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Chapter 8 A simple model of the unpredictability of weather: The Lorenz
Equations

1. Objectives

In this chapter, we will investigate the transition to chaos in the Lorenz equations — a system of
non-linear ordinary differential equations. Using interactive examples, and analytical and
numerical techniques, you will determine the stability of the solutions to the system, and
discover a rich variability in their behavior. You will program Runge-Kuttan code for the
problem, and determine the relative merits of each.

2. Readings

There is no required reading for this chapter, beyond the contents of this chapter itself.
However if you would like additional background on any of the following topics, the refer to
the sections indicated below.

Easy Reading:

— Gleick [Gleick{T987]|, pp. 9-31], an interesting overview of the science
of chacs {with no mathematical details), and a lock at its history.

— Palmer [Palmer(1993] has a short article on Lorenz’ work and con-
centrating on its consequences for weather prediction.

Mathematical Details:

— Sparrow [Sparrow({1982]], an in-depth treatment of the mathematics
behind the Lorenz equations, including some discussion of numerical
methods,

Related Sites on the Web: The following are just a few of the many
sites on the Web that have information related to the Lorenz attractor,

and chaos in general.

— http:/ fwww.nesauic.edu /SCMS (DigLib /text /chaos /Chaos. html: A
sequence of images for various values of the parameter r. It also in-
cludes an example of the behaviour of the "Dutling oscillator”.

— http: [ feww.mindspring.com,” peoleman/ pjchomem. html: A PC-based
package called STRANGE that demonstrates dynamical systems
concepts, including the Lorenz and Riossler attractors.

— http: [ feww.interactive.net / mizrach [SNDE /snde html: The “Soci-
ety for Nonlinear Dvnamics and Econometrics,” with lots of links to
information sources at other sites.
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3 Introduction

For many people working in the physical sciences, the butierfly effect i= a well-
known phrase. But even if you are unacquainted with the term, its consequences
are something you are intimately familiar with. Edward Lorenz investigated
the feasibility of performing accurate, long-term weather forecasts, and came to
the conclusion that even something as seemingly insignificant as the flap of a
butterfly’s wings can have an influence on the weather on the other side of the
globe. This implies that global climate modelers must take into account even
the tiniest of variations in weather conditions in order to have even a hope of
being accurate. Some of the models used today in weather forecasting have up
to a million unknown variables!

With the advent of modern computers, many people believed that acen-
rate predictions of systems as complicated as the global weather were possible.
Lorenz’ studies [Lorenz{1963]], both analytical and numerical, were concerned
with simplified models for the flow of air in the atmosphere. He found that even
for systems with considerably fewer variables than the weather, the long-term
behaviour of sclutions is intrinsically unpredictable. He found that this type
of non-periodie, or chaotic behaviour, appears in systems that are described by
non-linear differential equations.

The atmosphere is just one of many hydrodynamical systems, which exhibit
a variety of solution behaviour: some flows are steady; others oscillate between
two or more states; and still others vary in an irregular or haphazard manner.
This last class of behaviour in a luid 1s known as turbulence, or in more general
systems as chaos. Examples of chaotic behaviour in physical systems include

¢ thermal convection in a tank of fluid, driven by a heated plate on the
hottom, which displays an irregular patter of “convection rolls” for certain
ranges of the temperature gradient;

& a rotating cylinder, filled with fluid, that exhibits regularly-spaced waves
or irregular, nonperiodic flow patterns under different conditions;

¢ the Lorenzian water wheel, a mechanical system, described in Appendix[A.1]

One of the simplest systems to exhibit chaotic behaviour is a system of three
ordinary differential equations, studied by Lorenz, and which are now known as
the Lorenz equations (see equations (.1)). They are an idealization of a more
complex hydrodynamical system of twelve equations deseribing turbulent flow
in the atmosphere, but which are still able to capture many of the important
aspects of the behaviour of atmospheric flows. The Lorenz equations determine
the evolution of a system described by three time-dependent state wvariables,
r(t), y(t) and =z(f). The state in Lorenz’ idealized climate at any time, ¢, can
be given by a single point, (r,y, z), In phase space. As time varles, this point
moves around in the phase space, and traces out a curve, which is also called
an orbit or trajectory. The plot in Figure [I] illustrates a sample orbit in phase
space (with initial value (5,5,5)). Notice that the orbit appears to be lying
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in a surface composed of two “wings”. In fact, for the parameter values nsed
here, all orbits, no matter the initial conditions, are eventually attracted to this
surface; such a surface is called an atéractor, and this specific one is termed the
butterfly attractor ... a very fitting name, both for its appearance, and for the
fact that it i= a visnalization of solutions that exhibit the “butterfly effect.” The
individual variables are plotted versus time in Figure B
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Figure 1: A plot of the solution to the Lorenz equations as an orbit in phase
space. Parameters: ¢ =10, b= %, r = 28; initial values: (x,y,2) = (5,5,5).
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Lorenz Equations
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Figure 2: A plot of the solution to the Lorenz equations versus time. Parameters:
ag=10, b= %, r = 28; initial values: (r, %, 2) = (5.5.5).

The solution of the Lorenz equations have several very important characteristics:

1. The solution remains within a bounded region (that is, none of the values
of the solution “blow up”), which means that the solution will always he
physically reasonahle.

2. The solution flips back and forth between the two wings of the butterfly
diagram, with no apparent pattern. This “strange” way that the solution
is attracted towards the wings gives rise to the name strange attractor.

3. The resulting solution depends very heavily on the given initial conditions.
Even a very tiny change in one of the initial values can lead to a solution
which follows a totally different trajectory, if the system is integrated over
a long enough time interval.

4. The solution is irregular or chaotic, meaning that it is impossible, based
on parameter values and initial conditions { which may contain small mea-
surement errors), to predict the solution at any future time.
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4 The Lorenz Equations

As mentioned in the previous section, the equations we will be considering in

this lab model an idealized hydrodynamical svstem: two-dimensional convection

in a tank of water which is heated at the bottom (as pictured in Figure [§).
Lorenz wrote the equations in the form

dr

= = oly-a)

% = rr—y— Iz (4.1)
dz

& = xy — bz

where &, v and b are real, positive parameters. The variables in the problem
can be interpreted as follows:

r 1s proportional to the intensity of the convective motion ( positive for clock-
wise motion, and a larger magnitude indicating more vigorous circulation),

y 1s proportional to the temperature difference between the ascending and
descending currents (it's positive if the warm water is on the bottom),

z 1s proportional to the distortion of the vertical temperature profile from
linearity (a value of 0 corresponds to a linear gradient in temperature,
while a positive value indicates that the temperature 15 more uniformly
mixed in the middle of the tank and the strongest gradients occur near
the boundaries),

Cool upper boundary

Warm lower boundarv

Figure 3: Lorenz studied the flow of fluid in a tank heated at the bottom, which
results in “convection rolls”, where the warm fluid rises, and the cold flmid 1=
drops to the bottom.
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t 1s the dimensionless time,

a 1 called the Prandt]l number (it involves the viscosity and thermal con-
ductivity of the fuid),

r 15 a control parameter, representing the temperature difference between
the top and bottom of the tank, and

b measures the width-to-height ratio of the convection layer.

Notice that these equations are non-linear in r, y and =, which 18 a result of
the non-linearity of the inid flow equations from which this simplified system
is obtained.

Mathematical Note: This system of equations 1s derived by Saltz-
man [Saltzman(1962 ]| for the thermal convection problem. However,
the same equations ([I.1)) arise in other physical systems as well.

Remember from Section B that the Lorenz equations exhibit nonperiodic
solutions which behave in a chaotic manner. Using analytical techniques, it 1=
actually possible to make some qualitative predictions about the behaviour of
the solution before doing any computations. However, before we move on to
a disenssion of the stability of the problem in Section 4, vou should do the
following exercise, which will give you a hands-on introduction to the behaviour
of solutions to the Lorenz equations.

Problem 1: Lorenz’ results are based on the following values of the physical
parameters taken from Saltzman's paper [Saltzman(19627]:

8
=10 d b=-.
T an 3

As vou will see in Section 3, there 1s a critical value of the parameter r,
r* =470/19 = 24.74 (for these values of & and &); it 1s critical in the sense that
for any value of r = r*, the flow i= unstable.

To allow you to investigate the behaviour of the solution to the Lorenz
equations, you can try out various parameter values in the following interactive
example. Initially, leave 7 and b alone, and modify only r and the initial condi-
tions. If you have time, you can try varying the other two parameters, and see
what happens. Here are some suggestions:

e Iix the initial conditions at (5,5,5) and vary r between 0 and 100,

¢ Fix r = 28, and wvary the mitial conditions; for example, try (0,0,0),

(0.1,0.1,0.1), (0,0,20), (100, 100, 100), (8.5, 8.5, 27), ete.

s Anything else you can think of ...
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¢ Fix the initial conditions at (5. 5,5) and vary » between 0 and 100,

# Fix v = 28, and wvary the initial conditions; for example, try (0,0.0],

(0.1,0.1,0.1), (0,0,20), (100,100, 100), (8.5,8.5,27), ete.
¢ Anything else you can think of ...

1. Describe the different types of behaviour you see and compare them to
what vou saw in Figure [l Also, discuss the results in terms of what yon
read in Section [ regarding the four properties of the solution.

2. One question yvou should be sure to ask vourself is: Does changing the
initial condition affect where the solution ends up¥ The answer to this
question will indicate whether there really 15 an attractor which solutions
approach as ¢ — ~c.

3. Finally, for the different types of solution behaviour, can vou interpret the
results physically in terms of the thermal convection problem?

Now, we're ready to find out why the solution behaves as it does. In Sec-
tion @, you were told about four properties of solutions to the Lorenz equations
that are also exhibited by the atmosphere, and in the problem you just worked
though, vou saw that these were also exlubited by sclutions to the Lorenz equa-
tions. In the remainder of this section. you will see mathematical reasons for two
of those characteristics, namely the boundedness and stability (or instability)
of solutions.

4.1 Boundedness of the Solution

The easiest way to see that the solution 1s bounded in time 1s by looking at
the motion of the solution in phase space, (. y, ), as the flow of a fluid, with
velocity (.3, %) (the “dot” is used to represent a time derivative, in order to
simplify notation in what follows). The divergence of this flow 1s given by

I i Ay n az
dr  dy  Hz’

and measures how the volume of a fluid particle or parcel changes — a positive
divergence means that the fluid volume 15 increasing locally, and a negative
volume means that the fluld volume is shrinking locally (zero divergence signifies

an incompressible fluid). If you look back to the Lorenz equations (4.1), and take partial
derivatives, it is clear that the divergence of this flow is given by

5z T3y T B =—(oc+b+1).
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since o and b are hoth positive, real constants, the divergence 15 a negative
number, which is always less than —1. Therefore, each small volume shrinks
to zero as the time t — oo, at a rate which is independent of x, y and =. The
consequence for the solution, (x,y, z), 18 that every trajectory in phase space
15 eventually confined to a region of zero volume. As vou saw in Problem [l),
this region, or atiractor, need not be a point — in fact, the two wings of the
“butterfly diagram” are a surface with zero volume.

The most important consequence of the solution being bounded 1s that none
of the physical variables, =, #, or = “blows up.” Consequently, we can expect
that the solution will remain with physically reasonable limits.

4.2 Steady States

A steady state of a system 1s a point in phase space from which the system will
not change in time, once that state has been reached. In other words, it is a
point, (x,#, ), such that the solution does not change, or where

dx ey dz

— =0 and — =0 and — =10

dt dt dt
This point i= usually referred to as a stationary point of the system.

Problem 2: Set the time derivatives equal to zero in the Lorenz equa-

tions ([L.1]), and solve the resulting system to show that there are three possible
steady states, namely the points

(0,0,0),
(v/B(r —1),4/b(r —1),r — 1), and
(—v/B(r — 1), —/b(r — 1),r — 1).

Hemember that r iz a positive real number, so that that there is only one
stationary point when 0 < » < 1, but all three stationary points are present
when r > 1.

While working through Problem [1], did vou notice the change in behaviour
of the solution as r passes through the value 17 If not, then go back to the
interactive example and try out some values of r both less than and greater
than 1 to see how the solution changes.

A steady state tells us the behaviour of the solution only at a single point.
But what happens to the solution if it is perturbed slightly away from a stationary
point¥ Will it return to the stationary peoint; or will it tend to move away from
the point: or will it oscillate about the steady state; or something else ... ¥ All
of these questions are related to the long-term, asymptotic behaviour or stability
of the solution near a given point. You already should have seen some examples
of different asymptotic solution behaviour in the Lorenz equations for different
parameter values. The next section describes a general method for determining
the stability of a solution near a given stationary point.



NRES710: Modeling and Simulation  Part 1l: Numerical Modeling UNBC

4.3 Linearization about the Steady States

The difficult part of doing any theoretical analysis of the Lorenz equations is
that they are non-linear. So, why not approzimate the non-linear problem by a
linear one?
This idea should remind you of what you need about Taylor series in chapter 2.
There, we were approximating a tunetion, fir), around a point by expanding
the function in a Taylor series, and the first order Taylor approximation was
simply a linear function in x. The approach we will take here is similar, buat
will get into Taylor series of functions of more than one variable: f(z o, 2,...).
The basic idea is to replace the right hand side functions in ({1} with a
linear approximation about a stationary point, and then solve the resulting
syvstem of linear ODE’s. Hopehully, we can then say something about the non-
linear system at values of the solution close to the stationary point (remember
that the Taylor series is only accurate close to the point we're expanding about).
S0, let us first consider the stationary point (0, 0. 0). If we linearize a function
fle,w, z) about (0,0,0) we obtain the approximation:

Flagz) = £(0,0,0)+ £2(0,0,0) (z—0) + £, (0,0,0) - (y— 0) + £-(0,0,0) - (z — 0).

If we apply this formula to the right hand side function for each of the ODE’s
in ([1.1), then we obtain the following linearized system about (0,0, 0):

dr

T = —or4ay

dy o
w = Ty (4.2)
dz

— = —b=

dt

(note that each right hand side is now a linear function of x, y and z). It is
helptul to write this system in matrix form as

d T -0 T 0

— = r -1 0
dt 0 0 —b

(4.3)

[ ) =]

the reason for this being that the eigenvalues of the matrix give us valuable
information about the solution to the linear system. In fact, it 15 a well-known
result from the study of dynamical systems is that if the matrix in (.3} has
distinct elgenvalues Aq, Az and Az, then the solution to this equation is given by

x(t) = c1eMt 4 cpe?t  cgetet, (4.4)

and similarly for the other two solution components, y(t) and z(f) (the ¢;'s are
constants that are determined by the initial conditions of the problem). This
should not seem too surprising, 1f vou think that the solution to the scalar
equation dx/dt = Ax is z(t) = e*.
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Problem 3: Remember from Lab #3 that the eigenvalues of a matrix, A,
are given by the roots of the characteristic equation, def(A—Al) = 0. Determine
the characteristic equation of the matrix in ([.3). and show that the elgenvalues
of the linearized problem are

Ay =—b, and Ag.}g:%(—g—1i¢(a—1';2+4w). (4.5)

When r = 1, the same linearization process can be applied at the remaining
two stationary points, which have eigenvalues that satisty another characteristic
equation:

M (o4 b+ DA 4 (r 4 a)bh + 208(r — 1) =0. (4.6)

4.4 Stability of the Linearized Problem

Now that we know the elgenvalues of the system around each stationary point,
we can write down the solution to the linearized problem. Howewer, it i=2 not
the exact form of the linearized solution that we're interested in, but rather its
stability. In fact, the eigenvalues give us all the information we need to know
about how the linearized solution behaves in time, and so we’ll only talk abont
the eigenvalues from now on.

It is possible that two of the eigenvalues in (£.5) or in (.6]) can be complex
numbers — what does this mean for the solution in ([{.4)¢ The details are a
bit involved, but the important thing to realize 1s that it As, A3 = a £ th are
complex (remember that complex roots always oceur in conjugate pairs) then
the solutions can be rearranged so that they are of the form

Aqt

x(t) = cre™t 4 cge® cos(bt) 4 cae® sin(bt). (4.7)

In terms of the asymptotic stability of the problem, we need to look at the
asymptotic behaviour of the soution (f.4) or (L.7), as ¢ — oo, from which
several conclusions can be drawn:

1. If the eigenvalues are real and negative, then the solution will go to zero
as t — oo, In this case the linearized solution 1s stable.

2. If the eigenvalues are real, and at least one 1s positive, then the solution
will blow up as ¢ — ~c. In this case the linearized solution is unstable.

3. If there 15 a complex conjugate pair of elgenvalues, a+ib, then the solution
exchibits oscillatory behaviour (with the appearance of the terms sin b and
cos bt ). If the real part, a, of all eigenvalues is negative, the oscillations
will decay in time and the solution is stable; if the real part is positive,
then the oscillations will grow, and the solution 15 unstable. If the complex
elgenvalues have zero real part, then the oscillations will neither decay nor
increase in time — the resulting linearized problem is periodic, and we say
the solution i1s marginally stable.
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Now, the million dollar question:

Does the stability of the non-linear system parallel that of the lin-
earized systems near the stationary points?

The answer 15 “almost always”. We won't go into why, or why not, but just
remember that you can usnally expect the non-linear system to hehave just as
the linearized system near the stationary states.

The discussion of stability of the stationary points for the Lorenz equations
will be divided up based on values of the parameter r (assuming o = 10 and b =
%j. You've already =seen that the behaviour of the solution changes significantly,
by the appearance of two additional stationary points, when r passes through

the value 1. You'll also see an explanation for the rest of the behaviour yvon
observed:

0 < r < 1: there 1s only one stationary state, namely the point (0,0,0). You
can see from ([L.5) that for these values of r, there are three, real, negative
roots. The origin is a stable stationary point; that is, it attracts nearby
solutions to itself.

r = 1: The origin has one positive, and two negative, real eigenvalues. Hence,
the origin is unstable. Now, we need only look at the other two stationary
points, whose behaviour is governed by the roots of (L) ...

1<r« %: The other two stationary points have elgenvalues that have nega-

tive real parts. So these two points are stable.

It’s also possible to show that two of these eigenvalues are real when
v < 1.346, and they are complex otherwise (see Sparrow [Sparrow({1Y8Z][
tor a more complete discussion). Therefore, the solution begins to exhibit
oacillatory behaviour beyvond a value of » greater than 1.346.

T %: The other two stationary points have one real, negative eigenvalue,
and two complex eigenvalues with positive real part. Therefore, these two
points are unstable. In fact, all three stationary points are unstable for
these values of r.

The stability of the stationary points 1s summarized in Table [I.

(0,0,0) [:I:«,_fb(r—l].i«._/b(r—l].b—lj
0=<r=1 stable =

l<r< %‘;_,g unstable stable
r o % unstable unstable

Tahle 1: Summary of the stability of the stationary points for the Lorenz equa-

g . — __ 8
tions; parameters o = 10, b = 3.
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Note: This “critical value” of r* = % 15 actually found using the formula
., oTlo+b+3)
r=—
a—b—1
See Sparrow [Sparrow(19827] for more details.

Note: A qualitative change in behaviour of in the solution when a parameter
is varied is called a bifurcation. Bifurcations oceur at:

¢ v = 1, when the origin switches from stable to unstable, and two more
stationary points appear.

e r = r* where the remaining two statlonary points switch from being
stable to unstable.

Remember that the linear results apply only near the stationary points, and
do not apply to all of the phase space. Nevertheless, the behaviour of the orbits
near these points can still say quite a lot about the hehaviour of the solutions.

Problem 4: Based on the analytical results from this section, you can now
go back to vour results from Problem [l and lock at them in a new light. Write
a short summary of yvour results (including a few plots or sketches), describing
how the solution changes with r in terms of the existence and stability of the
stationary points.

There have already heen hints at problems with the linear stability analysis.
One difficulty that hasn't been mentioned vet is that for values of r = r*, the
problem has oscillatory solutions, which are unstable. Linear theory does not
reveal what happens when these ascillations become lamge! In order to study
more closely the long-time behaviour of the solution, we must turn to numerical
integration (in fact, all of the plots you produced in Problem [{] were generated
using a numerical code).

5 Numerical Integration

In Lorenz’ original paper, he discusses the application of the forward Euler and
leap frog time-stepping schemes, but his actual computations are done using the

since we already have a lot of experience with Runge-Kutta methods for systems
of ODE’s from earlier labs, you'll be using this approach to solve the Lorenz

equations as well.

5.0 Adaptive Stepsize in Runge-Kutta

As a rule of thumb, accuracy increases in Runge-Kutta methods as stepsize decreases.
At the same time, the number of function evaluations performed increases. This trade-off
between accuracy of the solution and computational cost always exists, but in the ODE
solution algorithms presented earlier it often appears to be unnecessarily large. To see
this, consider the solution to a problem in two different time intervals. In the first one, the
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solution is close to steady, whereas in the second one it changes quickly. For acceptable
accuracy with a non-adaptive method the step size will have to be adjusted so that the
approximate solution is close to the actual solution in the second interval. The stepsize
will be fairly small, so that the approximate solution is able to follow the changes in the
solution here. However, as there is no change in stepsize throughout the solution process,
the same step size will be applied to approximate the solution in the first time interval,
where clearly a much larger stepsize would suffice to achieve the same accuracy. Thus, in
a region where the solution behaves nicely a lot of function evaluations are wasted
because the stepsize is chosen in accordance with the most quickly changing part of the
solution. The way to address this problem is the use of adaptive stepsize control. This
class of algorithms adjusts the stepsize taken in a time interval according to the properties
of the solution in that interval, making it useful for producing a solution that has a given
accuracy in the minimum number of steps.

1) Designing Adaptive Stepsize Control

Now that the goal is clear, the question remains of how to close in on it. As mentioned
above, an adaptive algorithm is usually asked to solve a problem to a desired accuracy.
To be able to adjust the stepsize in Runge-Kutta the algorithm must therefore calculate
some estimate of how far its solution deviates from the actual solution. If with its initial
stepsize this estimate is already well within the desired accuracy, the algorithm can
proceed with a larger stepsize. If the error estimate is larger than the desired accuracy, the
algorithm decreases the stepsize at this point and attempts to take a smaller step.
Calculating this error estimate will always increase the amount of work done at a step
compared to non-adaptive methods. Thus, the remaining problem is to devise a method of
calculating this error estimate that is both inexpensive and accurate.

2) Error Estimate by Step Doubling

The first and simple approach to arriving at an error estimate is to simply take every step
twice. The second time the step is divided up into two steps, producing a different
estimate of the solution. The difference in the two solutions can be used to produce an
estimate of the truncation error for this step. How expensive is this method to estimate the
error? A single step of fourth order Runge-Kutta always takes four function evaluations.
As the second time the step is taken in half-steps, it will take 8 evaluations. However, the
first function evaluation in taking a step twice is identical to both steps, and thus the
overall cost for one step with step doubling is 12 - 1 = 11 function evaluations. This
should be compared to taking two normal half-steps as this corresponds to the overall
accuracy achieved. So we are looking at 3 function evaluations more per step, or an
increase of computational cost by a factor of 1:375.

Step doubling works in practice, but the next section presents a slicker way of arriving
at an error estimate that is less computationally expensive. It is the commonly used one
today.

3) Error Estimate using Embedded Runge-Kutta
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Another way of estimating the truncation error of a step is due to the existence of the
special fifth order Runge-Kutta methods discussed earlier. These methods use six
function evaluations which can be recombined to produce a fourth-order method . Again,
the difference between the fifth and the fourth order solution is used to calculate an
estimate of the truncation error. Obviously this method requires less function evaluations
than step doubling, as the two estimates use the same evaluation points. Originally this
method was found by Fehlberg, and later Cash and Karp produced the set of constants
presented earlier that produce an efficient and accurate error estimate.

4) Using Error to Adjust the Stepsize

Both step doubling and emhedded methods leave us with the difference hetween two different order
solutions to the same step. Provided i= a desired accuracy, Agee. The way this accuracy i= specified
depends on the problem. It can be relative to the solution at step @,

Ay, (i) = RTOL - |y(i)|

where RTOL 1s the relative tolerance desired. An absolute part should be added to this so that the
desired accuracy does not become zero. There are more ways to adjust the error specification to the
problem, but the overall goal of the algorithm always is to make A_,.(7), the estimated error for a
step, satisty

|-".—‘\est|:é:|| = -"'—\desiéjll
Note also that for a system of ODEs Ay, is of course a vector, and it is wise to replace the compo-
nentwise comparison by a vector norm.

Note now that the calenlated error term is QA7) as it was found as an error estimate to fourth-order
Runge-Kutta methods. This makes it possible to scale the stepsize as

Pnew = hotdl g2 4.12)

or, to give an example of the suggested use of vector norms above, the new stepsize is given by

hnew = Shold {[NZ( ”*gj 1/2}-2/5) (4.13)

using the root-mean-square norm. 5 appears as a safety factor (0 < 5 < 1) to counteract the inaccuracy
in the use of estimates.

Problem 5: In this problem, you will be investigated whether or not an adaptive Runge-
Kutta code is the best choice for the Lorenz equations.

Write code to integrate the Lorenz equations, and use the code to compute in both
adaptive and non-adaptive modes. Compare the number of time steps taken (plot the time
step vs the integration time for both methods). Which method is more efficient?
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To answer this last question, vou will have to consider the cost of the adaptive
scheme, compared to the non-adaptive one. The adaptive scheme i=s obviously
more expensive, but by how much? You should think in terms of the number of
multiplicative operations that are required in every time step for each method.
You don'’t have to give an exact operation count, round figures will do.

Problem 6: One property of chaotic systems such as the Lorenz equations
is their sensifivity to initial conditions — a consequence of the “butterfly effect.”
Modify your code from Problem [{ to compute two trajectories (in the chaotic
regime © = r*) with different initial conditions simultaneously. Use two initial
conditions that are very close to each other, say (1.1,20) and (1.1,20.001).
Use your “method of choice” (adaptive/non-adaptive), and plot the distance
between the two trajectories as a function of time. What do you see?

One important limitation of mimerical methods is immediately evident when
approximating non-periodic dynamical systems such as the Lorenz equations:
namely, every computed solution is periodic. That 15, when we're working in
Hoating point arithmetic, there are only finitely many numbers that can be
represented, and the solution must eventually repeat itselfl. When using single
precision arithmetic, a typical computer can represent many more foating point
numbers than we could ever perform integration steps in a numerical scheme.
However, it 1s still possible that round-off error might introduce a periodic orbit
in the numerical solution where one does not really exist. In our computations,
this will not be a factor, but it is something to keep in mind.

5.1 Other Chaotic Systems

There are many other ODE systems that exhibit chacs. An example is one
studied by Rossler, which obeys a similar-locking system of three ODE's:

T = —y—2=z
o= x+ay (5.8)
¢ = b+z(r—2c)

suppose that b = 2, ¢ = 4, and consider the behaviour of the attractor as a 18
varied. When a 15 small, the attractor is a simple closed curve. As a is increased,
however, this splits into a double loop, then a quadruple loop, and =0 on. Thus,
a type of period-doubling takes place, and when a reaches about 0.375, there is a
fractal attractor in the form of a band, that locks something like what 1s known
in mathematical circles as a Mdabius strip.

MNote: If you're really keen on this topic, you might be interested in using
your code to investigate the behaviour of this system of equations, though you
are not requived to hand anything in for this!

First, you could perform a stability analysis for (B.8), like you saw above for
the Lorenz equations. Then, modity vour code to study the Hossler attractor.
Use the code to compare your analytical stability results to what you actually
see in the computations.
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6 Summary

In this chapter, you have had the chance to investigate the solutions to the Lorenz equations
and their stability in quite some detail. You saw that for certain parameter values, the
solution exhibits non-periodic, chaotic behavior. The question to ask ourselves now is:
What does this system tell us about the dynamics of flows in the atmosphere? In fact, this
system has been simplified so much that it is no longer an accurate model of the physics in
the atmosphere. However, we have seen that the four characteristics of flows in the
atmosphere (mentioned in Section 3) are also present in the Lorenz equations.

Each state in Lorenz' idealized “climate™ is represented by a single point in phase space.
For a given set of initial conditions, the evolution of a trajectory describes how the weather
varies in time. The buttery attractor embodies all possible weather conditions that can be
attained in the Lorenzian climate. By changing the value of the parameter r (and, for that
matter, o or b), the shape of the attractor changes. Physically, we can interpret this as a
change in some global property of the weather system resulting in a modification of the
possible weather states.

The same methods of analysis can be applied to more complicated models of the
weather. One can imagine a model where the depletion of ozone and the increased
concentration of greenhouse gases in the atmosphere might be represented by certain
parameters. Changes in these parameters result in changes in the shape of the global
climate attractor for the system. By studying the attractor, we could determine whether any
new, and possibly devastating, weather states are present in this new ozone-deficient
atmosphere.

We began by saying in the Introduction that the buttery effect made accurate long-term
forecasting impossible. Nevertheless, it is still possible to derive meaningful qualitative
information from such a chaotic dynamical system.
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