NRES710: Modeling and Simulation Part 1l: Numerical Modeling UNBC

Chapter 7 Solving Ordinary Differential Equations with Runge-Kutta Methods
1. Objectives

In this chapter, we will explore Runge-Kutta mathods for solving ordinary differential
equations. The goal is to gain a better understanding of some of the more popular Runge-Kutta
methods and the corresponding numerical code.

Specifically you will be able to

describe the mid-point method

construct a Runge-Kutta tableau from equations or equations from a tableau
describe how a Runge-Kutta method estimates truncation error

edit a working Matlab code to use a different method or solve a different problem

2. Readings

There is no required reading for this chapter, beyond the contents of this chapter itself.
However if you would like additional background on any of the following topics, the refer to
the sections indicated below.

Runge-Kutta Methods:
— Press, et al. Press et al] (1593), Section 16.1

— Burden & Faires Burden and Faired ([[981]). Section 5.4

3. Solving Ordinary Differential Equations with the Runge-Kutta methods

Ordinary differential equations (ODES) arise in many physical situations. For example,
there is the first-order Newton cooling equation discussed in chapter 5, and perhaps the most
famous equation of all, the Newton’s Second Law of Mechanics F=ma.

In general, higher-order equations, such as Newton's force equation, can be rewritten as a system
of first-order equations . So the generic problem in ODEs is a set of N coupled first-order differential
equations of the form,

ﬂ= (¥,) (3.1
+ = fv 1) (3.1)
where ¥ = (y1.....uv).
For a complete specification of the solution, boundary conditions for the problem must be given.
Typically, the problems are broken up into two classes:

¢ Initial Value Problem (IVP) : the initial values of y are specified.

s Boundary Value Problem (BVP) : y is specified at the initial and final times.

For this chapter, we are concerned with the IVP’s. BVP’s tend to be much more difficult to
solve and involve techniques which will not be dealt with in this chapter.

NRES710: Modeling and Simulation Part 1l: Numerical Modeling UNBC

Now as was pointed out in Ch. 5, in general, it will not be possible to find exact, analytic solutions

to the ODE. However, it is possible to find an approximate solution with a finite difference scheme
such as the forward Euler method . This is a simple first-order, one-step scheme which is easy to

implement. However, this method is rarely used in practice as it is neither very stable nor accurate.

The high-order Taylor methods discussed in Ch. 5/6 are one alternative but involve higher-order
derivatives that must be caleulated by hand or worked out numerically in a multi-step scheme. Like

the forward Euler method, stability is a concern.
The Runge-Kutta methods are higher-order, one-step schemes that makes use of information at

different stages between the beginning and end of a step. They are more stable and accurate than
the forward Euler method and are still relatively simple compared to schemes such as the multi-
step predictor-corrector methods or the Bulirsch-Stoer method. Though they lack the accuracy and
efficiency of these more sophisticated schemes, they are still powerful methods that almost always

suceeed for non-stiff IVPs.

3.1 The Midpoint Method: A Two-Stage Runge-Kutta Method

The forward Euler method takes the solution at time ¢, and advances it to time £, using the value

of the derivative f(y,,t.) at time £,

Yntl = Un + Bf(Un. 1a)

where h = At

y(0)

T

| |
t,+h

Un

Figure 1: The forward Euler method is essentially a straight-line approximation to the solution, over
the nterval of one step, using the derivative at the starting point as the slope.

NRES710: Modeling and Simulation Part 1l: Numerical Modeling UNBC

The idea of the Runge-Kutta schemes is to take advantage of derivative information at the times
between t, and £, to increase the order of accuracy.

For example, in the midpoint method, the derivative at the initial time is used to approximate the
derivative at the midpoint of the interval, f(v, + %hf(yn, tn)stn+ %hj. The derivative at the midpoint
is then used to advance the solution to the next step. The method can be written in two sfages k.

k1 = hf(yn.ts)
ka = hf{u. + k1, t, + Lh) (3.2)
Yntl = Un + 'EEE

The midpoint method is known as a 2-stage Bunge-Kutta formula.

3.2 Second-Order Runge-Kutta Methods

As was shown in lab 2 | the error in the forward Fuler method is proportional to h. In other words,
the forward Kuler method has an accuracy which i= first order in h.

The advantage of the midpoint method is that the extra derivative information at the midpoint
results in the first order error term cancelling out, making the method second order accurate. This
can be shown by a Taylor expansion of equation (§.3).

Problem 1: Even though the midpoint method is second-order accurate, it may still be less
accurate than the forward Euler method. In the demo below, compare the accuracy of the two methaods

y(t)

Figure 2: The midpoint method again uses the derivative at the starting point to approximate the
solution at the midpeoint. The derivative at the midpoint is then used as the slope of the straight-line
approximation.

NRES710: Modeling and Simulation Part Il1: Numerical Modeling UNBC

on the initial value problem
d . .
T ——ytt+l, yo)=1 (3.3)

which has the exact solution
y(t)=t+e™" (3.4)

1. Why is it possible that the midpoint method may be less accurate than the forward Euler method,
even though it 1= o higher order method?

2. Based on the numerical solutions of (.3, which method appears more accurate?

3. Cut the stepsize in half and check the error at a given time. Repeat a couple of more times. How
does the error drop relative to the change In stepsize?

4. How do the numerical solutions compare to y(t) = ¢ + ™" when vou change the initial time?

Why?

In general, an explicit 2-stage Runge-Kutta method can be written as,

ky = h.ﬁym fn:'
ba = hf{y, + bogky, t, + ash) (3.5)
Ynt1 = Un + 1k + caka

The scheme is said to be erplicit since a given stage does not depend implicitly on itself, as in the
backward Euler method | or on a later stage.

Other explicit second-order schemes can be derived by compering the formula (B.) to the second-
order Taylor method and matching terms to determine the coefficients aa, by, ¢ and .

Mathematical Note: See Appendix BT for the derivation of the midpoint method.

3.3 The Runge-Kutta Tablean

A general s-stage Runge-Kutta method can be written as,

ki =hf(yn + Y bijkjta +aih), i=1,..s
o (3.6)

Yntl = ¥n + ch k;
=1

NRES710: Modeling and Simulation Part 1l: Numerical Modeling UNBC

An erplicit Runge-Kutta method has b;; = 0 for ¢ < j, i.e. a given stage k; does not depend on

itself or a later stage k;.
The coeflicients can be expressed in a tabular form known as the Runge-Kutta tablean.

i | a by i

1ay [byy Be oo .| o

ag | bar Baes . o |2

s |a. | by Ben . ba | e
g = 1 2 .. s

An explicit scheme will be strictly lower-triangular.
For example, a general 2-stage Runge-Kutta method,

ky = hf(yn + biiky + byaka, t, + ayh)
ka = hf(yn + batky + boaka, t,, + ash) (3.7)
Untl = Un + c1ky + cakes

has the coefficients,

i aQ; ﬁi_.j 5
Tlag [by bis [y
as | oy oo | e
= 1 2

In particular, the midpoint method is given by the tableau,

i [+] ﬁi_.j 5
0

Ll (= i =]

Problem 2: Write out the tablean for

1. Heun's method (AZ3)
2. the fourth-order Runge-Kutta method (f8) discussed in the next section.

3.4 Explicit Fourth-Order Runge-Kutta Method

Explicit Runge-Kutta methods are popular as each stage can be calculated with one function eval-
uation. In contrast, implicit Bunge-Kutta methods usually involves solving a non-linear system of
equations in order to evaluate the stages. As a result, explicit schemes are much less expensive to

implement than implicit schemes.

However, there are cases in which implicit schemes are necessary and that is in the case of stiff

sets of equations. See section 16.6 of Press et al] (T992) for a discussion. For these labs, we will focus

on non-stiff equations and on explicit Runge-Kutta methods.
The higher-order Bunge-Kutta methods can be derived by in manner similar to the midpoint

formula. An s-stage method is compared to a Taylor method and the terms are matched up to the

desired order.

NRES710: Modeling and Simulation Part 1l: Numerical Modeling UNBC

Methods of order M > 4 require M 4+ 1 or M + 2 function evaluations or stages, in the case of
explicit Runge-Kutta methods. As a result, fourth-order Runge-Kutta methods have achieved great
popularity over the vears as they require only four function evaluations per step. In particular, there
is the classic fourth-order Runge-Kutta formula:

ky = hf(yn, ta)
by =hf(yn +5,ta +5)
ks = hf(un + 5,60 +3) (3.8)
ky = hf(yn + ks, tn + h)
T e
Problem 3: In the demo below, compare compare solutions to the test problem (B3)

dy .
S yrt+1, yl0)=1
7 y+i+1, wl)

generated with the fourth-order Runge-Kutta method to solutions generated by the forward Euler and
midpoint methods.

1. Based on the numerical solutions of (B3, which of the three methods appears more accurate?

2. Again determine how the error changes relative to the change in stepsize, as the stepsize is halved.

4 Numerical ODE Routines

We will be implementing the Runge-Kutta method in Octave, which has some support for simple func-
tional {as opposed to object-oriented) programming. Our Octave script will have three components:

e Algorithm
First, a routine to implement the Runge-Kutta algorithm (f.§) which specifies how to advance a
solution u,,. at time #, to y, 1, at time § + h.

¢ User defined function
The user of the numerical routines specifies the problem to be solved with a routine that evaluates
the derivatives f (the right-hand-side of the ODE system (E.g)).

Driver

The driver routine reads in the initial conditions, timestep and the coefficients for the user-defined
function, and loops the algorithm from the starting to ending times.

4.1 Simple Example: Functional Approach

Here’s a brief example written in Octave which solves the the damped, simple harmonic ocillator using
the forward Euler method. The code discussed below can be found in the file [abd.tarfY, which is in
the Unix tar format. To unpack these scripts in your directory, open a bash shell and type:

NRES710: Modeling and Simulation Part 1l: Numerical Modeling UNBC

This should extract writeinit.mf{, main.mf] and definefuncs.nif] into your home directory.
First, use emacs to take a look at writeinit.m, which should look like:

vars =[0., i00., 0.4, O. , 1., 0., 1. 1;
varnames= [“t_beg“ ;11t_end11 ;1|dt11 ; 11[:1" ; L] C?"; |F}111P ; 1F}121P] ;
indata_descrip = "input variables for examplel";

save -ascil indata.dat vars varnames indata_descrip

This script, when run by typing writeinit from the octave prompt, should produce the file
indata.dat. This file is then read into octave to set the start and stop times for the integration
(t_beg, t_end) the timestep dt, the coefficients for the derivitive function (el, ¢2), and the initial
conditions at the start of the integration (y1,y2).

The driver nain.m looks like:

$Id: routines.tex,v 1.1.1.1 2002/01/02 19:36:41 phil Exp %

#define the functions derivs, euler, midpeoint and rk40DE

definefuncs;

#load the input data writen by writeinit.m

load -force indata.dat;

t_beg=vars(1l);

t_end=vara(2);

coeff.dt=vars(3); #create a structure coeff to hold values to be passed to

#the ode function

coeff.cl=vars(4);

coeff.c2=vars(5);

y=zeros([1,2]);

yi{l)=vars(8);

y(2)=vars(7);

time=t_beg:coeff.dt:t_end; #create the time vecter

time=time’ ; #tranapose it from [1, nsteps] to [nsteps, 1]
#we need to do this because gplot plots
#columns, not rows

nsteps=rows(time) ;

if (nsteps <= 2) #here’s and example of rudimentary error checking
error{"need at least two steps");
endif

#create a column vector to hold ¥y at each timestep
#for later plotting

savedata=zercz([nsteps,1]);

for i=1:nsteps
y=euler(coeff,y);
savedata(i)=y(1);
endfor

data=[time,savedatal ;
gplot data with linespoints

NRES710: Modeling and Simulation Part 1l: Numerical Modeling UNBC

Notice first that the file contains a version number:
$Id: routines.tex,v 1.1.1.1 2002/01/02 19:36:41 phil Exp %

This lets me keep track of changes I make to the code. Following that is a call to definefuncs.m,
which loads the definitions of the forward-euler algorithm (called enler) and the user defined function
(called deriv).

Next, the inital conditions written out by writeinit.m are read in by:

load -force indata.dat;

which provides the vector vars. I copy the various elements of vars into variables that are easier to
remember: the structure coeff, the 2-element row vector y, t_beg and t_end.

I want to integrate the ODE from t_beg to t_end by dt, so I create a row-vector holding the times
(this will be used for plotting):

time=t_beg:coeff.dt:t_end
Becanse the gplot routine works on columns, not rows, I transpose this to a column vector
time=time’

and after an error check to make sure this worked, initialize an array filled with zeros to hold the
output:

savedata=zeros([nsteps,1]);

Now I'm ready to integrate the ODE using a forward euler scheme:

for i=1:nsteps
y=euler{coeff,y);
savedata(i)=y(1);
endfor

The defimition for enler comes from definefuncs.m:

function ynew=euler(coeff,y)

if (nargin != 2)
usage ("euler (coeff, y)");
endif
ynew=y + coeff.dt*derivs(coeff,y);
endfunction

Note that Octave uses pass by value with lazy evaluation. What this means is that, unlike Fortran
(but like C) the variables coeff and y are copled into euler and any changes to them will not change
their values in routine main. This means that T need to create a new vector ynew to be passed out of
the tunction. Lazy evaluation means that the copy doesn't really happen unless you actually modify y
or coeff. Because copies of large arrays are expensive, it's usually best to leave the function arguments
unmodified. Note that yvou can pass out multiple values or a structure from a function (see the Octave
manual).

The routine euler calls derive, which looks like:

function f=derive{coeff, y)
if (nargin != 2)
ugage ("derivs (coeff, y 1");
endif
f=onea([1,2]); #create a 1 x 2 element vector to hold the derivitive

NRES710: Modeling and Simulation Part 1l: Numerical Modeling UNBC

f(1)=y(2);
f(2)= -1.*coeff.cl*y(2) - coeff.cl+y(1l);
endfunction

You should convince vourself that with the values of ¢1 and ¢2 given in indata.dat, this represents
a 2nd order ODE with an easy-to-find analytic solution.
Problem 5: Try out main.m:

1. Note that the parameter 1 has heen set to zero.

(a) What kind of solutions would you expect for y(1)7
(b) What kind of numerical solutions do you get? Hand in some plots of y(1).

(c) How do vou explain this discrepancy?

2. Note that the file define_funce.m also contains implementations for the mid-point and fourth-
order Bunge-Kutta methods. Modify the scripts to call these instead, and hand in plots of the
results. Is there and improvement? Why?

Problem 6: The zource codd] discussed in Section [solved the damped, harmonie oscillator with
the forward Euler method.

1. Write a new routine that implements using Heun’s method ([A.Z3]) along the lines of the routines
in define_funes.mH,

2. Write a new driver main.m[™ that solves the Newton cooling equation described in lab 1M

Hand in a print out of the code.

Problem 7:
1. Solve the damped cscillator with the Midpoint method which 1s already part of definefuncs.m

2. Bolve the problem with Heun's method ([A.23) (you will have to add this methed to definefuncs.m
first).

3. Compare with the solution generated by the midpoint method.

4. Now solve the following test equation by hoth the midpoint and Heun's method and compare.
fly,t)=t—y+1.0
Choose two sets of initial conditions and investigate the behaviour.

Is there any difference between the two methods when applied to either problem? Should there
be? Explain.

o

fi. Add the Newton cooling equation and solve it by any of the above methods. Compare with
solutions generated in the demo .

~

. Hand in some sample plots along with the parameter values and initial conditions used.

NRES710: Modeling and Simulation Part 1l: Numerical Modeling UNBC

Runge-Kutta methods implemented in Matlab

The Runga-Kutta method is halfway between a 4t order and 5th order method. Consequently,
the inbuilt Matlab program to run the method is called ODEA45. The syntax to solve an initial
value problem with the ODEA45 routine in Matlab is:

_ , dy
e Mathematical formulation: E =f(t.y). 0=y, 0<t<T

. Matlab formulation: >> oded45('func', [0,T],y0)

where func i1s a Matlab M-file function which accepts variables (#,y) and returns f (¢,y).

. . d L
Example: Use ODE45 to find a numerical solution to ?” = fku (1-u), over the time interval [0,100]
t

where &£ = 0.2 and «(0) = 0.001. This equation is a common modeling tool for epidemiology. growth
of marketshare and population dynamics.

To solve the problem:

Firstly construction a function representing the right-hand-side of the equation. For example. if we
call it RHS.m. then it will be something like:

function output = RHS(t,u)

% Evaluates the rhs of the ode
k=10.2;

output = k*u*(1l-u);

Secondly, call the ODE45 procedure from the Command Window. You could alternatively store the
commands in an M-file and run them that way.

>> oded45('RHS' , [0,100] , 0.001)
Thirdly. to visualize the solution. you can produce a tabufated data or a graph. The procedure

ODE4S5 should produce a graph for you automatically. Alternatively, run the program again with the
command:

>> [t,u] = oded45('RHS' , [0,100] , 0.001);

The semicolon will suppress output. The solution will go info the vectors 7 and «. Now, to view the
solution as data or graphically call, at the Command Window.

>> [t,u]
or

>> plot (t,u)

Exercise: Find the mitial condition yp, so that the initial value problem:
du
dt

satisfies y(1) = 0.5. You might use trial-and-error or a more sophisticated method.

= v(t-v), v(0)=vo.

NRES710: Modeling and Simulation Part 1l: Numerical Modeling UNBC

Runge-Kutta method for systems of ODEs

The numerical schemes have so far solved first order differential equations. However, it is possible
to solve second order ODEs, for example

dy . : .
T‘ +sin(y)=0. 1(0) = 1. dv/dt(0) =0 (1)
12
and coupled systems of ODEs, for example
dx
E;:r+y
va) (2)
—=y-—3x x(0)=1, y(0)=-1
dt

(a) Systems of ODEs
We will start with systems of equations. The syntax remains very similar to the scalar case.
Example: Solve the system (2) with ODE45 over 0 < <10.

This time, the function for the right hand side must accept variables ¢ and (x,y). The form of ODE45
requires that the (x,)) variables arrive as a single vector, and we call it v here. The function should
also return a (column) vector with two components, as the right hand side has two parts.

function output = systemRHS (t,v)

ol

Evaluates the rhs of the coupled ode system
x = vI(1l);

y = v(2);

outputl = x + v;

output?2

Yy - 3*x;
output=[outputl; ocutput2];
Then at the Command Window, again call ODE45:
>> [t,v] = oded45('systemRHS' , [0,10] , [1, -11);

This time, the initial conditions x(0)=1 and y(0)=-1 are described by a vector. The output will be a
vector of timesteps, 7, as well as vector v which describes x and v.

If you want to see x against time, then call
>> plot(t, v(:,1))

If you want to see y against time, then call
>> plot(t, v(:,2))

If you want to see x against y (called a phase plot) then call
>> plot(v(:,1), v(:,2))

NRES710: Modeling and Simulation Part Il1: Numerical Modeling UNBC

A Mathematical Notes

A1 Note on the Derivation of the Second-Order Runge-Kutta Methods

A general s-stage Runge-Kutta method can be written as,

;|==.h_f|l_yn +E&'5j;{j1f" +ﬂih:l: i =1:...:S
=1

; (A.13)
Unt1 = Un + 3 _Cik;
=1
where Z&ij = a;.
=
In particular, an erplicit 2-stage Runge-Kutta method can be written as,
ki = hf(yn,tn)
ko = hf{ys + aky, t, + ah) (A.14)

Untl = Un + c1ky +eaka

where bay = as = a. So we want to know what values of a, ¢ and ey leads to a second-order method,
i.e. a method with an error proportional to %
To find out, we compare the method against a second-order Taylor method,

. . o N S _ . .
Yltn +h) = yltn) + hy'(tn) + 3" (tn) + O(R?) (A.15)

So for the y, 41 to be second-order accurate, it must match the Taylor method (ATH). In other
words, c1ky + eaks must mateh hy'(t,) + %y” To do this, we need to express &y and ks in terms of
derivatives of y at time #,.

First note, by = hfiy.. 6.0 = hy'it.).

MNext, we can expand ka about (y, 2.,

ky = hf(yn +aky,t, +ah) = h{f + hafe + haf,y + O(h*)) (A.16)
However, we can write y" as,
y' = % =fi+fuy (A7)
This allows us to rewrite ks in terms of 4",
ky = h(y" + hay” + O(h?)) (AL1E)
Substituting these expressions for k; back into the Runge-Kutta formula gives us,

Unil = Un +erhy’ + aah(y + hagy™) (A1)

Un+t =Un + hier + 2)y’ + B (caa)y” (A.20)
If we compare this against the second-order Taylor methed, ([A1]), we see that we need,
cp+ea=1

(A.21)
acy =%

for the Runge-Kutta method to be second-order.
If we choose a = 1, this implies £o = 1 and ¢y = 0. This gives us the midpoint method.

NRES710: Modeling and Simulation Part Il1: Numerical Modeling UNBC

However, note that other choices are possible. In fact, we have a one-parameter family of second-
order methods. For example if we choose, a = 1 and o) = 3 = %, we get the modified Euler method,
by = hf':ymfn:'
ky = hf(yn + k1, tn + h) (A.22)
Yntl = Yn + 3 (k1 + ka)

while the choice a = %, o] = % and o = %, gives us Heun's method,

ki = hf(yn.tn)

ka = hf(yn + k1, tn + 3h) (A.23)
Unt1 = Y + [R1+ Tha

References
Burden, R. L. and J. D. Faires, 1951: Numerical Analysis. PWS-Kent, Boston, 4th edition.

Press, W. H., 5. A. Teukolsky, W. T. Vetterling and B. P. Flannery, 1992: Numerical Recipes in O
The Art of Scientific Computing. Cambridge University Press, Cambridge, 2nd edition.

NRES710: Modeling and Simulation Part I1I: Numerical Modeling UNBC

Glossary

driver: A routine that calls the other routines to solve the problem.

embedded Runge-Kutta methods: Two Runge-Kutta methods that share the same stages. The
difference between the solutions give an estimate of the local truncation errvor.

explicit: In an explicit numerical scheme, the caleulation of the solution at a given step or stage does
not depend on the value of the solution at that step or on a later step or stage.

fourth-order Runge-Kutta method: A popular fourth-order, four-stage, explicit Runge-Kutta
method.

implicit: In an implicit numerical scheme, the calculation of the solution at a given step or stage
does depend on the value of the solution at that step or on a later step or stage. Such methods are
usually more expensive than implicit schemes but are better for handling stiff ODEs,

midpoint method: A two-stage, second-order Runge-Kutta method.

stages: The approcdmations to the derivative made in a Runge-Kutta method between the start and
end of a step.

tablean: The tableau for a Runge-Kutta method organizes the coefficients for the method in tabular
form.

