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Chapter 2     Correlation and Regression      

 

2.1 Correlation  

 

The (Pearson) correlation coefficient, widely used to measure the strength of the linear 

relation between two variables x  and y , is defined as 
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where xs and ys are the population standard deviations for x  and y , respectively.  

 

For a sample containing N pairs of ),( yx  measurements, the sample correlation is 

computed by  
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which lies between -1 and +1. At the value +1, x and y will show a perfect straight-line 

relation with a positive slope; whereas at -1, the perfect straight line will have a negative 

slope. With increasing nonlinearity and noise in the data, the sample correlation moves 

towards 0. 

 

An important question is whether the obtained sample correlation can be considered 

significantly different from 0 ---this is also called a test of the null (i.e., )0=xyρρρρ  

hypothesis. A common approach involves transforming to the variable   
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Which in the null case is distributed as the Student’s t distribution, with N-2 degree of 

freedoms. N is the length of sample.  

 

For example, with N=32 data pairs, ρρρρ  was found to be 0.36. Is this correlation 

significant at the 5% level? In other words, if 0=xyp , is there less than 5% chance that 

we could obtain ρρρρ =0.36 for our sample? To answer this, we need to find the value 975.0t  

for the t-distribution, where t > 975.0t  covers less than 1-0.975 (=2.5%) of the total area 
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under the t-distribution curve (hence t < - 975.0t and t > 975.0t , i.e., the 2 tails of the 

distribution, contain less than 5% of the total area under the distribution curve). 
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                                                 Values of t 
       

df\p 0.40  0.25  0.10  0.05  0.025  0.01  0.005  0.0005  

1  0.324920 1.000000 3.077684 6.313752 12.70620 31.82052 63.65674 636.6192 

2  0.288675 0.816497 1.885618 2.919986 4.30265 6.96456 9.92484 31.5991 

3  0.276671 0.764892 1.637744 2.353363 3.18245 4.54070 5.84091 12.9240 

4  0.270722 0.740697 1.533206 2.131847 2.77645 3.74695 4.60409 8.6103 

5  0.267181 0.726687 1.475884 2.015048 2.57058 3.36493 4.03214 6.8688 

  

6  0.264835 0.717558 1.439756 1.943180 2.44691 3.14267 3.70743 5.9588 

7  0.263167 0.711142 1.414924 1.894579 2.36462 2.99795 3.49948 5.4079 

8  0.261921 0.706387 1.396815 1.859548 2.30600 2.89646 3.35539 5.0413 
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9  0.260955 0.702722 1.383029 1.833113 2.26216 2.82144 3.24984 4.7809 

10  0.260185 0.699812 1.372184 1.812461 2.22814 2.76377 3.16927 4.5869 

  

11  0.259556 0.697445 1.363430 1.795885 2.20099 2.71808 3.10581 4.4370 

12  0.259033 0.695483 1.356217 1.782288 2.17881 2.68100 3.05454 4.3178 

13  0.258591 0.693829 1.350171 1.770933 2.16037 2.65031 3.01228 4.2208 

14  0.258213 0.692417 1.345030 1.761310 2.14479 2.62449 2.97684 4.1405 

15  0.257885 0.691197 1.340606 1.753050 2.13145 2.60248 2.94671 4.0728 

  

16  0.257599 0.690132 1.336757 1.745884 2.11991 2.58349 2.92078 4.0150 

17  0.257347 0.689195 1.333379 1.739607 2.10982 2.56693 2.89823 3.9651 

18  0.257123 0.688364 1.330391 1.734064 2.10092 2.55238 2.87844 3.9216 

19  0.256923 0.687621 1.327728 1.729133 2.09302 2.53948 2.86093 3.8834 

20  0.256743 0.686954 1.325341 1.724718 2.08596 2.52798 2.84534 3.8495 

  

21  0.256580 0.686352 1.323188 1.720743 2.07961 2.51765 2.83136 3.8193 

22  0.256432 0.685805 1.321237 1.717144 2.07387 2.50832 2.81876 3.7921 

23  0.256297 0.685306 1.319460 1.713872 2.06866 2.49987 2.80734 3.7676 

24  0.256173 0.684850 1.317836 1.710882 2.06390 2.49216 2.79694 3.7454 

25  0.256060 0.684430 1.316345 1.708141 2.05954 2.48511 2.78744 3.7251 

  

26  0.255955 0.684043 1.314972 1.705618 2.05553 2.47863 2.77871 3.7066 

27  0.255858 0.683685 1.313703 1.703288 2.05183 2.47266 2.77068 3.6896 

28  0.255768 0.683353 1.312527 1.701131 2.04841 2.46714 2.76326 3.6739 

29  0.255684 0.683044 1.311434 1.699127 2.04523 2.46202 2.75639 3.6594 

30  0.255605 0.682756 1.310415 1.697261 2.04227 2.45726 2.75000 3.6460 

  

inf 0.253347 0.674490 1.281552 1.644854 1.95996 2.32635 2.57583 3.2905 
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Note 1:  A probability of p = 0.05 (95% probability of making a correct statement) is 

usually acceptable for biological work, but p = 0.1 can be used for a "one-tailed" t-test.  

Note 2 This table does not show all degrees of freedom. If you want a value between, say 

30 and 40, then use the value for 30 degrees of freedom. 

From Eq. (2.3), we have  
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where 975.0t =2.04 from t-distribution table, (2.4) yields 05.0ρρρρ =0.349, i.e, less than 5% of 

the sample correlation values will indeed exceed 05.0ρρρρ  in magnitude if xyρρρρ =0. Hence our 

ρρρρ =0.36 is significant at the 5% level based on a 2-tailed t test.  

 
 Often the samples are measurements at regular time intervals, i.e. time series, and there 
is autocorrelation in the time series— i.e. neighbouring data points in the time series are 
correlated. Autocorrelation is well illustrated by persistence in weather patterns, e.g. if 
it rains one day, it increases the probability of rain the following day. With 
autocorrelation, the effective number of independent samples may be far fewer than the 
actual number of collected samples, and the value of N used in the significance tests 
will have to be adjusted to represent the number of independent samples.  
 
Two ways to solve this issue: 
 
(1) recalculating the degrees of freedom using the below methods. 
 
(2)  resampling the data pairs randomly for a large times (saying 10000), and 
calculating the correlation each time. If 5% of 10000 correlation exceeds the sample 
correlation, we could conclude that the sample correlation might be randomly generated. 
In other words, the data x and y is not statistically significant correlated each other at 
the confidence level of 95%.  
 
Another complication is that the sample correlation is not robust to devia 
tions from nonlinearity in the data. The below figure shows a situation with ρ ≈ 0 even 
though there is an obvious nonlinear relationship between the two variables (a). Thus 
the correlation can be misleading when the underlying relation is nonlinear. 
Furthermore, the sample correlation is not resistant to outliers, where in (b) if the 
outlier point is removed, ρ changes from being positive to negative. 
The function of calculating correlation in MATLAB is corrcoef(x, y) 
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2.2 Rank correlation  
 

For the correlation to be more resistant to outliers, the Superman rank correlation is often 

used instead.  The rank correlation is computed by rearranging the original data 

{ Nxx ,.....,1 } in the order according to their size (starting from the smallest). For example, 

we have the below data: 

 

x : -1, 0, 1, 2, 3 

y :   1, 3, 5, 7, -99 

 

The correlation is 1 if we use the first 4 data pairs. If we use all data, the correlation is -

0.67, so significant impact of outlier point (3, -99) can be seen. 

 

The rank correlation: 

 

Rank:  xr :  1,  2,  3, 4, 5  

            yr :  2,  3,  4, 5, 1   

 

 Rank correlation is zero.  

 

 Rank correlation can also be defined by 
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2.3 Autocorrelation 

 

 To determine the degree of autocorrelation in a time series, we use the autocorrelation 

coefficient, where a copy of the time series is shifted in time by a lag of l time intervals, 

and then correlated with the original time series. The lag-l autocorrelation coefficient is 

given by  
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where x  is the sample mean. The function )(lρρρρ , which has the value 1 at lag 0, begins 

to decreases as the lag increase. The lag where )(lρρρρ first intersects the l-axis is 0l , the 

first zero crossing. The 0l is also called decorrelation scale. A crude estimation of the 

effective sample size is 0/ lNN eff = .  

 

The autocorrelation function can be integrated to yield an integral time scale  
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where  ∆ t is the time increment between adjacent data values, and the maximum lag L 

used in the summation is usually between N/5 and N/3. The effective sample size is then   

TtNN eff /∆= , with tN∆  the data record length, and the degrees of freedom 

.2−= effNυυυυ  When the integral time scale is large, effN << N. 

 

 With two time series x and y, both with N samples, the effective sample size is often 

estimated by  
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Sometimes, the yxxyρρρρρρρρ  terms are ignored. 

 

2.4 Correlation Matrix 

 

If there are M variables, e.g., M stations reporting the air pressure, then correlations 

between the variables lead to a correlation matrix 
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where ijρ  is the correlation between the ith and the jth variables. The diagonal elements 

of the matrix satisfy iiρ =1, and the matrix is symmetric, i.e.  ijρ = jiρ . The jth column of 

C gives the correlations between the variable j  and all other variables. 

 

When the covariance is used instead of the correlation in (2.9), we obtain the covariance 

matrix.  

 

2.5 Regression 

 

Regression is used to find a linear relation between a dependent variable y a and one or 

more independent variables x. 

 

2.5.1 Linear regression  

 

For now consider simple linear regression where there is only one independent variable x, 

and the dataset contains N pairs of (x, y) measurement. The relation is  

 

N , ... 1,i         ,exaaey~y ii10iii =++=+=             (2.10) 

 

where 10  and aa are the regression parameters, iy~  is the iy predicted or described by 

the linear regression relation, and ie  is the error or the residual unaccounted for the 

regression. As regression is commonly used as a prediction tool --- i e , given x, use the 

regression relation to predict y  ---x is referred to as the predictor or independent variable 

and y the response, predictand, or dependent variable. 

 

The error  

 

N , ... 1,i         ,xaayy~ye i10iiii =+−=−=                   (2.11) 

 

By finding the optimal values of the parameters 0a  and 1a , linear regression minimizes 

the sum of squared errors (SSE),  
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yielding the best straight line relation between y and x. Because the SSE is minimized, 

this method is also referred to as the least squares method. 

 

Differentiation of (2.12) by 0a  yields  
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Differentiation of (2.12) by 1a  yields  
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These two equations are called the normal equations, from which we will obtain the 

optimal values of 0a  and 1a , 

 

From (2.13), we have  
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Substituting (2.15) into (2.14) yields 
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Eqs. (2.15) and (2.16) provide the optimal values of 0a and 1a for minimizing the SSE, 

thereby yielding the best straight line fit to the data in the x-y plane. The parameter 

1a gives the slope of the regression line, while 0a gives the y-intercept. 

 

2.5.2 Relating regression to correlation 

 

Since regression and correlation are two approaches to extract linear relations between 

two variables, one would expect the two to be related. Comparing (2.16) with (2.2), we 

see  
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i.e., the slope of the regression line is the correlation coefficient times the ratio of the 

standard deviation of y to that of x.  

 

It can also be shown that  
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Proof:   
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(hint:  substituting  (2.17) for 1a …..). 

 

Where 1- 2

xyρρρρ is the fraction of the variance of y not accounted for by the regression. For 

example, if =xyρρρρ 0.5, then 1- xyρρρρ =0.75, i.e., 75% of the variance of y is not accounted 

for by the regression. 

 

2.5.3 Partitioning the variance 

 

It can be shown that the variance, i.e. the total sum of squares (SST), can be partitioned 

into two parts: 
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=0 (from 2.14) + 0 (from 2.13) = 0 

 

How well the regression fitted the data can be characterized by  

 

SST

SSE

SST

SSR
R −== 12  

 

where 2R  approaches 1 when the fit is very good. R is called the multiple correlation 

coefficient, as it can be shown that it is the correlation between  

y~  and y.  

Proof:  

 

where we used (2.13) , (2.14)  and the fact of yy =~  for the above proof.  

 

2.5.4  Multiple linear regression  

 

We often encounter situation where there are multiple predictors lx  ( l=1,2,...k) for the 

response variable y . This type of multiple linear regression (MLR) has the form  
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In vector form    eXay +=                                                  (2.20) 
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The SSE is then 
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where the superscript T denotes the transpose. To minimize SSE with respect to a, we 

differentiate the SSE by a and set the derivatives to zero, yielding the normal equations, 

 

0)( =− XayX T
                                                          (2.21) 

 

Thus yXXaX TT
=                                                       (2.22) 

 

and the optimal parameters are given by  

 

yxxxa TT 1)( −=                                                            (2.23) 

 

A major problem with multiple regression is that often a large number of predictors are 
available, though only a few of these are actually significant. If all possible predictors 
are used in building a MLR model, one often ‘overfits’ the data, i.e. too many 
parameters are used in the model so that one is simply fitting to the noise in the data. 
While the fit to the data may appear very impressive, such overfitted MLR models 
generally perform poorly when used to make actual forecasts. Automatic procedures, 
e.g. stepwise multiple regression, have been devised to eliminate insignificant 
predictors, thereby avoiding an overfitted MLR model.  
 

2.5.4 Significant test for Regression  

 

  After building a regression equation, we need to test if the regression is  

statistically significant, i.e., if the linear relationship of predictand to predictors exist?  

 

  If predictors lx  (l=1,…,k) are linearly unrelated to y, the regression coefficients a in 

(2.20) should be zero. So, the null hypothesis here is  

   

0  :0 =aH                                                                            (2.24) 

 

So, we need to test if the null hypothesis holds.   

Under the condition that 0H is true, it has been proven (Montgomery and Peck, 1982: 

Introduction to linear regression analysis,  John Wiley & Sons), 

the below variable is a standard F distribution: 

 

1)kSSE/(N

SSR/k

−−
=F   ~  1)kN(k, −−F                            (2.25) 

 

where SSR and SSE are defined in (2.19a) and (2.19b), and k is the number of predictors 

and N is the sample length used to train the regression. 

 

Further we can use multiple correlation R to write (2.25): 
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Given a value of confidence level, we can obtain a F theoretical value (i.e., population) 

from standard F table, 0F . If  the calculated F from the regression is greater than 0F , 

0H should be rejected � the regression is statistically significant. Otherwise 0H should 

be accepted and the regression is not statistically significant. 

F Distribution Tables  

 

The F distribution is a right-skewed distribution used most commonly in Analysis of 

Variance (see ANOVA/MANOVA). The F distribution is a ratio of two Chi-square 

distributions, and a specific F distribution is denoted by the degrees of freedom for the 

numerator Chi-square and the degrees of freedom for the denominator Chi-square. An 

example of the F(10,10) distribution is shown in the animation above. When referencing the 

F distribution, the numerator degrees of freedom are always given first, as switching the 

order of degrees of freedom changes the distribution (e.g., F(10,12) does not equal F(12,10)). 

For the four F tables below, the rows represent denominator degrees of freedom and the 

columns represent numerator degrees of freedom. The right tail area is given in the name 

of the table. For example, to determine the .05 critical value for an F distribution with 10 

and 12 degrees of freedom, look in the 10 column (numerator) and 12 row (denominator) 

of the F Table for alpha=.05. F(.05, 10, 12) = 2.7534.  

F Table for alpha=.10 .  
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F Table for alpha=.05 .  
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F Table for alpha=.025 .  
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2.6 Perfect Prog and MOS 

In many branches of environmental sciences, physical (or dynamical) prediction models 
have surpassed statistical models. For instance, in numerical weather forecasting, the 
governing equations of the atmosphere are solved by finite element or spectral methods 
on supercomputers. Such dynamical models can be integrated forward in time to give 
weather forecasts. Nevertheless regression is commonly used to assist and improve the 
raw forecasts made by the dynamical models. The reason is that the variables in the 
dynamical model usually have poor resolution and are sometimes too idealized. For 
instance, the lowest temperature level in the model may be some considerable distance 
above the ground. Furthermore, the local topography may be completely missed in the 
low resolution dynamical model. Thus it would be difficult to directly use the output 
from such a dynamical model to predict the ground temperature at a village located in a 
valley. Furthermore, some local variable such as ozone concentration or precipitation 
may not even be variables carried in the dynamical model.  

 The Perfect Prog (abbreviation for Perfect Prognosis) scheme computes a multiple 
regression relation from the historical data archive:  

                          y(t) = a · X(t) + a0 + e(t),                                  (2.24)  

where y is the response, X the predictors, and e the error. During actual  
forecasting, X(t) is provided by the forecasts from the dynamical model, and  
y(t) is predicted by the above regression relation. The problem with this scheme is that 
while the model was developed or trained using historical data for X, the actual forecasts 
used the dynamical model forecasts for X. Hence, the systematic error between the 
dynamical model forecasts and real data have not been taken into account— i.e. perfect 
prognosis is assumed, whence the name of this scheme. 

 
In contrast, a better approach is the MOS (Model Output Statistics) scheme, where the 

dynamical model forecasts have been archived, so the regression was developed using y(t) 
from the data archive and X(t) from the dynamical model forecast archive. Since X was 
from the dynamical model forecasts during both model training and actual forecasting, 
the model bias in the Perfect Prog scheme has been eliminated. While MOS is more 
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accurate than Perfect Prog, it is considerable more difficult to implement since a slight 
modification of the dynamical model would require the regeneration of the dynamical 
model forecast archive and the recalculation of the regression relations.  

 
In summary, even in areas where physical or dynamical models outperform statistical 

models in forecasting, regression in the form of Perfect Prog or MOS can often enhance 
the dynamical model predictions.  


