NRES-710 Modeling and Simulation --- Part I: Statistical modeling UNBC

Chapter 4 Nonlinear modeling ---- Neural Network Regression

4.1 Generic mapping

The generic empirical retrieval problem

Y =fiX) (1)

1s essentially a mapping from X to Y. This empirical mapping can be
performed using conventional tools (linear and nonlinear regression).

Linear regression is an appropriate tool for developing many empirical
algorithms. It is simple to apply and has a well-developed theoretical basis.

In the case of linear regression, a linear model is constructed for transfer
function (TF) f,

v =D a,%,
J (2)

This model is linear with respect to both @ and X , thus it provides a linear
approximation of the TF with respect to X. The most important limitation of
such a linear approximation is that it works well over a broad range of
variability of the arguments only if the function which it represents (TF in
our case) is linear. If the TF, f, 1s nonlinear, linear regression can only
provide a local approximation:; when applied globally, the approximation
becomes inaccurate.

Because, TFs are generally nonlinear functions of their arguments X, linear
regression and a nonlinear approximation with respect to X is often better
suited for modeling TFs. In this case, f can be introduced as a linear
expansion using a basis of nonlinear functions {@; }:

yvi=2a, ¢, (X)
4 (3)

Finally, nonlinear regression may be applied. For example, fin (1) can be
specified as a complicated nonlinear function, fyg:

NRES-710 Modeling and Simulation --- Part I: Statistical modeling UNBC

vi=fwr (X, @) (4)

The expression (3) 1s nonlinear with respect to its argument X but linear with
respect to the parameters a. The nonlinear regression (4) is nonlinear both
with respect to its argument, X, and with respect to the vector of regression
coefficients, a. However, in either case, we must specify in advance a
particular type of nonlinear function fyg, or @;. Thus, we are forced to
implement a particular type of nonlinearity a priori. This may not always be
possible, because we may not know in advance what kind of nonlinear
behavior a particular TF demonstrates, or this nonlinear behavior may be
different in different regions of the TF's domain. If an inappropriate
nonlinear regression function is chosen, it may represent a nonlinear TF with
less accuracy than with its linear counterpart.

In the situation described above, where the TF is nonlinear and the form of
nonlinearity is not known, we need a more flexible, self-adjusting approach
that can accommodate various types of nonlinear behavior representing a
broad class of nonlinear mappings. Neural networks (NNs) are well-suited
for a very broad class of nonlinear approximations and mappings.

4.2 A feed-forward neural network

A feed-forward neural network (NN) is a non-parametric statistical model
for extracting nonlinear relations in the data. A common NN model
configuration is to place between the input and output variables (also called
“neurons'’), a layer of "hidden neurons' (Fig.1). The value of the jth hidden
neuron 1s

Y; = taﬂh(z Wi X; + bj),
i (5)

where x, is the ith input, w, the weight parameters and b, the bias
parameters.

X —X
e —e
tanh(x) = ————

e’ +e”

NRES-710 Modeling and Simulation --- Part I: Statistical modeling UNBC

A feed-forward neural network (NN) 1s a non-parametric statistical model
for extracting nonlinear relations in the data. A common NN model
configuration is to place between the input and output variables (also called
“neurons'), a layer of "hidden neurons' (Fig.1). The value of the jth hidden
neuron 1s

y; = tanh(z wiX; + b;),
i (5)

where x; is the ith input, w, the weight parameters and 4, the bias

pﬂ.['ﬂﬂ]ﬂ[ﬂl’ s.
X —-X
e —¢e
tanh(x) = ————
e +e€
Input Layer
—p-'f H\': Hidden Layer
R :
.1'_|'
T, h\' ¥
_"‘[\ y i Output Layer
-TI T Pl -
Vol -'/I e
— :
. -~
>
Ty
—_— i
A

Fig.1 An example of a neural network model, where there are four neurons
in the input layer, three in the hidden layer, and one in the output layer. The

parameters w, and W, are the weights, and b, and & are the biases. The

parameters b, and & can also be regarded as the weights for constant inputs
of value 1.

NRES-710 Modeling and Simulation --- Part I: Statistical modeling UNBC

4.3 Optimization
4.3.1 Newton’s method

Considering the relation

L
y=wp+ Z wy fi
=1 (8)

where f; = fi(x1,... ,2,), and the polynomial fit is a special case. Although the
response variable y is nonlinearly related to the predictor variables zy,... ,x,,
(as fi is in general a nonlinear function), y is a linear function of the parameters
{w;}. Tt follows that the objective function

J=Y (y—w)*,

(9)

(with ygq the target data and the summation over all samples) is a quadratic
function of the {uy}, which means that the objective function J(wg,... ,wy) is
a parabolic surface, which has a single minimum, the global minimum.

In contrast, when y is a nonlinear function of {w;}, the objective function
surface is in general filled with numerous hills and valleys, i.e. there are usually
many local minima besides the global minimum. (If there are symmetries among
the parameters, there can even be multiple global minima). Thus nonlinear op-
timization involves finding a global minimum among many local minima. The
difficulty faced by the optimization algorithm is similar to that encountered by
a robot rover sent to explore the rugged surface of a planet. The rover can
easily fall into a hole or a valley and be unable to escape from it, thereby never
reaching its final objective, the global minimum. Thus nonlinear optimization
is vastly more tricky than linear optimization, with no guarantee that the algo-
rithm actually finds the global minimum, as it may become trapped by a local
minimum.

NRES-710 Modeling and Simulation --- Part I: Statistical modeling UNBC

In essence, with NN models, one needs to minimize the objective funetion
J with respect to w (which includes all the weight and offset /bias parameters),
i.e. find the optimal parameters which will minimize J. It is common to solve
the minimization problem using an iterative procedure. Suppose the current
approximation of the solution is wo. A Tavlor series expansion of J(w) around
wp vields

J(w) = J(wo) + (W — wo) T V.J(wo) + %(w — wo)TH (W — Wo) + -+, o)

where V.J has components 98.J/0w;. and H is the Hessian matrir, with elements

92J

[Hjij = ‘jwi"ju'._f Wo '

(1)
Applying the gradient operator to (10), we obtain

VJ(w) =VJ(wo)+H(w—wq)+--- (12)

Next, let us derive an iterative scheme for finding the optimal w. At the
optimal w,V.J(w) =0, and (12), with higher order terms ignored, yields

H(w—wy)=-VJ(wg). ie. w=wy—H VJ(wg).

(13)
This suggests the following iterative scheme for proceding from step k& to step
k+1:

This 1s known as Newton’s method. In the 1-dimensional case, (14)
reduces to
W41 = WE — M .
J" (wy)

(15)

NRES-710 Modeling and Simulation --- Part I: Statistical modeling UNBC

for finding a root of J'(w) = 0, where the prime and double prime denote
respectively the first and second derivatives.
In the multi-dimensional case, if w is of dimension L, then the Hessian
. - : " - . -1 AL .
matrix Hy is of dimension L x L. Computing H_", the inverse of an L x L
matrix, may be computational too costly. Simplification is needed, resulting in
quasi-Newton methods.

4.3.2 Gradient descent method

A major simplification of Newton’s method (14) 1s to use a parameter
7 to replace H,™

W1 = Wi — NV J(wg),

(16)

n 1s called learning rate, and can be either a fixed constant, or calculated by a

line minimization algorithm. In the former case, one simply takes a step of fixed
size along the direction of the negative gradient of J. In the later, one proceeds
along the negative gradient of J until one reaches the minimum of J along that

direction (Fig. 6.1). More precisely. Suppose at step k., we have estimated
parameters wi. We then descend along the negative gradient of the objective

function, i.e. travel along the direction

(I;L. = —T”Ji“’k} .

(17)

NRES-710 Modeling and Simulation --- Part I: Statistical modeling UNBC

Fig. 2 The gradient descent approach starts from the parameters Wjy
estimated at step k of an iterative optimization process. The descent path dg
is chosen along the negative gradient of the objective function J, which is the
steepest descent direction. Note that dj is perpendicular to the J contour where
wy lies. The descent along dj proceeds until it is tangential to a second contour
at Wy, where the direction of steepest descent is given by —V.J(wyy,). The
process is iterated.

We then travel along d;., with our path described by wy + nd,. until we reach
the minimum of J along this direction. Going further along this direction would
mean we would actually be acending rather than descending, so we should stop
at this minimum of J along dg, which occurs at

aiJ{wk +ndg) =0,
4 (18)

thereby vielding the optimal step size 7. The differentiation by 5 gives
df VJ(w; +ndg) = 0.
with
Wil = Wi + ndg,

(19)

we can rewrite the above equation as

dE v-}(“’k_l_l}: 0, l.e. (l;.— _LTJ(Wk+1J
(20)

But since dgyy = —VJ(Wiy1), we have

dgdk+] =0, i.e. (Ij; 1 dk+1 :
(21)
with the learning rate 7 replacing H—1, the inverse of the Hessian ,
We can reach the optimal w by descending along the negative gradient of J
in (16) , hence the name gradient descent or steepest descent, as the negative
gradient gives the direction of steepest descent.

NRES-710 Modeling and Simulation --- Part I: Statistical modeling UNBC

But since dgy1 = —VJ(Wig1), we have

didiyr =0, e di L diya. (22)

As the new direction dgyq is orthogonal to the previous direction dj. this

result in an inefficient zigzag path of decent (Fig. 4.2).

One way to reduce the zigzag in the gradient descent scheme is to add
‘momentum’ to the descent direction, so

dy = —V.J (i) + pdg_s .
(23)

with g the momentum parameter. Here the momentum or memory of dg_,
prevents the new direction dg to be orthogonal to dg_,, thereby reducing the

zigzag. The next estimate for the parameters in the momentum method 1s
also given by (19).

NRES-710 Modeling and Simulation --- Part I: Statistical modeling UNBC

4.3 Practical coding of a NN model in Matlab

% 1f (16) 1s used, creating a network

net = newff(minmax(xtrain),[nhide,L], {'tansig','purelin'},’trainlm’);
% 1f (23) is used, creating a network

net = newff(minmax(xtrain),[nhide,L], {'tansig','purelin'},’trainbr’);
net.trainParam.epochs=100; % maximum number of iterations
net.trainParam.goal=1E-4; % min cost function value
[net,tr]=train(net, xtrain, ytrain);

ytrain_nn = sim(net,Xtrain);

ytest_nn =sim(net,xtest);

wl=net.aw{1,1};

bl=net.b{1};

w2=net.Iw{2,1}:

b2=net.b{2};

Note:

xtrain: [m,n], mis he # of input, n 1s the # of time points
ytrain: [L,n], L is the # of output.

xtest: [m, nnew], test period

nhide: number of hidden neurons

The trained model 1s save in variable 'net’. Function 'sim’ 1s used to

simulate/predict predictant using built NN network. 'net’ 1s a structure, and
contains lots of things, including W and bias parameters.

An example:

Let us first write a small script to generate the data

a=rand(1,1000);
b=rand(1,1000);
c=rand(1,1000);
n=rand(1,1000)*0.05;
y=a*5+b.*c+7*c+n;

NRES-710 Modeling and Simulation --- Part I: Statistical modeling UNBC

n is the noise, we added deliberately to make it more like a real data. The
magnitude of the noise is 0.1 and is uniform noise.

So our input is set of a, b and ¢ and output is y.

I=[a; b; c];
O=y;
S=[5,1];

net = newff(minmax(I),S, {'tansig','purelin'}, trainlm’);
net.trainParam.epochs=100;
net.trainParam.goal=1E-4;

[net,tr]=train(net,1,0);

ytrain_nn=sim(net,l);

plot(y,’r’);

hold on

plot(ytrain_nn,’g’);

Usually, a statistical model should be tested using independent dataset that

are not used in the training process. For this purpose, we can divide the dataset
into two periods, training and testing. For example, we use the first 500

for training and the remaining for testing. As such, the coding can be modified
as below:

[train=I(:,1:500);

I test=I(:,501:1000);

O _train=0(1:500);

S=[5,1];

net = newff(minmax(I_train),S,{'tansig','purelin'},’trainlm’);
net.trainParam.epochs=100;
net.trainParam.goal=1E-4;
[net,tr]=train(net,l_train,O train);
ytrain_nn=sim(net,l_train);

ytest nn=sim(net,l_test);

plot(O _train,’r’);

hold on

plot(ytrain_nn,’g’);

figure(2)

NRES-710 Modeling and Simulation --- Part I: Statistical modeling UNBC

plot(O(501:1000),’r’);
hold on
plot(ytest nn,’g’);

