   
     )                        (   ) 

3.  and normalize the weights by  ̂     ∑   
 
   , in which   is the probability 

density function of a Gaussian. 

4. Calculate the resampling index  ( ) for each member    according to  ̂  using 

the SIR algorithm, then set  

  
    ( )    ( )

    

√ 
                       (   ) 

5.  where      is a random observation error drawn from the Gaussian  (   ). 

6. Compute   (   )  (   )  
  (   )         , generate      from 

 (   ) and EnKF with the inflated observation error again as follows:  

  
    

    (   ) [  
    

√   
    

 ]                  (   ) 

The   can be determined recursively to match the optimal performance of EnKPF. 

More details of EnKPF can be found in (Frei and Kunsch, 2013; Shen and Tang, 

2015). 
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Localization in PF 

Previous sections have introduced the localization technique in EnKF, which greatly 

improves the performance of EnKF in high-dimensional models. The advantages of 

localization motivate the search for a localization procedure in particle filtering. 

Van Leeuwen (2009) had a deep discussion on this topic. He argued that one can 

calculate the weights locally, but it is not easy for resampling. In the resampling step 

low-weight particles are abandoned and high-weight particles are duplicated. 

However, with local weights, different particles are selected in different parts of the 

domain. The problem is that we have to have continuous (in space) model fields to 

propagate forward in time with the model. Just constructing a new particle that 

consists of one particle in one part of the model domain and another particle in 

another domain will lead to problems at the boundary between these two (Van 

Leeuwen, 2009). 

The problem of spatial discontinuity makes the localization in particle filter not 

feasible currently. Most of the advanced particle filters (e.g. EWPF, implicit particle 

filter) are using the idea of global weight, i.e., the weight for each member is a scalar. 

However, there are still some attempts on the localization in particle filter. For 

example, Poterjoy (2015) developed the localized particle filter (LPF) which updates 

particles locally using ideas borrowed from EnKF. The paper (Poterjoy, 2016) has 

demonstrated some advantage of the new filter over EnKF, especially when the 

observation networks consist of densely spaced measurements that relate 

nonlinearly to the model state. This is a very interesting work about the particle 

filter, it also has a potential to work with large atmos./ocean. data assimilation 

systems. 
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