NRES710: Modeling and Simulation Part Il: Numerical Modeling UNBC -1-

Chapter 6 An Introduction to the Numerical Solution of Differential Equations:
Discretization, accuracy and stability

In chapter 5, we introduce the concept of discretization, and see that there are many
different ways to approximate a given problem. This chapter will develop further into the
concepts of accuracy and stability of numerical schemes, in order that we can compare
the many possible discretizations.

At the end of this chapter, you will have seen where the error in a numerical scheme
comes from, and how to quantify the error in term of order. The stability of several
examples will be demonstrated, so that you can recognize when a scheme is unstable, and
how one might go about modifying the scheme to eliminate the instability.

Specifically you will be able to

s Define the term and identify: Implicit numerical scheme and Explicit nmumerical scheme.

e Define the term, identify, or write down for a given equation: Backward Euler method and
Forward Euler methad.

s Explain the difference in termmology between: Forward difference discretization and Forward
Euler method.

Define: truncation error, local truncation error, global truncation ervor, and stiff equation.
¢ Explain: a predictor-corrector method.
o [dentify from a plot: an unstable numerieal solution.

s Be able to: find the order of a scheme, using the test equation find the stability of a scheme, find
the local truncation error from a graph of the exact solution and the numerical solution.

6.1 Introduction

Hemember from Lab #£1 that vou were introduced to three approsdmations to the first derivative of
a function, T(#). If the independent variable, ¢, is discretized at a sequence of N points, ¢; = & + i Ad,

where i =0,1,... N and Af = 1/N, then we can write the three approxdmations as follows:
Forward difference formula: - -
.I-rl.f.. N.-Et'+1_.-{z (3.1)
\Bi] == At ’ o1
Backward difference formula: T _T
T'(t;) = = iA=L (2.9)
Vi) At Ldes)
Centered difference formula: T T
T(ts) e o2 (3.3)

IAL

NRES710: Modeling and Simulation Part Il: Numerical Modeling UNBC 2

In faect, there are many other possible methods to approximate the derivative (some of which we will
see later). With this large choice we have in the choice if approximation scheme, it is not at all
clear at this point which, if any, of the schemes is the best. It is the purpose of this chapter to
present you with some basic tools that will help you to decide on an appropriate discretization
for a given problem. There is no generic best method, and the choice of discretization will
always depend on the problem that is being dealt with.

In an example from last chapter, the forward difference formula was used to compute solutions
to the saturation development equation, and you saw two important results:

o reducing the grid spacing, At, seemed to improve the accuracy of the approscdmate solution; and

o if At was taken too large (that is, the grid was not fine enough), then the approsdimate solution
exhibited non-physical oscillations, or a numerical énstability.

There are several questions that arise from this example:
1. Iz it always true that reducing At will improve the discrete solution?

2. Is it possible to improve the accuracy by using another approcdmation scheme (such as one based
on the backward or centered difference formulas)?

3. Are these numerical instabilities something that always appear when the grid spacing is too
large?

4. By using another difference formula for the first derivative, is it possible to improve the stability
of the approxdmate solution, or to eliminate the stability altogether?

The first two questions, related to accuracy, will be dealt with in section 6.2, and the last two
will have to wait until section 6.3 when stability is discussed.

6.2 Accuracy of Difference Approximations

Before moving on to the details of how to measure the error in a scheme, let's take a closer look at
another example which we've seen already ...

Example 1: Lets go back to the heat conduction equation from chapter 5, where the
temperature, 1'(t), of a rock immersed in water or air, evolves in time according to the tirst

order ODE:

dr e
— = AT) (T ~T.) (4.4)
with initial condition T(0). We saw in the section on the forward Euler method that
one way to discretize this equation was using the forward difference formula (3.1 for the
derivative, leading to

Tip1 =T: + At NT5, 1) (T — To).
Similarly, we could apply either of the other two difference formulae, (3.2) or (3.3}, to

obtain other difference schemes, namely what we called the backward Euler method

NRES710: Modeling and Simulation Part Il: Numerical Modeling UNBC 3

Tiri =T+ At ATt) (Lo — T0),
and the leap frog method

Tisr = Tict + 2AtA (T, 15) (Ti — Ta).

The forward Euler and leap frog schemes are called explicit methods, since they allow the
temperature at any new time to be computed in terms of the solution values at previous
time steps. The backward Euler scheme, on the other hand, is called an émplicit scheme,
since it gives an equation defining Ty implicitly (If A depends non-linearly on T, then
this equation may require an additional step, involving the iterative solution of a non-linear
equation. We will pass over this case for now, and refer vou to a reference such as [Burd

and Faires| (1981} for the details on non-linear solvers such as Newton's method).

For now, let's assume that A is a constant, independent of T and ¢, Plots of the numerical
results from each of these schemes, along with the exact solution, are given in Figure

(with the “unphysical” parameter value A = —0.8 chosen for clarity of the results).
QID T T T T T T T T T
bxact
Forward Euler — +
80 r Backward Euler i

Centerad +
T0 F 1

l'emperature
L
=
T
|

50 | : i
40 | : -
¥
L
_'_H] 1 1 1 1 1 1 1 1 1

0 02 04 06 08 1 12 14 16 18 2
Time

Figure 1: A plot of the exact and computed solutions for the temperature of a rock, with parameters:
T, =20,T(0) =30, A= —08, At = 1.

Motice from these results that the centered scheme is the most accurate, and badoward
Euler the least accurate.

The next section explains why some schemes are more accurate than others, and introduces a means
to quantify the accuracy of a mimerical approximation.

NRES710: Modeling and Simulation Part Il: Numerical Modeling UNBC 4

6.2.1 Round-off Error and Discretization Error

From Example [1] and the example in the Forward Euler section of the previous lab, it is obvious
that a numerical approximation is exactly that - an approximation. The process of discretizing a
differential equation inevitably leads to errors. In this section, we will tackle two fundamental questions
related to the accuracy of a numerical approsdmation:

¢ Where does the error come from {and how can we measure it)7

* How can the error be controlled?

6.2.1.1 Where does the error come from?

Round-off error: When attempting to solve differential equations on a computer, there are two
main sources of error. The first, rmound-off error, derives from the fact that a computer can only

represent real numbers by floating point approsximations, which have only a finite number of digits of
ACCUTACY.

Mathematical Note: See Appendix for a deseription of Hoating point representation
of numbers.

Example 2: For example, we all know that the number 7 is a non-repeating decimal,
which to the first twenty significant digits is 3.1415926535807932385 . . . Imagine a computer
which stores only eight significant digits, so that the value of 7 is rounded to 3.1415927,
In many situations, these five digits of aceuracy may be sufficient. However, in some cases,
the results can be catastrophic, as shown in the following example:

™

(7 + 0.00000001) — 7

Since the computer can only “see” 8 significant digits, the addition = + 0.00000001 is
simmply equal to 7 as far as the computer 15 concerned. Henece, the computed result is %
- an undefined expression! The exact answer 1000000007, however, is a very well-defined
non-zero value.

Truncation error: The second source of error stems from the discretization of the problem, and
hence is called discretization error or truncation error. In comparison, round-off emror is always
present, and is independent of the discretization being used. The simplest and most common way to
analyse the truncation error in a scheme is using Taglor series erpansions.

Mathematical Note: See Appendix[A.T]for a review of Taylor series.

Let us begin with the forward difference formula for the first derivative, @, which involves the
discrete solution at times ¢4 and #;. Since only continuous functions can be written as Taylor series,
we expand the exact solution (instead of the discrete values T;) at the discrete point #;4.4:

NRES710: Modeling and Simulation Part Il: Numerical Modeling UNBC

T(tirr) = T(t: + At) = T(t:) + (AT (t:) + (AT () + -,
We can then subtract T(#;) and divide the result by At in order to cbtain

Titip) —Tit)

A S
At = T'(t) + (AT (t:) + -

t1'unn:a,tiT::n error
= T'(t;) + O(Ad). (4.5)

MNote: This second expression writes the truncation error term in terms of order notation. If we
write y = ((At), then we mean simply that y < ¢- At for some constant ¢, and we say that * y és first
order in Af" (since it depends on Af to the first power) or * y is big-oh of Af" As At is assumed
small, the next term in the series, At” is small compared to the At term.

It i= clear from that as Af is reduced in size (i.e. as the computational grid is refined), the
error is also reduced. If you remember that we derived the approximation from the limit definition of
derivative, then this should make sense. This dependence of the error on powers of the grid spacing
At is an underlying characteristic of difference approximations, and we will see approximations with
higher orders in the coming sections . ..

There is one more important distinetion to be made here. The “truncation error” we have been
discussing so far is actually what is called local truncation error. It is “local” in the sense that we
have expanded the Taylor series locally about the exact solution at the point f;.

There iz also & global fruncation ervor (or, simply, global error), which is the error made during
the course of the entire computation, from time #; to time ¢,,. The difference between local and global
truncation error is illustrated in Figure [J

— exact solution
T®
global
error
L

—— computed solution]

local truncation error

exact solution with
Ty as initial condition

Figure 2: Local and global truncation error.

NRES710: Modeling and Simulation Part Il: Numerical Modeling UNBC 6

It is easy to get a handle on the order of the local truneation error using Taylor series, regardless
of whether the exact solution is known, but no similar analysis is available for the global error. We
can write

global error = |T'(¢,) — T,,|

{see Figure 2]}, but this expression can only be evaluated if the exact solution is known ahead of time
(which is not the case in most problems we want to compute, since otherwise we wouldn’t be computing
it in the first place!). Therefore, when we refer to truneation error, we will always be referring to the
local truncation error.

‘Problem 1:

e a) Derive the error term for the backward diference formula using Taylor series, and hence
show that it is also first order.

¢ b) How does the constant in front of the leading order error term differ from that for the forward
difference formula? Helate this back to the results plotted in Figure [1] where these two formulae
were used to derive difference schemes for the heat conduction problem.

s c) Repeat a) for the centered difference formula ([3.3). What is the order of this approximation
to the first derivative?

6.2.1.2 How can we control the error?

Now that we've determined the source of the error in numerical methods, we would like to find a way
to control it; that is, we would like to be able to compute and be confident that our approximate
solution is “close” to the exact solution. Round-off error is intrinsic to all numerical computations,
and eannot be contralled {except to develop methods that do not magnify the ervor unduly ... more
on this later). Truneation error, on the other hand, ¢s under our control. Note: In the simple ODE
examples that we're dealing with in this lab, the round-off error in a caleulation is much smaller than
the truncation error. Furthermore, the schemes being used are stable with respect to round-off error
in the sense that round-off errors are not magnified in the course of a computation. So, we will restrict
our discussion of error control in what follows to the truncation error.

However, there are many numerical algorithms in which the round-off error can dominate the the
result of a computation (Gaussian elimination is one example, which you will see in Lab #3 1, and so
we must always keep it in mind when deing numerical computations,

There are two fundamental ways in which the truneation error in an approxmation can be
reduced:

1. Decrease the grid spacing, Af. Provided that the second derivative of the solution = bounded,
it is clear from the error term n that as Af is reduced, the error will also get smaller. This
principle was demonstrated in an example from Lab #1. The disadvantage to decreasing Af is
that the cost of the computation increases since more steps must be taken. Also, there is a limit
to how small At can be, bevond which round-off errors will start polluting the computation.

NRES710: Modeling and Simulation Part Il: Numerical Modeling UNBC

2. Increase the order of the approximation. We saw above that the forward difference approximation
of the first derivative is first order accurate in the grid spacing. It is also possible to derive higher
order difference formulas which have a leading error term of the form (A#)®, with p = 1. You
should have discovered already in Problem|[l]that the centered difference formula is a second
order scheme, and some further examples will be given in Section [£2.1] The main disadvantage
to using very high order schemes is that the error term depends on higher derivatives of the
solution, which can sometimes be very large — in this case, the stability of the scheme can be
adversely affected (for more on this, see Secticun.

‘Problem 2: In order to investigate these two approaches to mmproving the accuracy of an
approximation, you can use the following mteractive example to play with the solutions to the heat
conduction equation. For a given function A{T"), and specified parameter values, you should experiment
with various time steps and schemes, and compare the computed results{Note: only the answers to
the assigned questions need to be handed in).

The three schemes that will be used here are forward Euler (first order), leap frog (second order)
and the fourth order Runge-Kutta scheme (which will be ntroduced in|Lab #4). The demo will assist
voul in answering the questions:

¢ a) Does increasing the order of the scheme, or decreasing the time step always improve the
solution?

¢ b) How would you compute the local truneation error from the ervor plot? And the global error?

o ¢} Similarly, how might vou estimate the order of the local truncation error? The order of the
global error? | Hint: An order p scheme has truncation error that looks like o (A#)P. Read the
error off the plots for several values of the grid spacing and use this to find p.) Are the local and
global error significantly different? Why or why not?

6.2.2 Other Approximations to the first derivative

The Taylor series method of deriving, difference formulae for the first derivative is the simplest, and
can he used to obtain approximations with even higher order than two. There are also many other

ways to discretize the derivatives appearing in ODE's, as shown in the following sections. .

6.2.2.1 Higher order Taylor methods

Az mentioned earlier, there are many other possible approximations to the first derivative using the
Taylor series approach. The basic approach in these methods 12 as follows:

1. expand the sclution in a Taylor series at one or more points surrounding the point where the
derivative 15 to be approoamated (For example, for the centersd scheme, you used two points,
Tite + At) and Tt — A#). You also have to make sure that you expand the series to a high
encough order ..

2, take combinations of the equations until the Ty {and poasibly some other dervative) terma are
eliminated, and all you're left with is the first dernivative term.

7

NRES710: Modeling and Simulation Part Il: Numerical Modeling UNBC

Cne example 12 the fourth-order centered difference formula for the first derivative:

—Tityo) + 8Tk) — 8T)+ T (ol

AT =T'{ts) + O((At)")

6.2.2.2 Predictor-corrector methods

Another class of discretizations are called predictor-corrector methods. Implicit methods can be diffi-
cult or expensive 1o use because of the solution step, and so they are seldom used to integrate ODEs.
Eather, they are often used as the basis for predictor-corrector algorithms, in which a “prediction™ for
Tisi based only on an explicit method 12 then “corrected” to mive a better value by using this precision
in an implicit method.

To see the basic idea behind these methods, let’s go back (once again) to the bacloward Euler
method for the heat conduction problem which reads:

T =T+ A MTpy, et) (Togt —Ta)

MNote that after applying the backward difference formula I]E[I all terms in the right hand side are
evaluated at time ;4.

Mow, Ty 18 defined implicitly in terms of itsalf, and unless A is a very simple function, it may be
very difficult to solve this equation for the walue of T at each time step. One alternative, mentioned
already, 15 the use of a non-linear equation sclver such as Newton's method to solve this equation.
However, this is an Herative scheme, and can lead to a lot of exira expense. A cheaper alternative
12 to realize that we could iry estimating or predicting the value of Tiy1 using the simple expheit
forward Euler formula and then use this in the right hand side, to oblain a correcfed walue of Tigq.
The resulting schems,

Prediction: Tioq =T+ At MTy, 6,(Ty — Ta).

Correction: Tipg =T+ At Jm['f'..“ St) ['f'H.j — Tl

Thi= method 12 an explicit scheme, which can alsc be shown to be second order accurate i At
It 15 the simplest in a whole class of schemes called predictor-corrector schemes (more information is

available on these methods in a numerical analysis bock such az [Burden and Faired ([T951]).

6.2.2.3 Other Methods
The choice of methods is made even greater by two other classes of schemes:

Runge-Kutta methods: which will be described later.

MMulti-step methods: which use values of the solution at more than one previcus time step in order
to increase the aceuracy. Compare these 1o one-step schemes, such as forward Euler, which use
the solution only at cne previous step.

Mare can be found on these (and other) methods in Burden and Faires (1981

8

NRES710: Modeling and Simulation Part IlI: Numerical Modeling UNBC

6.2.2.4 Summary

In this section, you've been given a short overview of the accuracy of difference schemes for first order
ordinary differential equations. We've seen that accuracy can be improved by either decreasing the
erid spacing, or by choosing a higher order scheme from one of several classes of methods. When using
a higher order scheme, it is important to realize that the cost of the computation usually rises due to
an added number of function evaluations (especially for multi-step and Runge-Kutta methods). When
selecting a numerical scheme, it is important to keep in mind this trade-off between accuracy and cost.

However, there is another important aspect of discretization that we have pretty much ignored.
The next section will take a lock at schemes of various orders from a different light, namely that of
stability.

6.3 Stability of Difference Approximations

The easiest way to introduce the concept of stability is for vou to see it yourself.

‘Problem 3: This example is a slight modification of Problem [2] from the previous section on
accuracy. Here, we will concentrate only on the first and second order schemes we're familiar with:
namely, forward and backward Euler, and the leap frog scheme, all applied to the heat conduction
problem. The wvalue of A is assumed a constant, so that the backward Euler scheme results in an
explicit method, and we'll also compute a bit further in time, so that any instability manifests itself
more clearly.

The interactive example will enable you to answer:

a) Which scheme, if any, is unstable?
b) Is it always unstable, or only for cerfain values of At¥

The heat conduction problem, as you saw in Lab #1, has solutions that are stable when A < 0.
It is clear from Problem [3] above that some higher order schemes (namely, the leap-frog scheme)
introduce a spurious oscillation not present in the continuous solution. This is called a compuiational
or numerical instability, because it is an artifact of the discretization process only. This mstability
is not a characteristic of the heat conduction problem alone, but is present in other problems where
such schemes are used. Furthermore, as we will see below, even a scheme such as forward Euler can
be unstable for certain problems and choices of the time step.
There is a way to determine the stability properties of a scheme, and that is to apply the scheme
to the fest equation
dz
b
where X is a complex constant. Note: The reason for using this equation may not seem very clear. But
think if you think in terms of Az as being the linearization of some more complex right hand side, then
the solution to is = = e™, and so z represents, in some sense, a Fourier mode of the solution to
the linearized ODE problem. We expect that the behaviour of the simpler, linearized problem should
mimic that of the original problem.
Applyving the forward Euler scheme to this test equation, results in the following difference formula

Az, (5.6)

3;‘+1 = + I._}uif_nlla
which is a formula that we can apply iteratively to z; to obtain

(1+ AAt) %2y

Zitl

{1+ AAs)H 2,

9

NRES710: Modeling and Simulation Part Il: Numerical Modeling UNBC 10

The value of 7 is fixed by the initial conditions, and so this difference equation for 2,4 will “blow up”
as i gets bigger, if the factor in front of zj is greater than 1 in magnitude — this is a sign of instability.
Hence, this analysis has led us to the conclusion that if

|14 AAt| <1,

then the forward Euler method is stable. For real values of A < 0, this inequality can be shown to be
equivalent to the stability condition

Fy
which is a restriction on how large the time step can be so that the numerieal solution is stable.

‘Problem 4: Perform a similar analysis for the backward Euler formula, and show that it is
always stable when X is real and negative.

At =

Example 3: Now, what about the leap frog scheme?
Applyving the test equation to the leap frog scheme results in the difference equation

Ti4l = Ti—1 + }i..n'lfli'.

Difference formulas such as this one are typically solved by locking for a solution of the
form z; = w* which, when substituted into this equation, vields

w® — 2AAtw — 1 =10,

a quadratic equation with solution

Y f 1
u_iﬁflii\“*-l:}tﬂf:lg .

The solution to the original difference equation, z; = w’ is stable only if all solutions to
this quadratic satisfy |w| <0 1, since otherwise, =; will blow up as i gets large.

The mathematical details are not important here — what is important is that there are
two (possibly complex) roots to the quadratic equation for w, and one is always greater
than 1 in magnitude wnless X is pure imaginary (i.e. has real part equal to zero), and
|AAt| < 1. For the heat conduction equation in Problem [3 (which is already of the same
form as the test equation (5.6}, A is clearly not imaginary, which explains the presence of
the instahility for the leap-frog scheme.

Nevertheless, the leap frog scheme is still useful for computations. In fact, it is often used
in geophysical applications, as you will see later on when discretizing the shallow water
wave equations and the quasi-geostrophic equations.

An example of where the leap frog scheme is superior to the other first order scheme us for
undamped periodic motion (which arose in the weather balloon example from last chapter).
This corresponds to the system of ordinary differential equations [with the damping pa-
rameter. [, taken to be zero):

10

NRES710: Modeling and Simulation Part IlI: Numerical Modeling UNBC

dy
dt
du ny

dt mo
You've already discretized this problem using the forward difference formula, and the same
can be done with the second order centered formula. We can then compare the forward
Euler and leap-frog schemes applied to this problem.

Solution plots are given in Figure |3] for parameters ~/m = 1, At = 025, y(0) = 0.0 and
u(0) = 1.0, and demonstrate that the leap-frog scheme is stable, while forward Euler is
unstable. This can easily be explained in terms of the stability criteria we derived for
the two schemes when applied to the test equation. The undamped oscillator problem
is a linear problem with pure imaginary eigenvalues, so as long as |[/~/mAt| < 1, the
leap frog scheme is stable, which is obviously true for the parameter values we are given.
Furthermore, the forward Euler stability condition |1 4+ AA#| < 1 is violated for any choice
of time step (when A is pure imaginary) and so this scheme is always unstable for the
undamped oscillator.

Note: Had we taken a larger time step (such as Ai = 2.0, for example), then even the
leap-frog scheme is unstable. Furthermore, if we add damping (3 # 0), then the eigenvalues
are no longer pure imaginary, and the leap frog scheme is unstable no matter what time
step we use.

6.4 Stiff Equations

One final note: this Lab has dealt only with ODE’s {and systems of ODE’s) that are non-stiff. Stiff
equations are equations that have solutions with at least two widely varyving times scales over which the
solution changes. An example of stiff solution behaviour is a problem with solutions that have rapid,
transitory oscillations, which die out over a short time scale, after which the solution slowly decays
to an equilibrinm. A small time step is required in the initial transitory region in order to capture
the rapid oscillations. However, a larger time step can be taken in the non-oscillatory region where
the solution is smoother. Hence, using a very small time step will result in very slow and inefficient

computations.

There are also many other numerical schemes designed specifically for stiff equations, most of which
are implicit schemes. We will not describe any of them here — you can find more information in a

mumerical analysis text such as [Burden and Faires| (1951)).

11

11

NRES710: Modeling and Simulation

Part 11: Numerical Modeling

Leap frog solution

UNBC

1.5

05

Solution (u.y)
=]

|

—

Lh
T

u

-1.5

Forward Euler solution

Time (seconds)

Solution (u.y)

b

u

Time (seconds)

10

12

Figure 3: Numerical solution to the undamped harmonic oscillator problem, using the forward Euler
and leap-frog schemes. Parameter values: ~v/m = 1.0, At = 0.25, y(0) = 0, u{0) = 1.0. The exact

solution is a sinusoidal wave.

12

NRES710: Modeling and Simulation Part Il: Numerical Modeling UNBC 13

6.5 Difference Approximation of Higher Derivatives

Higher derivatives can be discretized in a similar way to what we did for first derivatives. Let’s consider

for now only the second derivative, for which one possible approximation is the second order centered

formula: _ . _
Yllapr) — 2y(ts) + yitiq)

(AD)?
There are, of course, many other possible formulae that we might use, but this is the most commonly
used.
‘Problem 5:

= y"(t:) + O((At)?),

e a) Use Taylor series to derive this formula.

& b) Derive a higher order approximation.
6.6 Summary

This lab has discussed the accuracy and stability of difference schemes for simple first order ODEs.
The results of the problems should have made it clear to you that choosing an accurate and stable
discretization for even a verv simple problem is not straightforward. One must take into account
not only the considerations of aceuracy and stability, but also the cost or complexity of the scheme.
Selecting a numerical method for a given problem can be considered as an art in itself.

A Mathematical Notes

A.1 Taylor Polynomials and Taylor Series

Taylor Series are of fundamental importance in numerical analysis. They are the most basic tool for
talking about the approximation of functions. Consider a function f(z) that is smooth — when we say
“smooth”, what we mean is that its derivatives exist and are bounded (for the following discussion,
we need [to have (n+ 1) derivatives). We would like to approximate f({x) near the point r = xqp, and
we can do it as follows:

flz) = Pr(z) + Rn(r)
_v_ﬂ" _V_J
Tavlor polynomial remainder term
where o -
Pu(z) = flzo) + f(zo){z — 20) + ! é?'” (r—zo)®+-- -+ %LI —xp)"

13

NRES710: Modeling and Simulation Part IlI: Numerical Modeling UNBC 14

is the nth order Taylor polynomial of f about xp, and

oy JetDE) \netl

R,(x)= Wkr — Ta)

is the remainder ferm or fruncation error. The point £(x) in the error term lies somewhere between

the points xy and z. If we look at the mfinite sum (i.e. let n — o0}, then the resulting infinite sum is

called the Taglor series of f(z) about x = xg. This result is also know as Taglor’s Theorem.
Remember that we assumed that fiz) is smooth (in particular, that its derivatives up to order

in + 1) exist and are finite). That means that all of the derivatives appearing in F,, and R, are

bounded. Therefore, there are two ways in which we can think of the Taylor polynomial Fy,(x) as an

approximation of fiz):

1. First of all, let us fix n. Then, we can improve the approximation by letting » approach =q, since
as (x — xp) gets small, the error term R, (r) goes to zero (n is considered fixed and all terms
depending, on n are thus constant). Therefore, the approxdimation improves when = gets closer
and closer to xa.

2. Alternatively, we can think of fixing . Then, we can improve the approximation by taking more
and more terms in the series. When n is increased, the factorial n the denominator of the error
term will eventually dominate the {x — z5)"*! term (regardless of how big {z — x4 is). and thus

drive the error to zero.

In summary, we have two ways of improving the Taylor polynomial approxdimation to a function: by
evaluating, it at points closer to the point =g; and by taking more terms in the series.

Example 4: This property of the Taylor expansion can be seen by a simple example.
Consider the Taylor polynomial for the function f(x) = siniz) about the point zy = 0. All
of the even terms are zero, so that if we take n odd (ie. n =2k + 1), then the nth order
Taylor polynomial is
o _I"S 5 r'r' r2k+1

The plot in Figure {] illustrates quite clearly how the approximation improves hoth as =
approaches 0, and as n is increased. Consider a specific Taylor polynomial, say Psix)
{i.e. fix n = 3). Notice that for » far away from the origin, the polynomial is nowhere
near the function sin(x). However, it approxdmates the function quite well near the origin.
On the other hand, we could take a specific point, = = 5, and notice that the Taylor series
of orders 1 through 7 do not approcimate the function very well at all. Nevertheless the
approximation improves as n increases, as is shown by the 15th order Taylor polynomial.

A.2 Floating Point Representation of Numbers

Unlike a mathematician, who can deal with real numbers having infinite precision, a computer can
represent numbers with only a finite number of digits. The best way to understand how a computer
stores a number is to lock at its floafing-peint form, in which a mumber is written as

+i.didads . . dg = 107,

where each digit, d; is between 0 and 9 {except dy, which must be non-zero). Floating point form
i= commonly used in the physical sciences to represent numerical values; for example, the Earth's
radius is approximately 6,400,000 metres, which is more conveniently written in floating point form as
(.64 » 107 {compare this to the general form above).

Note: Computers actually store numbers in - bnary form (ie in base-2 floating point form, as
compared to the decimal or base-10 form shown above). However, it is more convenient to use the
decimal form in order to illustrate the basic idea of computer arithmetic. For a good discussion of the
binary representation of numbers, see Burden & Faires (Burden and Faired, [1981] sec. 1.2).

For the remainder of this discussion, assume that we're dealing with a computer that can store
numbers with up to 8 significant digits (i.e. & = 8) and exponents in the range —38 < n < 35, Based
on these values, we can make a few observations regarding the numbers that can be represented:

14

NRES710: Modeling and Simulation Part Il: Numerical Modeling UNBC

4 T T
51110%)
3L Pl(x) 4
3(x)
5L Pa(x) i
P15(x)
1 _ 4
= 0
1+ J
L= ,
3L J
_4 1 1
-10 -5 0 5 10

Figure 4: Plot of sin{r) compared to its Taylor polynomial approxdimations about zq = 0, for various
values of n.

The largest number that can be represented is about 1.0 1013, while the smallest is 1.0 10738,

¢ These numbers have a lot of holes, where real numbers are missed. For example, consider the
two consecutive Hoating point numbers

013391482 « 10° and 0.13391483 = 105,

or 13391482 and 13391 .483. Our floating-point number system cannot represent any numbers
between these two values, and hence any mumber in between 13391 482 and 13391483 must
be approximated by one of the two values. Another way of thinking of this is to ohserve that
0.13391482 » 105 does not represent just a single real number, but a whole range of numbers.

Notice that the same amount of floating-point numbers can be represented between 10~° and
10™7 as are between 10°° and 10°!. Consequently, the density of floating points numbers increases
as their magnitude becomes smaller. That is, there are more floating-point numbers close to zero
than there are far away. This is illustrated in the Figure

Distribution of floating point numbers

-1.5e+38 -le+38 -5e+37 1] 5e+37 le+38 1.5e+38

Figure 5: The foating-point numbers {each represented by a x) are more dense near the origin.

15

15

NRES710: Modeling and Simulation Part Il: Numerical Modeling UNBC 16

The values k = & and —38 < n < 38 correspond to what is known as single precision arithmetic,
in which 4 bytes {or units of memory in a computer) are used to store each number. It is typical
in many programming languages, including ©' + +, to allow the use of higher precision, or double
precision, using 8 hytes for each number, corresponding to values of & = 16 and —308 < n = 308,
thereby greatly increasing the range and density of numbers that can be represented. When doing
numerical computations, it is customary to use double-precision arithmetic, in order to minimize the
effects of round-off error (in a © + 4 program, vou can define a variable = to be double precision
using the declaration double x;).

Note: Sometimes, double precision arithmetic may help in eliminating round-off error problems
in a computation. On the minus side, double precision numbers require more storage than their
gingle precision counterparts, and it is sometimes (but not always) more costly to compute in double
precision. Ultimately, though, using double precision should not be expected to be a cure-all against
the difficulties of round-off errors. The best approach is to use an algorithm that is not unstable with
respect to round-off ervor. For an example where inereasing precision will not help, see the section on

Gaussian elimination.

16

NRES710: Modeling and Simulation Part IlI: Numerical Modeling UNBC 17

Glossary

accuracy: when referring to a numerical approximation, accuracy refers to how large the error is
(the error being the difference between the exact solution and the approximation).

backward Euler method: a numerical method that uses backward discretization for the time
derivative(s).
discretization error: see truncation error

explicit acheme: the solution at a given time step depends only on the solution value at previous
time steps.

floating point: the storage method that a computer uses to represent real numbers. A decimal

Hoating-point mumber has the form +0.dydads .. . dy = 107, where each digit, d; is between 0 and 9
{except dy, which must be non-zero). Computers actually use a binary (or base 2) floating point
representation.

forward Euler method: a numerical method that uses forward discretization for the time deriva-
tive(s).
global truncation error: this is the error made in approximating the solution to an ODE over

the entire course of the numerical integration. It is typically more difficult to derive an analytical
expression for this error than it is with the local truncation error

implicit scheme: the sclution at a given time step depends on solution values of the current time
step as well as previous time steps.

local truncation error: or fruncefion error. This is the error made in approxdimating the solution
to an ODE over a single step. A simple method for computing the actual form of the error is by Taylor
series expansion.

order: when referring to a numerical approximation, this is a way to measure how the error in the
approximation depends on the grid spacing. Typically, if the error is of the form h# (where h is the
grid spacing), then we say that the numerical scheme is of order p.

round-off error: the error made by representing a real number as a fHoating-point number on a
computer. The floating, point representation only has a finite number of digits, and the round-off error
is the difference between the infinite-precision real number and its foating, point approximation.

stability: when referring to a numerical method, it is also called numerical stability.

stiffness: when referring to a solution to a DE or a system of DE's, stiffness refers to a solution with
at least two widely varying times scales over which the solution changes.

truncation error: the error made In approximating a continuous function by a discrete formula.

When talking about numerical approsdmations to ODE's, there are actually two types of truncation
error: global truncation error and local fruncation error. When the term fruncafion error is used
by itself, it usually refers to local truneation ervor.

17

NRES710: Modeling and Simulation Part Il: Numerical Modeling UNBC 18

References

Burden, R. L. and I. I). Faires, 1951: Numerical Analysis. PWS-Kent, Boston, 4th edition.

Strang, G., 1986 Introduction to Applied Mathematics. Wellesley-Cambridge Press, Welleslew, MA.

18

NRES710: Modeling and Simulation Part Il: Numerical Modeling UNBC 19

Lab and assignments

(1) Run example 2 in page 7 in Matlab: Terror2.m. First argument is number of
points. Second argument is scheme. 1: forward euler 2: leap-frog 3: Runge-Kutta 4th
order. First plot is numerical result in red and analytic answer in green. Second plot is
error.

(2) Run example 3 in page 9 in Matlab: stability2.m. First argument is number of
points. Second argument is scheme. 1: forward euler 2: backward euler 3. leap-
frog.

19

