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Chapter 5. An Introduction to the numerical solution of differential equation:
Discretization

Many differential equations that describe physical or dynamical systems are unable to be
solved using analytical techniques. An effective tool for solving these differential
equations are the numerical methods. A primary step to obtain numerical solutions for
differential equations is to discretize differential equations. In this chapter, we will learn
the primary principle and the process of discretizing a continuous problem, and
demonstrate how to derive a simple finite difference approximation for a ordinary or
partial differential equation. The examples shown in the chapter will also introduce the
concepts of accuracy and stability, which will be discussed further in the following
chapters.

Specifically you will be able to

# Define the term or identify: Ordinary Differential Equation, Partial Differential Equation, Linear
equation, Non-linear equation, Initial value problem. Boundary value problem, Open Domain, and
Cloged Domain.

» Define the term, identify or perform: Forward difference discretization, Backward difference
dizscretization, and Centre difference discretization.

o Define the term: Interpolation, Convergence, and Instability.

» Define the term or perform: Linear interpolation.

5.1 Introduction: Why bother with numerical methods?

In introductory courses in ordinary and partial differential equations (ODE’s and PDE's), many ana-
Iytical techniques are introduced for deriving solutions. These include the methods of undetermined
coefficients, variation of parameters, power series, Laplace transforms, separation of variables, Fourier
series, and phase plane analysis, to name a few. When there are so many analytical tools available,
one is led to ask:

Why bother with numerical methods at all¥

The fact 1= that the class of problems that can be solved analytically is very small. Most differential
equations that model physical processes cannot be solved explicitly, and the only recourse available is
to use a numerical procedure to obtain an approximate solution of the problem.

Furthermore, even if the equation can be ntegrated to obtain a closed form expression for the
solution, it may sometimes be much easier to approsimate the solution numerically than to evaluate
it analytically.

In the following two sections, we introduce two classical physical models, seen in most courses
in differential equations. Analvtical solutions are given for these models, but then seemingly minor
modifications are made which make it difficult {if not impossible) to calculate actual solution values
using analytical techniques. The obvious alternative is to use numerical methods.
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5.1.1 Ordinary Differential Equations

In order to demonstrate the usefulness of numerical methods, let’s start by looking at an example of
a first-order indtiel value problem (or IVP). In their most general form., these equations lock like

dy .. ..
5 = 1), -
(3.1)

y(0) = wo,
where
o fis the independent variable (in many physical systems, which change in time, ¢ represents time);
¢ yit) is the unknown quantity (or dependent variable) that we want to solve for;
e fiy.f)is a known function that can depend on both  and §; and

o yp is called the initial value or initial condition, since it provides a value for the solution at an
initial time, £ = 0 (the initial value is required so that the problem has a unique solution).

This problem involves the first derivative of the solution, and also provides an initial value for y, and
hence the name “first-order initial value problem”.

Under certain very general conditions on the right hand side function f, we know that there will
be a unique solution to the problem {3.1). However, only in very special cases can we actually write
down a closed-form expression for the solution.

In the remainder of this section, we will leave the general equation, and investigate a specific
example related to heat conduction. It will become clear that it is the problems which do not have
exact solutions which are the most interesting or meaningful from a physical standpoint.

Example 1: Consider a small rock, surrounded by air or water, which gains or loses
heat only by conduction with its surroundings (i.e. there are no radiation effects). If the
rock is small enough, then we can ijgnore the effects of diffusion of heat within the rock,
and consider only the How of heat through its surface, where the rock interacts with the
surrounding medium.

It is well known from experimental ohssrvations that the rate at which the temperature of
the rock changes is proportional to the difference between the rock’s surface temperature,
T'(t), and the ambient temperature, T, (the ambient temperature is simply the temperature
of the surrounding material, be it air, water, ...). This relationship is expressed by the
following ordinary differential equation

— =-2 (T-T.) . (3.2)
rate of change tenllperature
difference

of temperature

and is commonly known as Newfon’s Law of Cosling. (The parameter A iz defined to
be A = pA/cM, where A is the surface area of the rock, M is its mass, g its thermal
conductivity, and ¢ its specific heat.)
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If we assume that A is a constant, then the solution to this equation is given by
T(t) = Ta+ (T(0) — T)e™™, (3.3)

where T'(0) is the nitial temperature.
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Figure 1: Plot of solution eurves T(#) for Ty = —10, 15,20, 30; parameter values: A = 1075, T, = 20.

In order to obtain realistic value of the parameter A, let our “small” rock be composed of
granite, with mass of 1 gram, which corresponds to a A =2 107° sec™!,

Sample solution curves are given in Figure [T]

Example 2: Suppose that the rock in the previous example has a A which is noet constant.
For example, if that the rock is made of a material whose specific heat varies with the
temperature or time, then A can be a function of T or . This might happen if the material
composing the rock undergoes a phase transition at a certain critical temperature |for
example, a melting ice pellet). The problem is now a non-linear one, for which analvtical
techniques may or may not provide a solution.

If X = AT, a function of temperature only, then the exact solution may be written as

11
T(t) = T, +exp [— Ji Ac-rcsands],
[}

which involves an integral that may or may not be evaluated analytically, in which case we
can only approximate the integral. Furthermore, if A is a function of both T and ¢ which
iz not separable (i.e. cannot be written as a product of a function of T and ¢}, then we
may not be able to write down a closed form for the solution at all, and we must resort to
numerical methods to obtain a solution.
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Even worse, suppose that we don’t know A explicitly as a function of temperature, but
rather only from experimental measurements of the rock (see Figure (2| for an example).
Then there is no way to express the rock's temperature as a function, and analytical
methods fail us, since we do not know the values at points between the given values. One
alternative is to approximate A at ntermediate points by joining successive points with
straight lines (this is called lnear énferpolation), and then use the resulting function in a
mumerical scheme for computing the solution.

As the above example demonstrates, even for a simple ODE such as (3.2], there are situations
where analytical methods are inadequate.

¢ | Temperature (T}) | Measured A,
0 -5.0 2.092
1 -2.0 1.59
2 1.0 1.00
3 4.0 2.52
4 7.0 3.66
5 10.0 4.64

Interpolated measurements of lambda(T)

5 T T T T R T T T
interpolated }
Jata o
4t ‘ :
= 34 .
= o
=
= 2t :
=]
1 o -

Temperature

Figure 2: A rock with A known only at a sequence of discrete temperature values, from experimental
measurements. The function A{T) can be represented approximately using linear interpolation {and
the resulting approximate function can then be used to solve the problem numerically).
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5.1.2 Partial differential Equations

Example 3: The rock in Example [[|was considered to be small enough that the effects of
heat diffusion n the interior were negligible in comparison to the heat lost by conduction
through its swrface. In this example, consider a rock that is not small, and whose tempera-
ture changes are dominated by internal diffusion effects. Therefore, it is no longer possible
to ignore the spatial dependence in the problem.

For simplicity, we will add spatial dependence in one direction only, which corresponds
to a “one-dimensional rock”, or a thin rod. Assume that the rod is msulated along its
sides, so that heat flows only along its length, and possibly out the ends (see Figure [3).
Consequently, the temperature varies only with position, =, and time, ¢, and can be written

Figure 3: A thin rod can be thought of as a model for a one-dimensional rock.

as a function u(x, #). The temperature in the rod is governed by the following PDE
= 0 U
for which we have to provide an initial temperature
u(z,0) = uo(x),
and boundary values
w0 ) =u(l, i) =0,
where

o o is the thermal diffusivity of the material,
o uplx) is the initial temperature distribution in the rod, and

o the boundary conditions indicate that the ends of the rod are held at constant tem-
perature, which we've assumed is zero.

Thermal diffusivity is a quantity that depends only on the material from which the bar is

made. It is defined by

o =

i

£
e
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where & is the thermal conductivity, p is the density, and ¢ is the specific heat. A typical
value of the thermal diffusivity for a granite bar is 0.011 em? /sec, and 0.0038 cm? [ see for
a bar made of brick.

Using the method of separation of variables, we can look for a temperature function of the
form wix, t) = X{z) - T(t), which leads to the infinite series solution

ufr, t) = Z b,,e_"g et gin (nmwx),
n=1
where the series coefficients are
1
b, ='2f uglx) sin (nrx)de.
0

Mathematical Note: Details of the derivation can be found in any introductory
text in PDE’s (for example, (Boyee and DiPrimal 1986, p. 5497).

We do manage to obtain an explicit formula for the solution, which can be used to caleulate
actual values of the solution. However, there are two obvious reasons why this formula is
not of much practical use:

1. The series involves an infinite number of terms (except for very special forms for
the mitial heat distribution ... such as the one shown below). We might be able to
truncate the series, since each term decreases exponentially in size, but it is not trivial
to decide how many terms to choose in order to get an accurate answer and here we
are already entering, the realm of numerical approsdmation.

2. Fach term in the series requires the evaluation of an integral. When these cannot
be integrated analvtically, we must find some way to approximate the integrals ...
numerical analysis rears its head once again!

For most physical problems, an analytical expression cannot be cbtained, and the exact
formula 1= not of much use.

However, consider a very special case, when the initial temperature distribution is sinu-
soidal, i.e.

uglr) = sin{wzx).
For this problem, the infinite series collapses into a single term

- 5 2_3 .
ulz,t) =™ « ! sin T,

Sample solution curves are given in Figure[d]

Most problems arising in physics (which are non-linear) cannot be solved analytically, or result in
expressions that have little practical value, and we must turn to numerical solution techniques.
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Figure 4: Temperature vs, position curves at various times, for heat diffusion in a rod with sinusoidal
initial temperature distribution and parameter value o = 0.2,

5.2 Discretization

When computing analvtical solutions to differential equations, we are dealing with confinuwous func-
tiona; 1e. functions that depend contimiously on the independent variables. A computer, however, has
only finite storage capacity, and hence there is no way to represent continuous data, except approxi-
mately as a sequence of discrete values,

Example 4: We already saw an example of a discrete function in Example [2 where
the rate function A, depended on the temperature. If A is not known by some empirical
formula, then it can only be determined by experimental measurements at a discrete set
of temperature values. In Figure [2| A is given at a sequence of six temperature points |
(T, A0, for i =0,1,...,5) ), and so0 1= an example of a discrete funciion.

The process of interpolation, which was introdueed in Example ] will be considered in
more detail next.

Example 5: Consider the two continuous functions

flz) = 2* — 5z and g(z) =2/

(In fact, g(=) was the function used to generate the values A{T) n Em1ple;'|

The representation of functions using mathematical notation or graphs is very convenient
for mathematicians, where continnous functions make sense. However, a computer has
a limited storage capacity, and so it can represent a function only at a fnite number of
discrete points [z, y).

One question that arises immediately is: What do we do if we have to determine a value
of the function which is nof af one of the discrete points? The answer to this question is
to use some form of inferpolation — namely to use an approxdmation procedure to estimate
values of the function at points between the known values,
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For example, linear interpolation approximates the function at intermediate points using
the straight line segment joining the two neighbouring discrete points. There are other
tyvpes of interpolation schemes that are more complicated, a few of which are:

o quadratic mterpolation: every two sucessive points are joined by a quadratic polyno-
mial.

¢ cubic splines: each pair of points is joined by a cubic polynomial so that the function
values and first derivatives match at each point.

o Fourier series: instend of polynomials, uses a sum of sin nx and cos nr to approximate
the function (Fourier series are useful in analysis, as well as spectral methods).

e Chebyshev polynomials: another type of polvnomial approximation which is useful
for spectral methods.

e .. .many others . ..

For details on any of these interpolation schemes, see a numerical analysis text such as that
by Burden and Faires| {1951].

An application of linear interpolation to discrete versions of the functions f and g is shown
in Figure

Depending on the function, or number of location of the points chosen, the approximation
may be more or less accurate. In Figure 5] it is not clear which function is approxdmated
more accurately. In the graph of f{x), the error seems to be fairly small throughout.
However, for the function g(x), the error is large near » = 0, and then very small elsewhere.

This problem of accurecy of discrete approximations will come up again and again in this
course.

When solving differential equations numerically, it is essential to reduce the continuous problem
tor & discrete one. The basic idea is to look for an approximate solution, which is defined at a finite
number of discrete points. This set of points is called a grid. Consider the one-dimensional conduction
problem of Example [I, which in its most general form reads

— = M) (T ~Ta), (4.4)

with initial temperature T7(0).

When we say we want to design a numerical procedure for solving this nitial value problem, what
we want is a procedure for constructing a sequence of approximations,

To, Ty, oo, Ty o
defined at a set of discrete #-points,
f <ty < e < by e
Each T} is an approximation of the actual temperature at ¢;; that is
T; =T,

For now, we will consider equally-spaced points, each of which is separated by a distance Af, so that
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An example of such a grid is shown in Figure [5]

This process of reducing a continuous problem to one in a finite number of discrete unknowns is
called discretization. The actual mechanics of discretizing differential equations are introduced in the
fc-llms-'m'g section.
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Figure & The functions f and g are known only at discrete points. The function can be approcdmated
at other values by linear interpolation, where straight line segments are used to join successive points.
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Figure 6: A grid of equally-spaced points, #; = tg + A8, fori=0,1,2, ...

Summary The basic idea in this section is that continuous functions can be approximated by discrete
ones, through the process of discrefization. In the course of looking at discrete approximations in the
interactive example, we introduced the idea of the accuracy of an approximation, and showed that
increasing the aceuracy of an approximation is not straightforward.

We introduced the notation for approximate solutions to differential equations on a grid of points.
The mechanics of discretization as they apply to differential equations, will be investigated further in

the remainder of this chapter, as well as in next chapter.

5.3 Difference Approximations to the First Derivatives

It only remains to write a discrete version of the differential equation involving the approsdmations
T;. The way we do this is to approximate the derivatives with finite differences. If this term is new
to vou, then you can think of it as just another name for a conecept you have already seen in caleulus.
Remember the definition of the derivative of a function y(t), where y(t) 15 written as a limit of a
divided difference: o A -
- . (f+ Af) — yif]
() = lim ¥ ) —ylt)
At At
We can apply the same idea to approximate the derivative d17/dt =T" in by the forward difference
formula, nsing the discrete approxdmations, T;:

(5.5)

Tin—T

.]-.r :fi Y
&) At

(5.6)
Example 6: In order to understand the ability of the formula to approximate the
derivative, let’s look at a specific example. Take the function y(z) = =° — 5z, and apply

the forward difference formula at the point » = 1. The function and its tangent line (the
short line segment with slope 4'(1)) are displayed in Figure

Each of the remaining line segments represents the forward difference approxdmation to the
tangent line for different values of Af, which arve simply the secant lines through the points
iyt and (f + Af y(t + Af)). Notice that the approsimation improves as Af is reduced.

This motivates the idea that grid refinement improves the accuracy of the discretization

... but not always {as we will see in the coming sections).

5.3.1 Forward Euler Method

We can now write down a discrete version of ocur model ODE problem at any point #; by

1. discretizing the derivative on the left hand side (for example, using the forward difference ap-

proximation {[5.6));
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2. evaluating the right hand side funection at the discrete point ;.
The discrete form of the problem is

Tipr =T N Foo
—x = ATt (T - T4,

or, after rearranging,
Tiv1 =T + At AT, 1) (T — Ta). (5.7)
This formula i= called the Forward Euler method (since it uses forward differences). Notice that this
formula relates each discrete solution value to the sclution at the preceding f-point. Consequently, if
we are given an nitial value T(0), then all subsequent values of the solution are easily computed.
(Note: The forward Euler formula for the more general first-order IVFP in is simply v =
v + At flu,ti).)

3

Figure 7: Plot of the function y = 2° — 5x and the forward difference approximations to the derivative

for various values of At

Example 7: Let us now turn to another example in atmospheric physics to illustrate the
use of the forward Euler method. Consider the process of condensation and evaporation in
acloud. The safuration ratic, 5, is the ratio of the vapour pressure to the vapour pressure
of a plane surface of water at temperature T'. 5 varies in time according to the saturation
development equation

as .
E =CESE+IL?S+"|": LGBJ
where o, 7 and « are complicated (but constant) expressions involving the physical param-
eters in the problem (and so we won't reproduce them here).

Note: What are some physically reasonable values of the parameters {other than simply
a < 0 and v =077

gives a detailed derivation of the equation, which is a non-linear, first order
ODE {ie. non-linear in the dependent variable 5, and it contains only a first derivative in
the time variable). Chen also derives an analytical solution to the problem which takes a
couple pages of messy algebra to come to. Rather than show these details, we would like
to use the forward Euler method in order to compute the solution numerically, and as we
will see, this is actually quite simple.
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Using the forward difference formula (5.6]), the discrete form of is
Sir1 = S+ At (oS} + 8S: +7).

Consider an initial saturation ratio of 0,98, and take parameter values o= —1, 7= 1 and
v = 1. The resulting solution, for varions values of the time step At.is plotted in Figure 5]

There are two things to notice here, both related to the importance of the choice of time
step At

s As At s reduced, the solution appears to converge to one solution curve, which we
would hope i= the exact solution to the differential equation. An important question

18F ) _
1.7 | * |
16 L ;DthDmumnmnmnmnmnmnmnmnmnmnmnmn_m
15| g .
S 14} . -
1.3 ° |
12 L A 11[‘=|'_:l + i
1.1 = nt=10 |
1 L nt =20 * |
0.9 [ . . nt=40 =
0 1 2 3 4 5

Figure 8 Plot of the saturation ratio as a function of time using the Forward Fuler method. “nt” is
the number of time steps.

to ask is: When will the numerical method converge to the exact solution as At is

reduced ¥

s If At is taken too large, however, the numerical solution breaks down. In the abowve
example, the cecillations that oceur for the largest time step (when nt = ) are a
sign of numerical instabilifty. The differential problem is stable and exhibits no such
behaviour, but the numerical scheme we have used has introduced an instability.
An obvious question that arises is: How can we avoid introducing instabilifies in a
numerical scheme?

Neither question has an obvious answer, and both issues will be investigated further n
next chapter.



NRES-710 Modeling and Simulation --- Part 11: Numerical Model UNBC

5.3.2 Other Approximation
Look again at the limit definition of derivative ([5.5]), and notice that an equivalent expression for T is

T(t) — T(t — At)

Lt A ETD At (24

From this, we can derive the backward difference formula for the first derivative,
o T =Ty N
T'(t) = =L (5.10)
(i) At (o1

and similarly the cenfered difference formula

o T,-+1 —Ti1 . .
Ty e —/— (5.11]
L&) AT (o-12]

The corresponding limit formulas are equivalent from a mathematical standpoint, but the discrete
formulas are not! In particular, the accuracy and stahility of numerical schemes derived from the

three difference formulas ([5.6]), and are quite different. More will be said on this in the
next chapter.

Summary This section introduces the use of the forward difference formula to discretize the deriva-
tives in a first order differential equation. The resulting numerical scheme is called the forward Euler
method. We also mntroduced the backward and centered difference formulas for the first derivative,
which were also obtained from the definition of derivative.

You saw how the choice of grid spacing affected the accuracy of the solution, and were introduced
to the concepts of convergence and stability of a numerical scheme. LMore will be said about these
topics in the succeeding lab, as well as other methods for discretizing derivatives.

54 Generalization
The idea of discretization introduced n the previous section can be generalized in several ways, some
of which are:
o problems with higher derivatives,
o systems of ordinary differential equations,
& boundary value problems, and

o partial differential equations.

5.4.1 Higher Derivatives

IMany problems in physics involve derivatives of second order and higher. Discretization of these
derivatives is no more difficult than the first derivative in the previous section. The difference formula
for the second derivative, which will be derived in Lab #2 | is given by

Y(tip1) — 2yt ) + witica)

—— (6.12)

y"(t) =
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and is called the second-order centered difference formula for the second derivative { “centered”, because
it involves the three points centered about #;, and “second-order” for reasons we will see in the next
Lab ). We will apply this formula in the following example . ..

Example 8: A weather balloon, filled with helium, climbs vertically until it reaches its
level of nentral buoyancy, at which point it begins to oscillate about this equilibrium height.
We can derive a DE describing the motion of the balloon by applying Newton's second law:

mass x acceleration = force

m—= -
di? df g
buoyant foree

d‘zy _I___?d_y

alr resistance

where

y(t) 15 the displacement of the balloon vertically from its equilibrium level, y = 1
m is the mass of the balloon and payload;

the cecillations are assumed small, so that we can assume a linear functional form for
the buoyant force, —vyu.

This problem also requires mitial values for both the initial displacement and velocity:

- dy
y(0) =w and =£(0) = .

Problem 1:

—®
"

y(t)

equilibrivm position v=0

Figure 0 A weather balloon oscillating about its level of neutral buovancy.

o a) Using the centered difference formula (|6.12) for the second derivative, and the forward differ-
ence formula for the first derivative at the point ;, derive a difference scheme for y; 1, the
vertical displacement of the weather balloon.

¢ b) What is the difference between this scheme and the forward Euler scheme from Example [7]
related to the initial conditions? (Hint: think about starting values ...}

e ¢) Given the initlal values above, explain how to start the numerical ntegration.
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5.4.2 Systems of First-order ODE’s

Discretization extends in a simple way to first-order systems of ODE's, which arise in many problems,
as we will see in some of the later labs. For now, though, we can see

Example % The second order DE for the weather balloon problem from Example [d can
be rewritten by letting w = dy/df. Then,

o

o
t

du P ¥

T~ m Y
which i= a system of first order ODE's in u and y. This set of differential equations can be
discretized to obtain another numerical scheme for the weather balloon problem.

Problem 2:

¢ a) Derive a difference scheme for the problem based on the above system of two ODE's using the
forward difference formula for the first derivative.

s b) By combining the discretized equations into one equation for v, show that the difference
between this scheme and the scheme obtamed in problem one is the difference formula for the
second derivative,

5.4.3 Boundary Value Problems

So far, we've been dealing with initial value problems or IVFP's {such as the problem of heat conduction
in a rock in Example [1]), differential equation is given for an unknown function, along with its initial
value. There is another class of problems, called boundary value problems (or BVP's), where the
independent variables are restricted to a closed domain (as opposed to an open domain) and the
solution {or its derivative) 1= specified at every point along the boundary of the domain. Contrast this
to initial value problems, where the sclution is not given at the end time.

A simple example of a boundary value problem is the steady state heat diffusion equation problem
for the rod in Example ] By steady state, we mean simply that the rod has reached a state where
its temperature no longer changes in time; that is, Ju/dt = 0. The corresponding, problem has a
temperature, wr). that depends on pesition only, and cbeys the following equation and boundary
conditions:

Uy = 0,

wl0) =wu(l) =0

This problem iz known as an initial-boundary value problem (or IBVP), since it has a mix of both
initial and boundary values.

The structure of initial and boundary value problems are quite different mathematically: IVP's
involve a time variable which is unknown at the end time of the integration {and hence the solution is
known on an open domain or interval), whereas BVF's specify the solution value on a closed domain
or interval. The numerical methods corresponding to these problems are also quite different, and this
can be best lllustrated by an example.
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Example 10: We can discretize the steady state diffusion equation using, the centered
difference formula (6.12)) for the second derivative to obtain:

il — 2wty =10

where u; = u(i/N)andi =0,1...., N (and the factor of (Az)* = 1/N? has heen multiplied
out). The boundary values ug and upy are both known to be zero, so the above expression
represents a system of N — 1 equations in N — 1 unknown values »; that must be solved
for simulfaneously. The solution of such systems of linear equations will be covered n
more detail in[Lab #3| — in fact, this equation forms the basis for a Problem in the Linear

Alzebra Lab .

Compare this to the initial value problems discretized using the forward Euler method,
where the resulting numerical scheme is a step-by-step, marching process (that is, the
solution at one grid point can be computed using, an explicit formula using, only the valne
at the previous grid point).

5. 4.4 Partial Differential Equations
So far, the examples of have been confined to ordinary differential equations, but the procedure we've

set out for ODE’s extends with only minor modifications to problems involving PDE’s,

Example 11: To illustrate the process, let us go back to the heat diffusion problem from
Example[3] an initial-boundary value problem i the temperature w(zx. ):

Wy = Oty .

along with initial values
ul(z,0) = uo(x).
and boundary values
w0, f) = u(l,t) =0
As for ODE’s, the steps in the process of discretization remain the same:

1. First, replace the independent variables by diserete values

T, = 1AL = where i = 0,1, ..

M. and

"3

i
M
t, =ndf, where n=10.1,...

In this example, the set of discrete points define a two-dimensional grid of points, as
pictured in Figure [10]
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(i.n)

=0 X =

Figure 10: The computational grid for the heat diffusion problem, with discrete points (x;, £, .

2. Replace the dependent variables (in this example, just the temperature w(z, t)) with
approximations defined at the grid points:

UF == u(m;, tn).
The boundary and initial values for the discrete temperatures can then be written in
terms of the given information.

3. Approdmate all of the derivatives appearing in the problem with finite difference
approximations. If we use the centered difference approximation ([6.12) for the second
derivative in x, and the forward difference formula for the time derivative | while
evaluating the terms on the right hand side at the previous time level), we obtain the
following numerical scheme:

Urtt = Up + LB (g _aup 4 U7y
J =[] — ([T — a2 H
i 8 kllz_.lg i+l i i—1
Given the initial values, 7" = wg(=z;), and boundary values 7§ = Ufy = 0. this difference
formula allows us to compute values of temperature at any time, based on values at the
previcus time.

There are, of course, other ways of discretizing this problem, but the above is one of the
simplest.

A Mathematical Notes

A1 Solution to the Heat Conduction Equation

In Example [1] we had the equation

E = _}"I-.T - IG.J1

subject to the initial condition T(0). This equation can be solved by separafion of variables, whereby
all expressions involving the mdependent variable ¢ are moved to the right hand side, and all those
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involving the dependent variable T" are moved to the left

dl’

The resulting expression is integrated from time O to ¢

j‘T(tj 45 f% -
- s,
oy S — 1, 0

(where s and 5 are dummy variables of mtegration). which then leads to the relationship
In (T(€) ~ o) ~ I(T(0) ~ T.) = —At,
or, after exponentiating both sides and rearranging,
T(t) = T +(T(0) - To)e™,

which is exactly equation ([3.3]).
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Glossary

backward difference discretization: used to estimate a derivative — uses the current points and
points with smaller independent variable.

boundary value problem: a differential equation {or set of differential equations) along with bound-
ary values for the unknown functions. Abbreviated BVP.

BVP: see boundary value problem

centre difference discretization: used to estimate a derivative — uses a discretization symmetric
{in independent variable) around the current point.

closed domain: a domain for which the value of the dependent variables is known on the boundary

of the domain.

converge: as the discretization step (eg. At) is reduced the solutions generated approach one solution
curve.

DE: see differential equation

dependent variable: a variable which is a | possibly unknown) function of the independent variables
in a problem; for example, in a fluid the pressure can be thought of as a dependent variable, which
depends on the time ¢ and position (z, ¥, z).

differential equation: an equation mvelving derivatives. Abbreviated DE.

discretization: when referring to DE's, it is the process whereby the independent variables are
replaced by a grid of discrete points; the dependent variables are replaced by approxdmations at the grid
points; and the derivatives appearing, in the problem are replaced by a finite difference approximation.
The discretization process replaces the DE (or DE's) with an algebraic equation or finite system of
algebraic equations which can be solved on a computer.

finite difference: an approximation of the derivative of a function by a difference quotient mvolving
values of the function at discrete points. The simplest method of deriving finite difference formmilae is
using Taylor series.

first order differential equation: a differential equation invelving only first derivatives of the
unknown functions,

forward difference discretization: used to calculate a derivative — uses the current points and
points with larger independent variable.

grid: when referring to discretization of a DE, a grid is a set of discrete values of the independent
variables, defining a mesh or array of points, at which the solution is approxdmated.

independent variable: a wvariable that does not depend on other quantities (typical examples are
time, position, ete.)

initial value problem: a differential equation {or set of differential equations) along with initial
values for the unknown functions. Abbreviated IVP.

interpolation: a method for estimating the value of a function at points intermediate to those where
its values are known.

IVP: initial value problem

linear: pertaining to a function or expression in which the quantities appear in a linear combination.
If #; are the variable quantities, and ¢; are constants, then any linear function of the x; can be written
in the form e+ 3, 0 - 2.

linear interpolation: interpolation nsing straight lines between the known points

Navier-Stokes equations: the system of non-linear PDE's that describe the time evolution of the

flow of a fluid.
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non-linear: pertaining to a function or expression in which the quantities appear in a non-linear
combination.

numerical instability: although the continuous differential equation has a finite solution, the nu-
merical solution grows without bound as the numerical interation proceeds.

ODE: see ordinary differential equation

open domain: a domain for which the value of one or more dependent variables is unknown on a
portion of the boundary of the domain or a domain for which one boundary (say time very large) is
not specified.

ordinary differential equation: a differential equation where the derivatives appear only with
respect to one independent variable. Abbreviated ODE.

partial differential equation: a differential equation where derivatives appear with respect to more
than one independent variable. Abbreviated PDE.

PDE: see partial differential equation

second order differential equation: a differential equation involving only first and second deriva-
tives of the unknown functions.

separation of variables: a technique whereby a function with several dependent variables is written
as a product of several functions, each of which depends on only one of the dependent variables. For
example, a function of three unknowns, wir,y, ), might be written as u(xz,y. #) = X (=) Yiy)-T(t).



