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Chapter 3    Linear Multivariate Statistical Analysis 

 
As one often encounters datasets with more than a few variables, multivariate 

statistical techniques are needed to effectively extract the information contained 

in these datasets. In the environmental sciences, examples of multivariate 

datasets are ubiquitous --- the air temperatures recorded by all the weather 

stations around globe, the satellite infrared images composed of numerous small 

pixels, the gridded output from a general circulation model, … The number of 

variables or time series from these datasets range from thousands to millions. 

Without a mastery of multivariate techniques, one is overwhelmed by these 

gigantic datasets. In this chapter, we review the principal component analysis 

method and its many variants, and the canonical correlation analysis method. 

These methods, using standard matrix techniques such as singular value 

decomposition, are relatively easy to use, but suffer from being linear, a 

limitation which will be lifted with neural network techniques in later chapters.  

 

3.1  Principal component analysis (PCA) 

 

3.1.1 Geometric approach to PCA 

  

 We have a dataset with variables myy ,...,1 . These variables have been sampled 

n times, e.g. the m variables could be m time series containing n observations in 

time. If m is a large number, we would like to capture the essence of myy ,...,1 by 

a smaller set of variables kzz ,...,1  (i.e. k <m; and hopefully k << m for truly 

large m). This is the objective of principal component analysis (PCA), also 

called empirical orthogonal function (EOF) analysis in meteorology and 

oceanography. We first begin with a geometric approach, which is more 

intuitive than the standard eigenvector approach to PCA.  

 

   Let us start with only 2 variables 1y  and 2y , as illustrated in Fig. 4. Clearly 

the bulk of the variance is along the axis z1. If ir is the distance between the 

thi data point and the axis z1, then the optimal z1 is found by minimizing ∑
=

n

i

ir
1

2 . 

Note that PCA treats all variables equally, whereas regression divides variables 

into independent and dependent variables, hence the straight line described by 

z1 is in general different from the regression line. 
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 Fig. 4.1  

 

3.1.2 Eigenvector approach to PCA 

 
  Taking the above example, a data point is transformed from its old coordinates 

(y1,y2) to new coordinates (z1,z2) via a rotation of the  coordinate system (Fig. 

4.2): 

 

                        
                          Fig. 4.2  
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In the general m-dimensional problem, we want to introduce new coordinates: 

 

 ∑
=

=
m

l

ljlj yez
1

, j=1,…,m                                                (4.2) 

 

The objective is to find  

 
Te ]e,...,e[ 1m111 =                                                                 (4.3) 

 

which maximizes var( )1z , i.e., find the coordinate transformation such that the 

variance of the dataset along the direction of the  1z  axis is maximized. 

 

 With yeyz
T

m

l

ll 1

1

11 e∑
=

== ,    ,]y...y[ m1

Ty =     

We have  

 

 ],))(([)]z)(zzz[()var( 1111111 eyyyyeEEz TT
−−=−−=     (4.4)  

 

where we have used the vector property abba
TTT =)( . Thus, 

 

11111 ]))([()var( CeeeyyyyEez TTT =−−=                          (4.5) 

 

Where the covariance matrix C is given by  
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      ]))([( TyyyyEC −−=                                                    (4.6) 

 

Clearly, the larger is 1e , the larger var )( 1z  will be. Hence, we need to place a 

constraint on 1e  while we try to maximize var )( 1z . Let us impose a 

normalization constraint 1e =1, i.e.  

        

           111 =eeT
                                                                          (4.7) 

 

Thus our optimization problem is to find 1e  which maximize 11 CeeT , subject to 

the constraint  

           

         0111 =−eeT
                                                                     (4.8) 

            

 The method of Lagrange multiplier s is commonly used to tackle optimization 

under constraints.  Define the Lagrange function L by  

 

 )1(λ 1111 −−= eeCeeL TT
                                                          (4.9) 

 

  Where λ  is a Lagrange multiplier.  

  

  To obtain 1e , we ask for  

 

                          0
1

=
∂

∂

e

L
                                                            (4.10)  

 

                      0λ 11 =− eCe                                                           (4.11)   

 

Which says that  λ is an eigenvalue of the covariance matrix C, which 1e  the 

eigenvector. Multiplying this equation by Te1  on the left, we obtain  

 

                         )var(λ 111 zCeeT ==                                               (4.12)      

 

Since 11 CeeT
 is maximized, the so are )var( and λ 1z . The new coordinate 1z , 

called the principal component (PC), is found from (4.2). 
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Next, we want to find 2z --- our task is to find 2e which maximizes 

)var( 2z = 22 CeeT
, subject to the constraint 122 =eeT

, and the constraint that 2z  

be uncorrelated with 1z , i.e., the covariance between 1z  and 2z be zero, 

 

  .0),cov( 21 =zz                                                                         (4.13) 

 

As ,TCC =  we can write  

 

2111211121221

212121

λλλ

]))(([),cov(),cov(0

eeeeeeCeeCee

eyyyyeEyeyezz

TTTTT

TTT

=====

−−===
             (4.14) 

 

The orthogonal condition  

 

        012 =eeT
                                                                            (4.15) 

 

can be used as a constraint in place of (4.13). 

 

  Upon introducing another Lagrange multiplier γ , we want to find an 2e which 

gives a stationary point of the Lagrange function L, 

 

122222 r)1(λ eeeeCeeL TTT −−−=                                                   (4.16) 

 

0
1

=
∂

∂

e

L
;  0

2

=
∂

∂

e

L
 

 

 0λ 22 =− eCe                                                                               (4.17) 

  

  Once again λ  is an eigenvalue of the covariance matrix C, which 2e  the 

eigenvector. As  

 

     )var(λ 222 zCeeT ==                                                                  (4.18) 

 

which is maximized, this 2λλ =  is as large as possible with `12 λλ < . (The case 

`12 λλ = is degenerate and will be discussed later). Hence, 2λ is the second largest 

eigenvalue of C, with )var(λ 22 z= . This process can be repeated for 3z , 4z …. 
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So far, C is the data covariance matrix, but it can also be the data correlation 

matrix, if one  prefers correlation over covariance. In combined PCA, where 

two or more variables with different units are combined into one large data 

matrix for PCA --- e.g. finding the PCA modes of the combined sea surface 

temperature data and the sea level pressure data  --- then one needs to normalize 

the variables so C is the correlation matrix.  

 

 So, the general procedure of PCA analysis for dataset y is as below: 

 

     (1)  calculating covariance matrix (or correlation matrix) C = { ijC } 

            ∑
=

−−=
N

1k

jjkiikji, )x)(xx(xC     (i=1,…M, j=1,…M)  

       where M denote the number of variables (or grids), and N, the length of    

        samples.   

 

(2) calculating the eigenvalues and eigenvectors of C  

                  0=− eCe λλλλ    

            where  ),,...,{ 1 Leee =  }λ,...,λ{ 1 L=λλλλ   L=min{M, N} 

        

(3)   Usually Lλ,...,λλ 21 >>>  but sometimes, the outputs are in  

        reverse order.  In this case,  the first eigenvector corresponding  

        with  Lλ . 

 

(3) calculating the PCs, i.e.,  yez T=  

      

3.1.3  Real and complex data 

 
 In general, for y real, 

   

   ]))([( TyyyyEC −−=                                                           (4.19)  

 

implies that CC T = , i.e., C is a real, symmetric matrix.  A positive semi-defined 

matrix A is defined by the property that for any ,0≠v  it follows that 0≥AvvT . 

From the definition of C (4.5), it is clear that 0≥CvvT is satisfied. Hence C is a 

real, symmetric, positive semi-definite matrix. 
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 If y is complex, then  

 
*))([( TyyyyEC −−=                                                                 (4.20) 

   

With complex conjugation denoted by the superscript asterisk. As CCC T  ,* = is a 

Hermitian matrix. It is also a positive semi-definite matrix.  

Theorems on Hermitian matrix, positive semi-definite matrices tell us that: C 

has real eigenvalues: 

 

      Lλ,...,λλ 21 >>> >=0,  ∑
=

=
L

j

j y
1

)var(λ                                     (4.21) 

 

3.1.4 Orthogonality relations 

 
 Thus PCA amounts to finding the eigenvectors and eigenvalues of C. The 

orthogonal eigenvectors then provide a basis, i.e., the data y can be expanded in 

terms of the eigenvectors :je  

       ∑
=

=−
m

j

jj etayy
1

)(                                                                  (4.22) 

where )(ta j  are the expansion coefficients. To obtain )(ta j , left multiply the 

above equation by 
T

ie , and use the orthogonal  relation of the eigenvectors, 

 

        ijj

T

i ee δδδδ=                                                                              (4.23) 

to get  

 

          ),()( yyeta T

jj −=                                                             (4.24) 

 

i.e.,  )(ta j
 is obtained by the projection of the data vector yy −  onto the 

eigenvector je , as the right hand side of this equation is simply a dot product 

between the two vectors. )(ta j
 are usually called PCs, and je  eigenvectors or 

EOFs.  

There are two important properties:  
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(1) The expansion ∑
=

k

j

jj xeta
1

)()(  explains more of the variances of the data 

than any other linear combination ∑
=

k

j

jj xftb
1

)()( . Thus PCA provides the 

most efficient way to compress data. 

 

      (2) The time series in the set }{ ja  are uncorrelated. We can write  

 

             j

T

jj eyyyyeta )()()( −=−=  

 

            For ji ≠ , 

 

            
0λλ

]))([(]))(([),cov(

====

−−=−−=

j

T

ijjj

T

ij

T

i

j

TT

ij

T

iji

eeeeCee

eyyyyEeeyyyyeEaa
   (4.25) 

          

            Hence PCA extracts the uncorrelated modes of variability of the data  

            field. Note that no correlation between ),( ji aa only means no linear  

            relation between the two, there may still be nonlinear relation  

            between them, which can be extracted by the nonlinear PCA method  

            using neural network. 

 

3.1.5 An Example:  PCA of the tropical Pacific climate variability 
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Let us study the monthly tropical Pacific SST from NOAA (National Oceanic 

and atmospheric administration) for the period January, 1950 to August 2000.  

The SST field has 2 spatial dimensions, but can easily be rearranged into the 

form of y(t) for PCA analysis. Fig.4.3 is the spatial pattern for the first 3 modes 

(accounting for 51.8%, 10.1% and 7.3% respectively, of the total SST variance).  

Fig.4.4 are PCs corresponding with the first 3 modes. 
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       Fig4.3 
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       Fig.4.4  

 

  Mode1 (Fig. 4.3a) shows the largest SST anomalies occurring in the eastern 

and central equatorial Pacific. The PC1 (Fig4.4) can be used as an index for El 

Nino/La Nina. 

 

  Mode2 (Fig. 4.3b) has, along the equator, positive anomalies near the east and 

negative anomalies further west.  

 

   Mode3 (Fig. 4.3c) shows the largest anomaly occurring in the central 

equatorial Pacific, and the PC shows a rising trend after the mid 1970s.  

 

3.1.6   Scaling the PCs and eigenvectors 
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   There are various options for the scaling of the PCs )}({ ta j  and the 

eigenvectors { je }. One can introduce an arbitrary scale factor α , 

 

jj aa
α

1
'=   jj ee α'=                                                               (4.26) 

 

so that  

 

     ∑=−
j

jj eayy ''                                                                   (4.27) 

  Our choice for the scaling has so far been  

 

   ijj

T

i ee δδδδ=                                                                            (4.28) 

 

which was the choice of Lorenz. The variance of the original data y is then 

contained in )}({ ta j , with  

∑
=

=
m

j

jaEy
1

2 ][)var(                                                                   (4.29) 

Another common choice is Hotelling’s original choice 

 

j

j

j aa
λ

1
'= ,     jj ee jλ'=                                                          (4.30)  

 

whence  
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 From (4.25),   === j

T

i

i

j
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i

ji eeaaaa
jj λλ

λ
),cov(

λλ

1
)','cov(

ijδδδδ   (4.31) 

The variance of the original data is now contained in )}({ te j instead. In sum,  

regardless of the arbitrary scale factor, the PCA eigenvectors are orthogonal and 

the PCs are uncorrelated. 

 

 If ly~  is ly  with mean removed and normalized by standard deviation, then one 

can show that the correlation  
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')~),(( '

jllj eyta =ρρρρ                                                                        (4.32) 

 

the lth  element of 'je . Hence the lth element of 'je  conveniently provides the 

correlation between the PC 'ja  and the standardized variable ly~ .  

 

3.1.7 Degeneracy of Eigenvalues 

 

 A degenerate case arises when jλλ =i . When two eigenvalues are equal,  

the eigenvectors are not unique.  

 

  A simple example of degeneracy is illustrated by a propagating plane wave,  

 

   ωt)Acos(kyt)y,h(x, −=                                                            (4.33) 

 

   Which can be expressed in terms of two standing waves: 

 

    )ωtsin()kysin(A)ωt(sAcos(ky)cot)y,h(x, +=              (4.34) 

 
If we perform PCA on h(x,y,t), we get two modes with equal eigenvalues. To 

see this, note that in the x-y plane, cos(ky) and sin(ky) are orthogonal, while 

 )ωtcos( and  )ωtsin( are uncorrelated, so (4.34) satisfies the properties of PCA 

modes in that the eigenvectors are orthogonal and the PCs are uncorrelated. As  

(4.34) is a PCA decomposition, with the two modes both having the same 

amplitude A, hence the eigenvalues 21 λλ = , and the case is degenerate. Thus 

propagating waves in the data leads to degeneracy in the eigenvalues.  If one 

finds eigenvalues of very similar magnitudes from a PCA analysis, that implies 

near degeneracy and there may be propagating waves in the data.  

 

3.1.8   A smaller covariance matrix  
 

Let the data matrix be  

 

  

y     ...  y

...      ...     ...

y     ...   y

mnm1

111

















=

n

Y                                                       (4.35) 

 
Where m is the number of spatial points and n the number of time points.  
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Assuming the temporal mean has been removed, then covariance matrix  

 

       TYY
n

C
1

=   and YY
n

C T1
'=                                            (4.36) 

 

C is a mm× matrix, and 'C  is a nn × matrix.  

 

In most problems, the size of the two matrices are very different. For instance, 

for global oo 55 ×  monthly sea level pressure data collected over 50 years, the 

total number of spatial grid points is m=2592 while the number of time points is 

n=600. Obviously, it will be much cheaper to solve the eigen problem for 'C  

than for C. 

 

The matrix theory says: C and 'C  have same eigenvalues.  The question is now 

how to get eigenvectors of C from eigenvectors of  'C ?  

 

           YY
n

C T1
'=        

                

          jjj

T vYvY
n

λ
1

=                                                       (4.37) 

where jλ and  jv  are eigenvectors and eigenvalues of 'C .   

 

Multiplying Y on both sides of (4.36), we have  

 

      jjj

T vYYvY
n

Y λ
1

=                                                       (4.38) 

 

   )(λ))(
1

( j jj

T YvYvYY
n

=                                                    (4.39) 

 

Denoting  

 

   jj Yve =  ,                                                             (4.40) 

 

  we have  

 

  jj eCe jλ=                                                                (4.41) 
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(4.41) is just the eigen equation for C,  meaning je is an eigenvector for C.  

 

In summary, solving the eigen problem for the smaller matrix 'C  yields the 

eigenvalues }λ{ j  and eigenvectors }{ jv . The eigenvectors }{ je for the bigger 

matrix C are then obtained from (4.40) jj Yve = .  

 

3.1.9     Singular value decomposition  
 

Instead of solving the eigen problem of the data covariance matrix C, a 

computationally more efficient way to perform PCA is via Singular Value 

Decomposition (SVD) of the nm× data matrix Y given by (4.35). Without loss 

of generality, we can assume nm ≥ , then the SVD Theorem  says that  

 

             
TESFY =                                                           (4.42) 

 
        nnFnmSmmE ××× :      ;:     ;:   

E and F are orthonormal matrices, i.e., they satisfy  

 

      ,IEE T =            ,IFF T =                                           (4.43) 

 

Where I is the identity matrix. The leftmost n columns of E contain the n left 

singular vectors, and then columns of F the n right singular vectors, while the 

diagonal elements of S are the singular values. 

 

The covariance matrix C can be rewritten as  

 

TTT EESSYYC
n

1

n

1
==                                            (4.44) 

 

The matrix       Λ=TSS
n

1
                                              (4.45) 

 

is diagonal and zero everywhere, except in the upper left nn×  corner, 

containing 2)ii,(s
n

1
 --- s(i,i) is singular values  

        

 Right multiply Eq. (4.44) by E gives  
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            Λ= ECE                                                           (4.46) 

 

 (4.46) is a standard eigen equation, with E is the eigenvectors and Λ is the 

eigenvalues.  So,  we can use SVD to derive eigenvectors and eigenvalues  

with the relation:  2)jj,(s
n

1
λ =j .   

 

SVD approach to PCA is at least twice as fast as the eigen approach. So, SVD 

is in particular useful for large datasets.  Matlab program for SVD is 

svd. 

 

3.1.20  Significance tests 

 
In practice, the higher PCA modes, which basically contain noise, are rejected. 

How does one decide how many modes to retain? There are some “rules of 

thumb”. One of the simplest approach is to plot the eigenvalues jλ  as a function 

of the mode number j. Hopefully, from the plot, one finds an abrupt transition 

from large eigenvalues to small eigenvalues around mode number m.  One can 

then retain the first m modes. Alternatively, the Kaiser test rejects the modes 

with eigenvalues λ less than the mean value λ . 

 

Computationally more involved is the Monte Carlo test, which involves setting 

up random data matrices ),,...1( KkRk =  of the same size as the data matrix Y. 

The random elements are normally distributed, with the variance of the random 

data matching the variance of the actual data.  PCA is performed on each of the 

random matrices, yielding eigenvalues j
(k)λ . Assume for each k, the set of 

eigenvalues are sorted in descenting order. For each j, one examines the 

distribution of the K values of j
(k)λ , and finds the level 05.0λ , which is exceeded 

only by 5% of the j
(k)λ  values. The eigenvalues jλ  from Y which failed to rise 

above this 05.0λ  level are then rejected.  

 

Since the Monte Carlo method performs PCA on K matrices and K is typically 

about 100, it can be costly for large data matrices.  

 

 

3.2 Canonical correlation analysis  (CCA)   
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  3.2.1  CCA theory  

  
      Consider two datasets        

                (4.61) 

and 

               (4.62) 

i.e., x and y need not have the same spatial dimensions, but need the same time 

dimension tn . Assume x and y have zero means. Let  

 

                                                              (4.63) 

   The correlation  

      
                                                                                                          (4.64) 
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   Where we have invoked 

(4.65) 

   We want u and v, the two canonical variates or canonical correlation 

coordinates, to have maximum correlation between them, i.e., f and g are 

chosen to maximize . We are of course free to normalize f and g as we like, 

because if f and g maximize , so will fα and gβ , for any nonzero α  and β . 

We choose the normalization condition:  

                                                         (4.66) 

  Since 

            (4.67) 

  and  

                                                                       (4.68) 

   So, we have  

         

                                                      (4.69) 

 With (4.66), (4.64) reduces to  

                                                                                (4.70) 

 Where  ),cov( yxC xy =                                                           

 

The problem is to maximize (4.70) subject to constraints (4.69). We will 

again use the method of Lagrange multipliers, where we  impose the constrains 

into the Lagrange function L,  

      (4.71) 

where  α  and β are the unknown Lagrange multipliers. To find the stationary 

points of L, we need  

                                                
                                                                                                          (4.72)  
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Hence  

                                                                 (4.73) 

 

                                                                  (4.74)  

 

 Substituting  (4.74) into (4.73) yields 

 

                                          (4.75) 

 

With αβαβαβαβ4λ = .   Similarly, substituting (4.73) into (4.74) yields 

 

                                         (4.76) 

Both these equations can be viewed as eigenvalue equations, with fM  and 

gM sharing the same non-zero eigenvalues λ . As fM  and gM are known from 

the data, f can be found by solving the eigenvalue problem (4.75). gβ can then 

be obtained from (4.74). Since β  is unknown, the magnitude of g is unknown, 

and the normalization conditions (4.69) are used to determine the magnitude of 

g.  Alternatively, one can use (4.76) to solve for g first, then obtain f from 

(4.73), and the normalization condition (4.69). The matrix fM  is of dimension 

xx nn × , while gM is yy nn × , so one usually picks the smaller of the two to solve 

the eigenvalue problem. 

 

From (4.70),  

 

     (4.77) 

 

Where (4.72) has been invoked. From (4.69) , (4.77) reduces to  

 

                                                                                     (4.78) 
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    The eigenvalue problems (4.75) and (4.76) yield n number of sλ , with 

n=min( yx nn , ). Assuming the sλ to be all distinct and nonzero, we have for each 

jλ  (j=1,…,n), a pair of eigenvectors, jf  and jg , and a pair of canonical variates,  

ju  and jv , with correlation jj λρ =  between the two.  

 

Let us write the forward mapping from the variables x(t) and y(t) to the 

canonical variates 
Ttu ](t}u(t),...,u[)( n1=   and  

Ttv ](t}v(t),...,v[)( n1=   as  

 

                (4.79) 

 

      Next, we need to find the inverse mapping from 
Ttu ](t}u(t),...,u[)( n1=  and 

Ttv ](t}v(t),...,v[)( n1=  to the original variables x and y. Let  

 

                                                            (4.80) 

 We note that 

              

 
                                                                                                      (4.81) 

  and  

                    (4.82) 

 

 Eqs (4.81) and (4.82) imply  

 

                                                                              (4.83) 

 

 Similarly                                                              (4.84) 

 

Hence the inverse mappings F and G (from the canonical variates to x and y) 

can be calculated from the forward mapping . The matrix F  
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    Fig.4.7 schematically illustrates the canonical correlation patterns.  

  

         

 
     Fig4.7 

 

 

3.2.2  Pre-filter with PCA 

 
   When x and y contain many variables, it is common to use PCA to pre-

filter the data to reduce the dimensions of the datasets, i.e. apply PCA to x 

and y separately, extract the leading PCs, then apply CCA to the leading PCs 

of x and y. 

Using Hotelling’s choice of scaling for the PCAs (Eq 4.30), we express the 

PCA expansions as  

                                    (4.85) 

CCA is then applied to  

            (4.86) 

where only the first xm  and ym  modes are used. Another reason for using the 

PCA pre-filtering is that when the number of variables is not small relative to 

the number of samples, the CCA method may become unstable, as the many 

higher modes may by chance attain high correlation although they account 

for negligible variance.  
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 With Hotelling’s scaling 

 

                (4.87)    

 
     leading to 

 

                                                              (4.88) 

 

Eqs. (4.75) and (4.76) simplify to 

 

                                            (4.89) 

                                                     (4.90) 

 

  As fM and gM are non-negative definite symmetric matrices, the eigenvectors 

are now sets of orthogonal vectors.  Eqs (4.83) and (4.84) simplify 

to    

                                                           (4.91) 

             

 

 
   vectors.  

 

   Fig4.8 shows the mode 1 CCA of the tropical Pacific sea level pressure 
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3.2.3  Singular value decomposition (SVD)  

 
 Instead of maximizing the correlation as in CCA, one can maximize the 

covariance between two datasets. This alternative method is often called the 

singular value decomposition (SVD).  

 

SVD is identical to CCA except that it maximize the covariance instead of the 

correlation. As mentioned before, CCA can be somewhat unstable (when the 

number of variables is not small relative to the number of samples) in that 

modes with high correlation may account for negligible variance, hence the 

recommended pre-filtering of data by PCA before applying CCA. SVD, by 

using covariance instead of correlation, does not have the unstable nature of the 

CCA, and does not need the pre-filtering by PCA. 
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In SVD, one simply performs SVD on the data covariance matrix xyC      

                                                   (4.92) 

 

Where the matrix U contains the left singular vectors if , V the right singular 

vectors ig , and S the singular values. Maximum covariance between iu  and iv is 

attained (Bretherton et al. 1992)  

 

                                        (4.93) 

The inverse transform is given by 

 

                               (4.94) 

 

For most application, SVD yields rather similar results to the CCA (with CCA 

pre-filtering).  

 

The matrix technique SVD can also be used to solve the CCA problem. Similar 

to  (4.63), we seek  

                                                (4.95) 

 such that  

 

          gyxfygxfvu TTT ),cov(),cov(),cov( ==  � maximum  (4.96) 

   subject to   

     

             1=ff T
   and  1=ggT

                                       (4.97) 

     

      The solution is obtained by using Lagrange multiplier  

 

             )1(β)1(α),cov( −+−+= ggffgyxfL TTT
 

 

       Similar to CCA (4.72)-(4.76), we have 

 

             0α2 =+ fgC xy  
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             0β2 =+ gfC
T

xy                                                  (4.98) 

 

            
gfC

fgC

y

T

xy

xy

s

sx

=

=

                                                           (4.99) 

       

   (4.99) implies that the solution g and can be solved by a singular value    

decomposition.  The same solution is obtained by substituting the two  

equations into each other to obtain  

 

 
fffCC

gggCC

T

xyxy

xy

T

xy

λαβ4

λαβ4

==

==

                                            (4.100) 

 

  (4.50) is very similar to (4.75) or (4.76). So, the solution can be obtained by    

  eigen equations.  

 

   So, there are two approaches to perform SVD: (1) simply perform SVD on  

  );,cov( yxC xy =  (2) solving eigen equations (4.100) 

  

 

 


