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Chapter 8   A simple model of the unpredictability of weather: The Lorenz       
                    Equations 

 
1. Objectives 
 
In this chapter, we will investigate the transition to chaos in the Lorenz equations – a system of 
non-linear ordinary differential equations. Using interactive examples, and analytical and 
numerical techniques, you will determine the stability of the solutions to the system, and 
discover a rich variability in their behavior. You will program Runge-Kuttan code for the 
problem, and determine the relative merits of each.  
  
2. Readings  
  
    There is no required reading for this chapter, beyond the contents of this chapter itself. 
However if you would like additional background on any of the following topics, the refer to 
the sections indicated below.    
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            The solution of the Lorenz equations have several very important characteristics: 
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               an incompressible fluid). If you look back to the Lorenz equations (4.1), and take partial 
               derivatives, it is clear that the divergence of this flow is given by  
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        This idea should remind you of what you need about Taylor series in chapter 2.  
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            equations as well.  
 
            5.0  Adaptive Stepsize in Runge-Kutta 
              

  As a rule of thumb, accuracy increases in Runge-Kutta methods as stepsize decreases. 
At the same time, the number of function evaluations performed increases. This trade-off  
between accuracy of the solution and computational cost always exists, but in the ODE 
solution algorithms presented earlier it often appears to be unnecessarily large. To see 
this, consider the solution to a problem in two different time intervals. In the first one, the 
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solution is close to steady, whereas in the second one it changes quickly. For acceptable 
accuracy with a non-adaptive method the step size will have to be adjusted so that the 
approximate solution is close to the actual solution in the second interval. The stepsize 
will be fairly small, so that the approximate solution is able to follow the changes in the 
solution here. However, as there is no change in stepsize throughout the solution process, 
the same step size will be applied to approximate the solution in the first time interval, 
where clearly a much larger stepsize would suffice to achieve the same accuracy. Thus, in 
a region where the solution behaves nicely a lot of function evaluations are wasted 
because the stepsize is chosen in accordance with the most quickly changing part of the 
solution. The way to address this problem is the use of adaptive stepsize control. This 
class of algorithms adjusts the stepsize taken in a time interval according to the properties 
of the solution in that interval, making it useful for producing a solution that has a given 
accuracy in the minimum number of steps. 
 
1) Designing Adaptive Stepsize Control 
 
Now that the goal is clear, the question remains of how to close in on it. As mentioned 
above, an adaptive algorithm is usually asked to solve a problem to a desired accuracy. 
To be able to adjust the stepsize in Runge-Kutta the algorithm must therefore calculate 
some estimate of how far its solution deviates from the actual solution. If with its initial 
stepsize this estimate is already well within the desired accuracy, the algorithm can 
proceed with a larger stepsize. If the error estimate is larger than the desired accuracy, the 
algorithm decreases the stepsize at this point and attempts to take a smaller step. 
Calculating this error estimate will always increase the amount of work done at a step 
compared to non-adaptive methods. Thus, the remaining problem is to devise a method of 
calculating this error estimate that is both inexpensive and accurate. 
 
2)  Error Estimate by Step Doubling 
 
The first and simple approach to arriving at an error estimate is to simply take every step 
twice. The second time the step is divided up into two steps, producing a different 
estimate of the solution. The difference in the two solutions can be used to produce an 
estimate of the truncation error for this step. How expensive is this method to estimate the 
error? A single step of fourth order Runge-Kutta always takes four function evaluations. 
As the second time the step is taken in half-steps, it will take 8 evaluations. However, the 
first function evaluation in taking a step twice is identical to both steps, and thus the 
overall cost for one step with step doubling is 12 - 1 = 11 function evaluations. This 
should be compared to taking two normal half-steps as this corresponds to the overall 
accuracy achieved. So we are looking at 3 function evaluations more per step, or an 
increase of computational cost by a factor of 1:375. 
 
    Step doubling works in practice, but the next section presents a slicker way of arriving 
at an error estimate that is less computationally expensive. It is the commonly used one 
today.  
 
3)  Error Estimate using Embedded Runge-Kutta 
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Another way of estimating the truncation error of a step is due to the existence of the 
special fifth order Runge-Kutta methods discussed earlier. These methods use six 
function evaluations which can be recombined to produce a fourth-order method . Again, 
the difference between the fifth and the fourth order solution is used to calculate an 
estimate of the truncation error. Obviously this method requires less function evaluations 
than step doubling, as the two estimates use the same evaluation points. Originally this 
method was found by Fehlberg, and later Cash and Karp produced the set of constants 
presented earlier that produce an efficient and accurate error estimate.  
 
4)  Using Error to Adjust the Stepsize 

            

 
 
            Problem 5: In this problem, you will be investigated whether or not an adaptive Runge- 
            Kutta code is the best choice for the Lorenz equations. 

 
        Write code to integrate the Lorenz equations, and use the code to compute in both  
        adaptive and non-adaptive modes. Compare the number of time steps taken (plot the time  
        step vs the integration time for both methods). Which method is more efficient?   
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6   Summary 
 
In this chapter, you have had the chance to investigate the solutions to the Lorenz equations 
and their stability in quite some detail. You saw that for certain parameter values, the 
solution exhibits non-periodic, chaotic behavior. The question to ask ourselves now is: 
What does this system tell us about the dynamics of flows in the atmosphere? In fact, this 
system has been simplified so much that it is no longer an accurate model of the physics in 
the atmosphere. However, we have seen that the four characteristics of flows in the 
atmosphere (mentioned in Section 3) are also present in the Lorenz equations. 
 
    Each state in Lorenz' idealized  “climate" is represented by a single point in phase space. 
For a given set of initial conditions, the evolution of a trajectory describes how the weather 
varies in time. The buttery attractor embodies all possible weather conditions that can be 
attained in the Lorenzian climate. By changing the value of the parameter r (and, for that 
matter, σ  or b), the shape of the attractor changes. Physically, we can interpret this as a 
change in some global property of the weather system resulting in a modification of the 
possible weather states.  
 
     The same methods of analysis can be applied to more complicated models of the 
weather. One can imagine a model where the depletion of ozone and the increased 
concentration of greenhouse gases in the atmosphere might be represented by certain 
parameters. Changes in these parameters result in changes in the shape of the global 
climate attractor for the system. By studying the attractor, we could determine whether any 
new, and possibly devastating, weather states are present in this new ozone-deficient 
atmosphere. 
 
     We began by saying in the Introduction that the buttery effect made accurate long-term 
forecasting impossible. Nevertheless, it is still possible to derive meaningful qualitative 
information from such a chaotic dynamical system. 
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