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This manual provides an introduction to MATLAB with exercises which are specifically oriented to the MATLAB
service provided by Bath University Computing Service (BUCS). However much of the information provided
here is applicable to any MATLAB installation, PC, Mac or UNIX.

This manual has a dual role: It serves first as a set of hour-long directed tutorials to be carried out in
the laboratory and secondly as a general reference manual for MATLAB .

Each chapter of the manual represents one tutorial, and includes exersises to be done during private
study time. For each tutorial you should read through the relevant chapter, trying out the various features
of MATLAB which are described and then you should do the exercises.

You may extend the chapter by doing your own experiments with the system. Responsible experimenta-
tion is essential when learning computing.
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1 First Tutorial: Introduction

1.1 What is MATLAB?

MATLAB is a package which has been purpose designed to make computations easy, fast and reliable. It is
installed on machines run by Bath University Computing Services (BUCS), which can be accessed in the
BUCS PC Labs such as those in 1 East 3.9, 1 West 2.25 or 3 East 3.1, as well as from any of the PCs in the
Library. The machines which you will use for running MATLAB are SUN computers which run on the UNIX
operating system. (If you are a PC or Mac fan, note that this is a quite different environment from what
you will be used to. However you will need only a small number of UNIX commands when you are working
with MATLAB . There is a glossary of common UNIX commands in Appendix 1.)

MATLAB started life in the 1970s as a user-friendly interface to certain clever but complicated programs
for solving large systems of equations. The idea behind MATLAB was to provide a simple way of using these
programs which hid many of the complications. The idea was appealing to scientists who needed to use
high performance software but had neither the time or inclination (or in some cases ability) to write it from
scratch. Since its introduction, MATLAB has expanded to cover a very wide range of applications and can
now be used as a very simple and transparent programming language where each line of code looks very
much like the mathematical statement it is designed to implement.

It is important not to confuse the type of programming which we shall do in this course with fundamental
programming in an established high-level language like C, JAVA or FORTRAN. In this course we will take
advantage of many of the built-in features of MATLAB to do quite complicated tasks but, in contrast with
programming in a conventional high-level language, we will have relatively little control over exactly how the
instructions which we write are carried out on the machine. As a result, MATLAB programs for complicated
tasks may be somewhat slower to run than programs written in languages such as C. However the MATLAB
programs are very easy to write, a fact which we shall emphasise here. We will use MATLAB as a vehicle for
learning elementary programming skills and applications. These are skills which will be useful independently
of the language you choose to work in. Some students in First Year will already know some of these skills,
but we will not assume any prior knowledge.

You will meet a proper course in JAVA programming in the second semester of the First Year.

1.2 Starting MATLAB

1. Starting a MATLAB session. (This subsection is relevant only to users working on Windows machines at
Bath University. The start up procedure may be different if you work somewhere else.) From the Desktop,
click Start and follow the submenu arrows to Programs-->Unix Applications-->X Windows Manager.
When the Windows manager comes up, right click with the mouse in the large grey area and select any
BUCS machine - e.g. “midge”. A blue UNIX window will come up. Type “matlab” to the $ prompt. (Note
that it is highly advisable to run only one MATLAB session at any one time. The total number of MATLAB
sessions which may be run on campus is limited by the licence. You need only one session to do everything
you need to do. )

It may be useful however, to start more than one UNIX window. There is no limit on how many of
these you can have. (See also the last paragraph of this chapter). You will also find that MATLAB runs on
the other BUCS machines mary and amos so if you like you can use them instead of midge.
2. Running Matlab: After you have typed matlab, a MATLAB logo will come up and then a MATLAB
command window with a prompt >>. Now you are ready to use MATLAB . When MATLAB is starting you
should get a flash of the MATLAB graphics window on your screen. If this did not happen, something is wrong
with your set-up and you will not get graphics when you want them. ASK YOUR TUTOR FOR HELP
(and/or go to the BUCS help desk after your first tutorial) if this happens.
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3. Terminating your session: To finish a MATLAB session, type exit to the >> prompt. Then type
exit to the $ prompt. Then logout from your Windows session.

It is essential that you log out completely after you have finished with any machine.

From now on, when you are instructed to type various commands, unless you are explicitly told to type
them elsewhere, they should be typed to the prompt >>.

1.3 The MATLAB Development Environment

This consists of (i) the MATLAB command window, which is created when you start a MATLAB session using
the procedure described in the previous subsection. This may be supplemented with (ii) a Figure window
which appears when you do any plotting, (iii) an Editor/Debugger window which is used for developing and
checking MATLAB programs, (iv) a help browser.

To see the environment in action, first start a MATLAB session. Then, to the >> prompt, type

Z = peaks; surf(Z)

and then hit RETURN. (Note that it is crucial to get the punctuation in the above command correct.) You
should get a 3D plot of a surface in the Figure window called “Figure 1”. (Note that peaks is a built-in
function which produces the data for this plot, and surf is a built-in function which does the plotting. When
you come to do your own plots you will be creating your own data of course.) You can play with the buttons
at the top of the Figure window (for example to rotate the figure and see it from different perspectives).

To obtain the Editor/Debugger, type edit. You may have to type this twice, as the first time may
implement an initialisation process.

To obtain help you can type helpwin, which produces a simple browser containing the MATLAB manual.
A much more sophisticated web-based help facility is obtained by typing helpdesk, but at peak times this
may be slow in starting up. If you have MATLAB on your home PC you may well prefer the helpdesk.

Finally, if you know the name of the command you are interested in, you can simply ask for help on it
at the matlab prompt. For example to find out about the “while” command, type “help while”. Do this
now: “while” is one of the loop-constructing commands which will be used in the programs which you will
write in this course.

Use any help facility to find the manual page for the command ‘‘plot’’, which resides in the directory
“graph2d”. Read the manual page for “plot”.

1.4 Further information on MATLAB

In the library there are many books which can be found by looking in the catalogue for titles containing the
keyword “MATLAB ”. In particular the following are useful:

• Getting started with MATLAB 5 : a quick introduction for scientists and engineers,by Rudra Pratap

• Essential MATLAB for scientists and engineers, by Brian D. Hahn

• The MATLAB 5 handbook, by Eva Part-Enander and Anders Sjoberg

• The MATLAB handbook, by Darren Redfern and Colin Campbell

• MATLAB Guide, by D.J. Higham and N.J. Higham

The MATLAB web-site http://www.mathworks.com is maintained by the company “The MathWorks”
which created and markets MATLAB .
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1.5 Recording a MATLAB session.

Often you may need to make a permanent record of parts of your MATLAB sessions. Any MATLAB session may
be recorded by typing

diary filename

where filename is any name you care to choose. Everything that appears in your MATLAB window is then
recorded in the file filename until you type “diary off”. Type help diary to find out about this. After you
have finished recording you may choose simply to look at the file filename, which can be done for example
by reading it into your Editor/Debugger window. You may also wish to print it out. To do this, see the
section below on printing.

1.6 The MATLAB DEMO

Type “demo”. A MATLAB demo window comes up. This contains examples of the use of many MATLAB
features listed on the left-hand side of the window. You should work through the demo on “graphics” and
“language” and “gallery”. Some of the items there are quite advanced: you should not feel that you need
to understand everything you see, but try to get a feel for a range of available commands. When you have
completed this you may find it entertaining to look at some of the other features in “more examples”.

There are also several plotting examples in the demo program: Have a look at “Graphics” and then “2D
plots ” and also “Line plotting” in the demo.

We will be exploring plotting more thoroughly in Tutorial 2.

1.7 Printing out

Anything printed from the BUCS machines will come out on the laser printer in the reprographics section
of the library and you will have to pay a fee per page. To find out about printing in general from the UNIX
machines, look at the BUCS web site at http://www.bath.ac.uk/BUCS/print.html.
Inside MATLAB , if you have created a graph and you want to print it out, make sure that the current graph
window contains what you want to print and then click on file --> print. Clicking print in the dialog
box will send the figure to the library laser printer. To check if your job went into the queue, type lpq -Pll
ma****, (where ma**** is your userid ) to a $ prompt. If you have any trouble with this, ask the BUCS
helpdesk.
The last paragraph illustrates the fact that it may be useful to keep one UNIX window running MATLAB and
to start another one (with the $ prompt) for executing UNIX commands, like looking at the Laser Printer
queue.

1.8 Simple arithmetic in MATLAB

The basic operations are +, -, *, /, ^ which stand for add, subtract, multiply, divide and “to the power
of”. The following example shows the results of typing some simple arithmetic commands to the MATLAB
prompt. The commands which are typed by the user are those immediately following the >> prompt. A
“%” symbol means a comment: the rest of this line is ignored by MATLAB . When a computation produces a
response, this is displayed immediately below the command which produced it.

% script tutorial1.m Lines beginning % are comments

>> clear % removes any old variables from the workspace

>> format short % outputs results in decimal form with 5 digit
% accuracy

>> 2+2 % trivial computation, result displayed on screen
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ans =

4
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>> x = 2+2 % same computation, result loaded into new
% variable x and displayed

x =

4

>> y = 2^2 + log(pi)*sin(x); % more complicated computation
% illustrates built in functions
% log and sin and built in constant pi
% The ; at the end suppresses output

>> y % prints the contents of y

y = 3.1337

>> format short e % changes format of output
>> y

y = 3.1337e+00

>> format long % changes format of output again
>> y

y = 3.13366556593561

more on % This allows text to be presented page by page
% on the screen. Without it the text just scrolls
% around very quickly and is impossible to read

>> help format % prints the contents of the manual
% for the command ‘‘format’’

FORMAT Set output format.
All computations in MATLAB are done in double precision.
FORMAT may be used to switch between different output
display formats as follows:
FORMAT Default. Same as SHORT.
FORMAT SHORT Scaled fixed point format with 5 digits.
FORMAT LONG Scaled fixed point format with 15 digits.
FORMAT SHORT E Floating point format with 5 digits.
FORMAT LONG E Floating point format with 15 digits.
FORMAT SHORT G Best of fixed or floating point format with 5 digits.
FORMAT LONG G Best of fixed or floating point format with 15 digits.
FORMAT HEX Hexadecimal format.
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FORMAT + The symbols +, - and blank are printed
for positive, negative and zero elements.
Imaginary parts are ignored.

FORMAT BANK Fixed format for dollars and cents.
FORMAT RAT Approximation by ratio of small integers.

Spacing:
FORMAT COMPACT Suppress extra line-feeds.
FORMAT LOOSE Puts the extra line-feeds back in.

>> who % Displays the current variables in
% the workspace

Your variables are:

ans x y

This sequence of instructions has been saved to the file ~masigg/math0126/tutorial1.m. This is your
first example of a MATLAB program. (In fact it is a special type of program, called a script. We will learn
more about programs in Tutorial 3 below. )

In the meantime you should copy the file ~masigg/math0126/tutorial1.m over to your own filespace.
To do this comfortably you will find that it is useful to start another UNIX window, so that you have one
for running MATLAB and another for copying and printing files, etc. You will need to use a UNIX command
to copy my file. (See the glossary of UNIX commands in the Appendix below.) If you save my file in your
own home directory (say to a file of the same name tutorial1.m), then you can run it by typing

tutorial1

in the MATLAB command window. Note that the actual script file contains a number of pause statements
which cause execution to stop (so that you can read the result). It starts again when any key is pressed on
the keyboard.

1.9 Exercises for Chapter 1

1. Using MATLAB do the following calculations

(i) 1 + 2 + 3 (ii)
√

2 (iii) cos(π/6).

Note that MATLAB has pi as a built-in approximation for π (accurate to about 13 decimal places).

2. After MATLAB has done a calculation the result is stored in the variable ans. After you have done (iii)
above, type ans∧2 to find cos2(π/6). The true value of this is 3/4. (Check that you understand why!) Print
out ans using both format short and format long and compare with the true value. On the other hand
use MATLAB to compute ans - 3/4. This illustrates rounding error: The fact that the machine is finite means
that calculations not invloving integers are done inexactly with a small error (typically of size around 10−15

or 10−16). The analysis of the effect of round-off error in calculations is a very interesting and technical
subject, but it is not one of the things which we shall do in this course.
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3. The quantities ex and log(x) (log to base e) are computed using the MATLAB commands exp and log.
The (positive) square root is computed with sqrt. Look up the manual pages for each of these and then
compute e3, log(e3) and eπ

√
163.

4. Compute sin2 π
6 + cos2 π

6 . (Note that typing sin^2(x) for sin2 x will produce an error!)

2 Second Tutorial: Variables and Graphics

2.1 Arrays

The basic data type in MATLAB is the rectangular array which contains numbers (or even “strings” of symbols).
MATLAB allows the user to create quite advanced data structures but for many scientific applications it is
sufficient to work with matrices. These are two-dimensional arrays of data in the form

A =


a1,1 a1,2 . . a1,m

a2,1 a2,2 . . a2,m

. . . . .
an,1 an,2 . . an,m

 .
Note that the notation implies that ai,j is the element of A which is stored in the i th row and jth column.
The number of rows n need not be the same as the number of columns m. We say that such a matrix A is
of dimension n ×m. When n = 1 we have a column vector and when m = 1 we have a row vector. When
n = m = 1, A has a single entry, commonly known as a scalar.

Note that you do not need any prior knowledge of matrices to follow this part of these
notes.

A matrix can be created in MATLAB using any name (which must start with a letter but can contain
numbers and underscores (_)). A major distinction between MATLAB and many other programming languages
is that in MATLAB one does not have to declare in advance the size of an array. Storage of arrays is dynamic
in the sense that an array with a given name can change size during a MATLAB session.

The MATLAB command

x = exp(1);

creates a single number whose value is e and stores it in the variable whose name is x. This is in fact a 1×1
array. The command

y = [0,1,2,3,4,5,6];

creates the 1×7 array whose entries are equally spaced numbers between 0 and 6 and stores it in the variable
y. A quicker way of typing this is y = [0:6]. (More generally, the command [a:b:c] gives a row vector
of numbers from a to c with spacing b. If the spacing b is required to be 1, then it can be left out of the
specification of the vector.) Matrices can change dimension, for example if x and y are created as above,
then the command

y = [y,x]

produces the response:
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y =

Columns 1 through 7

0 1.0000 2.0000 3.0000 4.0000 5.0000 6.0000

Column 8

2.7183

In the example above we created a row vector by separating the numbers by commas. To get a column
vector of numbers you separate them by semi-colons, eg. the command z = [1;2;3;4;5]; creates a 5× 1
array of equally spaced numbers between 0 and 5.

Matrices of higher dimension are created by analogous arguments. For example, the command

A = [[1,2,3];[4,5,6];[7,8,10]];

puts the matrix  1 2 3
4 5 6
7 8 10


into the variable A. Complicated matrices can be built up from simpler ones, for example four matrices A1,
A2, A3, A4 of size n×m can be combined to produce a 2n× 2m matrix A = [[A1,A2];[A3,A4]].

On the other hand, if an n ×m matrix A has been created then we can easily extract various parts of
it. To extract the second column of A type A(:,2) and to extract the third row type A(3,:). Here is an
extract of a MATLAB session in which various parts of the matrix A created above are extracted :

>>A(:,2)

ans =

2
5
8

>>A([1,2],[2,3])

ans =

2 3
5 6

Vectors and matrices can be created in your MATLAB workspace by various methods. For example there
are many built-in commands: zeros(n,m) and ones(n,m) produces n × m matrices of zeros and ones.
rand(n,m) produces a random n×m matrix. The command eye(n,n) produces the n×n “identity matrix”
with ones on its diagonal (from top left to bottom right) and zeros elsewhere. Try these out for some values
of n and m. Type help command for each of these commands and read the MATLAB manual page for each of
them. Don’t worry if you don’t understand all about random numbers.

If the entries of a matrix can be given by a formula then it is easy to use a for loop to create them. For
example the Hilbert matrix H is an n×n matrix whose entry in the ith row and jth column is 1/(i+ j− 1).
We can use a nested for loop to create H. For example, for n = 25, we can use the command
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for i = 1:25; for j = 1:25; H(i,j) = 1/(i+j-1); end; end;

For the MATLAB beginner, double for loops are the easiest way to create the matrix H. However they are
actually very inefficient in terms of computing time. The reason for this is quite technical, it’s to do with
the way each MATLAB command is interpreted into machine instructions. As you get better at using MATLAB
you will find faster ways of creating matrices which are given by a formula.

Nevertheless it is very important for you to gain experience with nested loops here, since in other
languages they are not slow and are the preferred method for doing many array operations. There will be
more about for loops in Tutorial 4.

Another way of getting data into your MATLAB workspace (essential when the data is not given by a
formula) is by reading from a file. This again is close to the way it would be done in C. I will not go into
detail here, but the relevant commands are fopen, fscanf and fclose. The manual pages of these can be
read using the help command.

2.2 Simple Functions

If A and B are two matrices (which must be of the same size) then A+B gives a new matrix, each element
of which is the sum of the corresponding elements of A and B. A-B is defined similarly. 5*A multiplies each
element of A by 5. The pointwise product A.*B produces a new matrix, the entries of which are the products
of the corresponding entries of A and B. Note that the . before the * indicates that the multiplication is
done pointwise (or elementwise). Similarly the pointwise quotient is A./B.

Some of you may also know about the matrix product AB which is defined even when A and B are not
of the same size, but requires that the number of columns of A is the same as the number of rows of B. This
(quite different) product is obtained in MATLAB with the command A*B, but we will not discuss it further
here. Please remember, therefore, that if you really want to compute the pointwise product or quotient,
then leaving out the . will be catastrophic, and the machine may well compute a wrong answer without
giving you a warning.

Every function can be applied to a whole matrix (or more generally array) of numbers. The result will
be an array of the same size, each element of which is the the result of the function in question applied
to the corresponding element of the array. For example, with y as created in the previous subsection, the
command

y = log(y)

produces the response

Warning: Log of zero.

y =

Columns 1 through 7

-Inf 0 0.6931 1.0986 1.3863 1.6094 1.7918

Column 8

1.0000

Note that log is the built-in function which computes loge (or ln) and that the resulting vector y above
is the result of applying loge to each entry of the previous vector y. MATLAB handles an infinite answer by
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recording it as “Inf” and producing a warning. (Why is it -Inf?) Note that these calculations verify that
loge(1) = 0 and loge(e) = 1.

A short MATLAB script illustrating some elementary arithmetic can be found at:
~masigg/math0126/tutorial2a.m. You should copy it and run it.

2.3 Graphics

The most simple plotting command is plot. To use this, if x and y are any two vectors of the same size,
then the command

plot(x,y,’r*’)

plots the components of y in turn against the components of x, using red asterisks. There are several
variations of this command. Type help plot and run demo --> language/graphics --> line plotting
to find out more about this command. Other simple plotting commands, for which you should consult the
help pages include fplot, bar, hist, stem, stairs and pie.

The following script file (available at ~masigg/math0126/tutorial2b.m) produces three simple plots.
The first is a static plot comparing the function sin(x) with its approximation x− x3/3!. The second is

a static plot producing a helix (spring). The third plots this dynamically using the comet commnd. The
plots come up in the Figure window. They can be printed or copied and pasted into another document if
required.

% script file tutorial2b.m
% program to explore the use of some simple plotting commands

% First example discusses a cubic approximation to sin(x)

x = pi*([0:100]/100); % row vector of 101 equally spaced
% points between 0 and pi

hold off % means that the next plot will be
% drawn on a clean set of axes

plot(x,sin(x),’r*’) % plots sin(x) against x using
% red *’s

hold on % next plot will be drawn on top
% of the present one

plot(x,(x-x.^3/factorial(3)),’bo’) % plots values of x - (x^3)/3!
% against x using blue o’s

pause % causes execution to stop until you next hit
% any key (useful for admiring intermediate plots)

% second example draws a 3D helix composed of the points
% (sin(t),cos(t),t) for t ranging over
% 301 equally spaced points between 0 and 100
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t = [0:300]/3;

hold off

plot3(sin(t),cos(t),t,’r*’,sin(t),cos(t),t,’g-’)

pause

% now lets do an animated plot of this set of values
% using the command ‘‘comet’’

comet3(sin(t),cos(t),t)

Finally the script tutorial2c.m demonstrates another animated plot. It plots the “waves” given by the
functions

sin(x− t) , and cos(x− t)

for values of x between 0 and 8π and for time t = 0, 1, 2, ..., 100. Here a for loop is used to advance time in
an obvious way. Note the very important drawnow command, which causes the plot to be put on the screen
at each time step, thus allowing the animation to be seen.

% script file tutorial2c
% animated plot showing the behaviour of the
% waves sin(x-t) and cos(x-t) for 201 equally spaced points in the range
% 0 <= x <= 2*pi
% and t ranging from 0 to 10 in steps of 0.1

x = 8*pi*[0:200]/200; % 201 equally spaced points between
% 0 and 8*pi

for t = 0:1:100 % start of for loop

drawnow % is needed to ensure that animated plots
% are drawn

plot(x,sin(x-t),’b-’) % plot sin wave

hold on % ensures next plot drawn on the same axis
% as first

plot(x,cos(x-t),’r--’) % plot cosine wave

hold off % ensures next plot is drawn on fresh
% axes

end % end of for t loop
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2.4 Exercises for Chapter 2

1. Create the 3 × 3 matrix whose entries in the first row and first column are all equal to 1 and all the
other entries are equal to e.

2. Plot the function exp(−x) sin(8x) for 0 ≤ x ≤ 2 ∗ π.

3. Generate a row vector x of even integers, each component of which lies in the range 0 ≤ x(i) ≤ 10.
Compare the effects of the operations

(i) sin(x) (ii) x. ∧ 2 (iii) x. ∧ (−1)

4. Generate the 10× 10 matrix A whose (i, j)th entry is sin(2 ∗ π ∗ (i− j)).

5. Compute 20!. Devise two different ways, one using a for and one without. Find out about the MATLAB
built-in function factorial and use it to check your answers.

6. Modify the script file tutorial2c.m to do an animated plot of the functions sin(4(x−t)) and 4 cos(x−t)
for x between 0 and 8π and t from 0 to 10. Experiment with different line colours and types.

3 Third Tutorial: Loops and logical branching

In this section we shall introduce three fundamental building blocks for MATLAB programs: the for, while
and if-elseif-else statements.

3.1 For loops

A simple form of such a loop is

for index = j:m:k
statements

end

Usually j,m and k are integers and k-j is divisible by m. The statements are executed repeatedly starting
from index = j with index incremented by m each time and continuing until index = k (which is the last
time round the loop). Often m = 1 in which case the vector j:m:k in the first line of the loop can be replaced
by the simpler j:k. There are more general versions which begin with the statement

for index = v

where v is a vector. The statements inside the loop are repeatedly executed with index set to each of the
elements of v in turn. Type help for and read the manual page for the for loop.

As an example, consider the computation of the series

1− 1/2 + 1/3− 1/4 + 1/5− . . . (3.1)

This is implemented in the script file tutorial3a.m:
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% script tutorial3a.m
% computes the sum of the series
%
% 1 - 1/2 + 1/3 - 1/4 + ...
%
N = input(’type the number of terms to be added up: ’)

sig = -1; % initialise the sign for the term
sum_series = 0; % initialise the sum of the series

for n = 1:N
sig = -sig;
sum_series = sum_series + sig/n;
end

sum_series % prints out the sum of the series to N terms

When you have worked with MATLAB for a while you will find that program speeds can be improved by
using (if possible) vector or matrix operations instead of loops. For example, to sum the series (3.1) to an
even number of terms N, we can use the following very short script

% script tutorial3b.m
% computes the sum of the series
%
% 1 - 1/2 + 1/3 - 1/4 + ...
%
% to an even number of terms
% using vector operations

N = input(’type the number of terms N (with N even): ’)

sum_series = sum(1./(1:2:N-1) - 1./(2:2:N))

Exercise: Make sure you understand how this program works.
To compare the speed of the programs tutorial3a.m and tutorial3b.m, we can add the commands

tic and toc (see the manual pages) at the beginning and end of each of the scripts. I did this and found
the following elapsed times (in secs.) which illustrate the benefit in terms of speed of avoiding the loops if
possible.

tutorial3a tutorial3b

N = 10^4 4.4 2.9
N = 10^6 83.3 8.1

Several for statements can be nested, for example to excecute statements involving matrices. To assem-
ble the n× n matrix A with A(i,j) = i+j, we can use a nested for loop:
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for i = 1:n
for j = 1:n
A(i,j) = i+j;
end % for j
end % for i

I have added the comment after the end statements to show which loop is ended. This is useful when
there are several nested loops.

3.2 While loops

The general form of the while statement is

while (condition)
statements

end

The condition is a logical relation and the statements are executed repeatedly while the condition remains
true. The condition is tested each time before the statements are repeated.
Example. Suppose we have invested some money in a fund which pays 10% (compound) interest per year,
and we would like to know how long it takes for the value of the investemnt to double. Indeed we would like
to obtain a statement of the account for each year until the balance is doubled. We can use a while loop to
achieve this:

%script tutorial3c.m

format bank % output with 2 dec places
invest = input(’type initial investment: ’)

r = 0.1; % rate of interest
bal = invest; % initial balance
year = 0; % initial year
disp(’ Year Balance’) % header for output

% (You can experiment with
% this)

while (bal < 2*invest) % repeat while balance is
% less than twice the
% investment

bal = bal + r*bal; % update bal
year = year + 1; % update year
disp([year,bal])

end
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3.3 The if-elseif-else statement

A simple form of the if statement is
if (condition)
statements

end
Here condition and statements are the same as in the while loop, but in this case the statements are executed
only once (if condition is true) and are not executed at all if condition is false. For example the following
script divides 1 by i, provided i is non-zero.

if (i ~= 0)
j=1/i
end

The symbol ~= 0 is a “relational operator” and stands for “is not equal to”. Other relational operators
include ==, <=, >= etc. Type help ops to find out about these. Note the difference between the ralational
operator == and the usual use of the symbol = .

The if-else statement allows us to choose between two courses of action. For example the following
script reads in a number and prints out a message to say if it is negative or non-negative

x = input(’ Type x : ’)

if (x<0)
disp(’x is negative’)

else
disp(’x is non-negative’)

end

Note that indenting of statements inside loops and if statements helps make your program more readable.
Going further, adding elseif allows us to choose between a number of possible courses of action.

x = input(’ Type x : ’)

if (x<0)
disp(’x is negative’)

elseif (x>0)
disp(’x is positive’)

else
disp(’x is zero’)

end

A more general form is

if (condition1)
statementsA

elseif (condition2)
statementsB

elseif (condition3)
statementsC

...
else

statementsE

end
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This is sometimes called an elseif ladder. Its effect is the following:

• First condition1 is tested. If it is true then statementsA are executed and execution then skips to
the next statement after end.

• If condition1 is false, then condition2 is tested. If it is true, then statementsB are executed and
execution skips to the next statement after end.

• Continuing in this way all the conditions appearing in elseif lines are tested until one is true. If none
is true, then statementsE are executed

There can be any number of elseifs but only one else.

Example. Suppose a bank offers annual interest of 9 % on balances of less than £ 5,000, 12 % on balances
of £ 5,000 or more but less than £ 10,000 and 15 % for balances of £ 15,000 or more. The following program
calculates an investor’s new balance after one year.

% script tutorial3d.m

bal = input(’type balance: ’)

if (bal < 5000)
rate = 0.09;
elseif (bal < 10000)
rate = 0.12;
else
rate = 0.15;
end

disp([’new balance is : ’ num2str((1+rate)*bal)])

The logical relations which make up the condition in a while or if statement can quite complicated.
Simple relations can be converted into more complex ones using the three logical operators & (and), | (or)
and ~ (not) . For example the quadratic equation ax2 + bx + c = 0 has two equal roots, −b/2a, provided
that b2 − 4ac = 0 and a 6= 0. This can be programmed as:

if((b^2 - 4*a*c == 0)&(a~=0))
x = - b/(2*a);

end

3.4 Exercises for Chapter 3

In the following exercises you should write script programs for each of the tasks, i.e. you should create files
(using the MATLAB editor/debugger) which are saved in files with the .m extension. These should contain
the sequence of MATLAB commands necessary to do the tasks required.

1. Write a simple loop to list the squares of the first 10 integers.

2. Using the script tutorial3a.m, show by experiment that the series (3.1) sums to loge(2).
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3. For a series of terms with alternating sign of the form
∑∞

i=1(−1)n+1an, where an ≥ 0, let

L =
∞∑
n=1

(−1)n+1an, and let SN =
N∑
n=1

(−1)n+1an

There is a theorem which says that (under certain additional conditions), the absolute value of the
error incurred in summing the series up to a finite number of terms is no more than the absolute value
of the first term not included in the sum. With the above notation this means that, for any integer
N ,

|L− SN | ≤ aN+1.

Investigate the correctness of this theorem for the series (3.1) by checking it for a number of (large)
values of N , (You will also need the MATLAB command abs.)

4. Using a simple while loop, write a script to sum the series 1 + 2 + 3 + ... such that the sum is as
large as possible without exceeding 100. The program should display how many terms are used in the
sum.

5. Write a script which takes as input an integer n and creates the n× n matrix A defined by A(i,j) =
sin(1/(i+j-1)).

6. Here is a guessing game. Use MATLAB to generate a random integer between 1 and 10. This can be
done with the command:

matnum = floor(10*rand + 1);

(Use the manual pages to make sure you understand this command.)

You have to guess the random integer without printing it out. Write a script which computes the
random integer as above and which also takes as input your guess and produces as output a message
which tells you if your guess was correct or not, and if not whether your guess was too low or too high.

7. Modify the script tutorial3b.m to compute the sum of the series (3.1) for any number of terms (even
or odd) (use an if statement).

8. Write a script which takes as input three numbers a, b and c and prints out either the two solutions of
the quadratic equation ax2 + bx+ c = 0, when these solutions are real, or a message which indicates
when these solutions are not real.

4 Fourth Tutorial: scripts and functions

As you will have seen by now, there are two ways of using MATLAB : (i) Interactively, where you type a series
of commands at the command line and (ii) by writing programs in which instructions are saved in a file with
the .m extension. The file is run by typing its name (without the .m extension) to the MATLAB prompt.

There are two types of MATLAB programs: scripts and functions. One of the key differences between
these is the different ways in which variables are handled.

4.1 The MATLAB workspace

You have seen by now that when you use MATLAB you create variables in your workspace. At any stage of a
MATLAB session you can type

who
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to find out what variables are in your current workspace. A variation on this is the command whos which
gives more information. Look up the help pages for these commands.

Variables which are lying around in your current workspace are typically called global variables. When
you type a command to the prompt which involves any symbol, MATLAB first looks to see whether this symbol
is the name of a variable which is in your current workspace. If so, it uses the current value of that variable
in the computation. If not, it looks to see whether the symbol is the name of a built-in constant in which
case it uses the built-in value. Finally if the symbol is neither a current variable nor a built-in constant an
error message will usually result.

For example, if we start a new MATLAB session and to the prompt we type

pi

the response is

ans =
3.1416

and in response to the command

3*pi

we get

ans =
9.4248

However if we are feeling perverse we may like to use the symbol pi as the name of a new variable, with
a different value. For example we may type to the prompt:

pi = 3;

After doing this the response to the command

3*pi

will be

ans =
9

On the other hand if we type (for example by accident)

pii

we get the response:
??? Undefined function or variable ’pii’.

This illustrates the fact that whenever you type a MATLAB command interactively all your current variables
are visible and may be operated on by the command which you type.

4.2 Script files

All the MATLAB programs which I have written for you so far have been scripts. These consist simply of
a sequence of MATLAB commands which are saved to a file. When the script is run the effect is exactly the
same as is achieved by simply typing the commands interactively to the MATLAB prompt.

These commands operate on the variables in your current workspace in the same way as would occur if
you typed the commands interactively.

Script files can also create new variables which may be left lying around in your workspace after the
script has finished running.
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4.3 Function files

By using functions you can create much more flexible MATLAB programs than would be possible just with
scripts. In a function file you specify an input or inputs and generate an output or outputs. If you call a
function from the MATLAB prompt then the input(s) and output(s) are part of your MATLAB workspace, but
any other variables which are created inside the function itself are “local” to the function and will not be
seen from your MATLAB workspace. This is useful in many ways, in particular it reduces the build-up of
variables in your workspace and it aids the splitting up of a complex task into simpler independent tasks.

All programming in high-level languages makes use of such splitting techniques.
Here is an example of a function file called bell.m which calculates the bell-shaped function f =

exp(−ax2/2)/
√

2π for given scalar inputs x and a.

% function bell.m

function f = bell(x,a)
f = exp(-0.5*a*(x^2))/sqrt(2*pi);

One of the important rules for functions is that they must be saved to a file which has the same name
as the name of the function. Thus the above function should be saved to the file bell.m.
To run this, for example, type

bell(1,2)

The response is

ans =
0.1468

This is less useful than it might be. If, for example, we want to draw a plot of this function it would be
much better if we could feed a vector of x values to the function bell and get out a whole vector of function
values. A small change to the definition allows this:

% function vbell.m

function f = vbell(x,a)
f = exp(-0.5*a*(x.^2))/sqrt(2*pi);

The only difference between this and bell.m is that by employing the elementwise exponentiation .^ ,
the variable x can be a vector and vbell produces a vector output. The output is obtained by typing (either
interactively or inside a script):

vbell(x,a)

which gives a vector of values of the bell function evaluated at each of the entries of x. An application of
this to plot the bell function is contained in the following script:

%script tutorial4a.m
a = 1;
x = (0:1000)/100; % equally spaced points between 0 and 10
plot(x,vbell(x,a),’b*’)

The effect will be to plot the function bell at 1001 equally spaced points between 0 and 10 and with a set
to be 1.
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Copy bell.m, vbell.m and tutorial4a.m. Run tutorial4a and afterwards type whos. Note that
the variable f which appears in the function vbell is local to that function and does not appear in your
workspace.

What happens if you replace the call to vbell inside the plot command in tutorial4a.m with a call to
bell?

4.4 The general form of a function file

Functions are incredibly useful and need considerable care when they are implemented.
A function file always begins with a function definition line of the form

function [output variables] = function_name(input variables)

Here function_name must be the same as filename, where filename.m is the name of the file in which
the function is stored. The output variables are a list of variables whose values may be determined by
the function, and which may depend on the variables in the list of input variables. There are a number
of rules which I shall not attempt to reproduce here, but the authors of advanced functions need to be aware
of these rules.

To use the above function (e.g. in a script or interactively) you would type

[my output variables] = function_name(my input variables)

where my input variables are the actual input variables which you want to apply the function to and my

output variables are the names of the variables where you would like to put the result.
Type help function and read the manual page about how functions should be constructed in general.
Perhaps the best way to learn about functions is to look at functions which other people have written.

Many (but not all) of the functions which are provided in MATLAB are given as .m files which you can copy
and use for your own purposes. Try typing the command

type factorial

to see the listing of the MATLAB -provided function which produces the factorial of an integer. Repeat this
with the functions why, pascal and roots. There are many others which you can look at.

There are also many contributed functions to be found at the MATLAB website http://www.mathworks.com
which can be freely copied.

4.5 Exercises for Chapter 4

1. Write and test a function twice(x) which doubles the value of its input variable (i.e. the statement
x = twice(x) should double the value of x).

2. Write and test a function swop(x,y) which swops the values of its input variables, i.e. the statement
[x,y] = swop(x,y) should swop the values of x and y.

3. Write your own MATLAB function to compute the exponential function using the “Taylor series” expan-
sion:

ex = 1 + x+
x2

2!
+
x3

3!
+ . . .

Remember to give your function a name which is different from the MATLAB built-in function exp.
Make your own decision about when to stop adding more terms from the expansion. Compare the
performance of the function which you have written with the built-in function exp.

4. If a is a positive number, then it is known that the sequence yk, k = 0, 1, 2, . . . generated iteratively
by

y0 = a, and yk+1 = (yk + a/yk)/2 , k = 0, 1, . . .
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has the property that yk converges to (i.e. gets closer to)
√
a as k increases. (In fact this is Newton’s

method for finding the square root of a number, which you may have seen before).

Use this given iteration to design your own function for computing the square root of any number and
test it against the MATLAB built-in function sqrt.

(In fact many computers and calculators use such an iteration in their built-in sqrt functions.)

5 Fifth Tutorial: A Population Dynamics Example

5.1 Cellular Automata

Cellular automata (CA) provide a simplified way of modelling physical, biological or social phenomena.
In a CA model the universe is divided up into small cells. Each cell can take any one of a finite number
of states (e.g. live or dead, or perhaps something more complicated). A single generation is determined
by assigning a single state to each of the cells. Then a strict (and often quite simple) set of rules are
used to determine how a given generation evolves into the next one. The model then consists of repeated
iterative application of the rules to obtain each successive generation from the previous one. In principle
this iteration can go on forever; in computer implementations it goes on for a finite (possibly quite large)
number of generations. There is much interest in CA models among mathematicians and applied scientists
such as ecologists or biologists. This arises from the often observed fact that a simple model with relatively
few states and relatively simple rules can often produce very realistic and complicated behaviour. There
is also a huge interest amongst computer scientists, especially those concerned with the theory of artificial
intelligence. Let us consider a flat square universe, which is divided up into an n × n array of small cells,
denoted (i, j), for i, j = 1, . . . , n. The states of these cells may be represented as the elements of a matrix
A(i, j), i, j = 1, . . . n. The immediate neighbours of cell (i, j) are defined to be those cells which touch it
(excluding cell (i, j) itself). So an interior cell (i, j) (where i = 2, . . . n−1 and j = 2, . . . n−1) has immediate
neighbours (i− 1, j − 1), (i− 1, j), (i− 1, j + 1), (i, j − 1), (i, j + 1), (i+ 1, j − 1), (i+ 1, j) and (i+ 1, j + 1)
(see Fig. 1).

j

i
?

?

?

?

?

?

?

?

Figure 1: Immediate neighbours of an interior cell (i, j).

With this universe we can consider different types of states for the cells and different sets of rules for
determining the model.

5.2 A simple example

Let us suppose that each cell can occupy only two states (we shall say alive or dead, but other interpretations
are of course possible). We may represent these by setting A(i, j) = 1 when the cell (i, j) is alive and
A(i, j) = 0 when dead. To decide how each generation is determined from the previous one, let us take the
simple example of majority vote:
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• A live cell dies in the next generation only if more than 4 of its immediate neighbours at the present
generation are dead; otherwise it stays alive.

• A dead cell comes to life in the next generation only if more than 4 of its immediate neighbours at the
present generation are alive; otherwise it stays dead.

Since the computer is finite, our universe has to end somewhere. To apply these rules consistently, we need
to define the states of the cells which lie just outside the boundary of the universe. For the purpose of this
example, we shall say that

• All cells outside the boundary of our universe are assumed to be dead.

This means that we can effectively extend the boundary of our universe to include cells (0, j), (n+1, j), j =
0, . . . , n+ 1 and (i, 0), (i, n+ 1), i = 0, . . . , n+ 1, all of which are defined to be dead. To compute the next
generation from any given one, we can then proceed as follows:

• For each cell (i, j), i, j = 1, . . . , n, compute the number of live neighbours and store these in another
matrix, say L(i, j). Take particular care to get the computation correct at the edges of the universe.

• Then, using the information in the matrices A and L, the next generation of live and dead cells can be
computed by applying the two rules above. Since each generation is computed only from the previous
one, the new generation should be computed in a separate matrix, say ANEW and the the old A
should only be overwritten with ANEW when all of ANEW has been found.

Many successive generations can be computed by using a suitable loop.

5.3 A programming exercise

Suppose we are asked to write a program to implement and visualise 1000 generations of the population
model in the previous subsection, starting from a random initial state of 1’s and 0’s. A suitable pseudocode
would be:
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1. Read in n, the number of cells in each direction.

2. Create an initial n× n random distribution A containing only 0’s and 1’s.

3. Visualise A

4. Initialise ANEW and L to be matrices of 0’s of the same size as A (it turns out to be convenient, but
not essential to define ANEW and L to be n+ 2× n+ 2 matrices - see below).

5. Then enter a loop to compute successive generations (The variable gen no will count the number of
generations which have been computed):

• for gen no = 1 : 1000

• Implement the boundary condition by adding a border of zeros to A:

A =


0 ...... 0
. .
. A .
. .
0 ...... 0


A is then an n+ 2× n+ 2 matrix.

• For i, j = 2, ..., n+ 1 compute the number of live cells which are nearest neighbours of cell (i, j).
Put it in the matrix entry L(i, j).

• To find ANEW , initialise by setting ANEW = A. Then change some entries of ANEW as
appropriate:

• For i = 2, ..., n+ 1 and j = 2, ..., n+ 1,

– If A(i, j) = 1 and L(i, j) < 4 set ANEW (i, j) = 0;
– If A(i, j) = 0 and L(i, j) > 4 set ANEW (i, j) = 1.

• Create a new n × n matrix A which consists of the interior values of ANEW (i, j), for i, j =
2, . . . n+ 1.

• Visualise A

• end of for loop

The MATLAB code for this pseudocode can be found at ~masigg/math0126/majority.m In order to
visualise each generation, a small MATLAB function lookat.m is also provided. It draws a blue dot for every
live cell and leaves the dead ones blank. It incorporates the drawnow command and so supports animated
plots. It labels the plot with the generation number (gen_no) which is one of the inputs to lookat.m. Note
that lookat visualises the matrix A by plotting the j index on the vertical axis and i on the horzontal, with
the origin at the bottom left-hand corner.

Note also that the program majority.m has used extensively the dynamic storage facility in MATLAB . In
the program the matrix A switches from being n × n to n + 2 × n + 2 and back again during each cycle
of the for loop. This dynamic storage facility is not present in all programming languages and is a feature
which here can be used to substantially simplify the coding.

23



5.4 Exercises for Chapter 5

1. Play with the programs majority.m and lookat.m until you understand them fully. Remember that
by removing a semicolon at the end of a line and adding a pause statement you can see the result of
each computation line by line. This will help you understand the program, but note that printing the
matrix A on the screen will be helpful only for small values of n. Here are some further hints to help
you gain some understanding:

2. Look up the help page for the command round. Explain to yourself how the initial random distribution
of 1’s and 0’s is computed in majority.m.

3. Look up the help page for the command size. By putting the line size(A);pause; at appropriate
places in the program majority.m, illustrate to yourself the dynamic storage mentioned above.

4. For small n (e.g. n = 4) print out the matrix A and the corresponding matrix L. Check manually
that the program is doing the correct computation.

5. Perform similar investigative work on lookat.m. What happens if the drawnow command is removed?
Experiment with different plot colours and point markers. More detailed information on plot can be
got by typing doc plot.

6 Sixth Tutorial: Further Experiments on Population Dynamics

1. Run the program majority.m a few times. Try different values of n and different random initial states.
You should observe that a very irregular random initial state is smoothed out by the birth and death
rules, and eventually arrives at a pattern of blue and white regions with quite smooth interfaces between
them (some discussion of this can be found in “What’s happening in the Mathematical Sciences” by
B. Cipra, American Mathematical Society, Providence, 1996, pages 70-81. ).

2. Rewrite the program majority.m so that it reads in an integer p as a variable and then replaces the
majority rule above with a variable rule:

• A live cell dies in the next generation only if more than p of its immediate neighbours at the
present generation are dead; otherwise it stays alive.

• A dead cell comes to life in the next generation only if more than p of its immediate neighbours
at the present generation are alive; otherwise it stays dead.

Perform experiments with your program to see how the choice of p changes the outcome.

3. Modify the program majority.m to model the case where all cells outside the boundary of the universe
are assumed to be live instead of dead.

Think of further generalisations of the rules and add them to your program. The next item is one
suggestion:

4. Consider a modified population model where the fate of a cell is determined not just by its 8 immediate
neighbours but also by their immediate neighbours also (excluding the initial cell, of course), a total
of 24 cells in all. Call these cells the “near-immediate neighbours” and replace the majority rule by:

• A live cell dies in the next generation only if more than 12 of its near-immediate neighbours at
the present generation are dead; otherwise it stays alive.

• A dead cell comes to life in the next generation only if more than 12 of its near-immediate
neighbours at the present generation are alive; otherwise it stays dead.
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Rewrite the program to implement and visualise this model.

5. Can you devise a alternative version of the program majority.m where the matrices A, L and ANEW
are always n× n? Write such a program and test it by comparing the results with those produced by
majority.m.

7 The Matlab Symbolic Math Toolbox

Up till now all the computation we have done has been numerical or floating point computation. Numbers
which do not have a finite decimal expansion are approximated by finite decimal expansions, creating a
(small) error which remains throughout the computation. This error is sometimes referred to as rounding
error. An example of rounding error was given in Example 2 of Chapter 1 of the MATLAB manual.

Although much computation done in science and technology is of floating point type, there also exist
some computational systems which do not suffer from rounding error. Mathematical formulae, equations
etc are manipulated symbolically without approximation. MATLAB provides a toolbox (the Symbolic Math
Toolbox) which enables this type of computation. This is not available automatically with MATLAB - usually
it has to be purchased separately. The UNIX MATLAB system on BUCS has a large number of Symbolic
Math toolboxes available for use. These toolboxes are based on the Maple symbolic manipulator (see
www.maple.com). Maple is also available as a stand-alone package on BUCS UNIX machines (type xmaple
to the $ prompt).

We choose to introduce this type of computation via the MATLAB Symbolic Math Toolbox because students
will already be familiar with the MATLAB computational environment and hence they should be able to
progress more quickly than in a completely new environment. The student who feels confident with the
MATLAB Symbolic Math Toolbox is invited to progress on to working on Maple proper in order to gain
further experience with this type of computation.

7.1 Exercises on Chapter 7

1. Open up the MATLAB helpdesk and investigate the online help for the MATLAB Symbolic Math Toolbox.
Type demo to the >> prompt, click in the Toolboxes item and run the demo on the Symbolic Math Toolbox.

2. Read the help pages for the commands solve and ezplot. (You can do this via the helpdesk
or else by typing help sym/solve and help sym/ezplot to the >> prompt.) Hence solve the equation
x3 + 6x2 + 9x+ 2 = 0. Plot the graph of this equation.

3. Find out how solve can be used to solve simultaneous equations. Hence solve the three simultaneous
equations x+ 2y+ 3z = 1, 4x+ 5y+ 6z = 2, 7x+ 8y+ 8z = 3. What happens if the last equation is changed
to 7x+ 8y+ 9z = 3? What happens if it is changed again to 7x+ 8y+ 9z = 4? Can you explain the result?

4. Find out how to use the differentiation command diff and the substitution command subs. Consider
the function f(x) = sin(tan(x))− tan(sin(x)). Find f(0) and find also the derivatives of f , dif(x)/dxi, for
i = 1, . . . , 6. Evaluate each of these functions at x = 0. What do you find? Use the ezplot to draw a graph
of this function. Does the graph support your computations?

5. Look up the help page for the integrator int. Find the indefinite integral of the function
√

tan(x).
Use the command pretty to make a more readable output.

6. Read the help pages for the differential equation solver dsolve. Use it to solve the differential equation
d2y/dt2 + y = 0 for y = y(t). The solution will contain two arbitrary constants C(1) and C(2). Find the
particular solution of this differential equation which satisfies y = 1 and dy/dt = 1 at t = 0. Plot a graph
of the solution you have found. Repeat the computation but with the differential equation replaced by
d2y/dt2 + 100 ∗ y = 0.

7. Read the manual page for ezsurf. Plot the function 1/
√
x2 + y2.
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A Appendix: Solutions to selected exercises

All the programs mentioned below can be found in the directory ~masigg/matlab_docs/manual/solutions
and copied using the UNIX command cp.

Chapter 3

6. Program in guess.m.

8. Program in quadratic.m

Chapter 4

1. Solution in twice.m

To compute twice 2, for example, type (in MATLAB ) twice(2) .

2. Solution in swop.m.

To swop the the order of the numbers (1,π), type (in MATLAB ): [a1,a2] = swop(1,pi). The swopped
numbers will be loaded into the variables a1 and a2.

3. Solution in myexp.m.

To compute an approximation to e4, type myexp(4). This function will agree with the MATLAB built-
in function exp only up to about 7 decimal places. What happens if we compare exp(-20) with
myexp(-20) ?

4. Solution in mysqrt.m.

To compute an approximation to
√
π, type myexp(pi). Note that the program also takes care of the

cases when a < 0 (when there is no real answer) and a = 0 (when the iteration fails but the answer is
0). The MATLAB commands error and break are used in the handling of these cases.

B Appendix: Glossary of UNIX commands

The following commands are the subject of the above exercises. Note that the spaces in the statements of
these commands are crucial. You will get errors if you leave them out.

Creating a file: Type touch filename to create the file filename. If this file already exists then the
effect of the command will be to change the time when it was last updated to the present time. (You
can also create a file using an editor such as pico.)

Copying a file: Type cp ∼masigg/math0126/tutorial1.m ∼ma**** to copy the file tutorial1.m in masigg’s
directory math0126 to the home directory of ma****. If you have already changed directory into
∼masigg/math0126 you can simply type cp tutorial1.m ∼ ma****.

Listing a file: Type more tutorial1.m to list the contents of the file tutorial1.m on the screen. You
must be sitting in the directory in which tutorial1.m is stored. If not you must type the full name of
the file.
(e.g. more ∼masigg/math0126/tutorial1.m).

Removing a file: Type rm rubbish.m to remove the file rubbish.m. (Make sure you get it right, as you
will not get a chance to change your mind after removing it!)
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Creating a directory: Type mkdir directoryname to create a directory directoryname in the current
directory. (Note that a directory in UNIX is analogous to a folder in Windows/DOS.)

Changing directory: Type cd ∼masigg to change to the home directory of user masigg. Type cd
∼masigg/math0126 to change to directory math0126 belonging to masigg. Type cd to change to
your own home directory.

Finding what directory you are in: Type pwd to find your current working directory.

Listing the contents of a directory: Type ls to get the names of all the files in the current directory.
Type ls -l to get a listing of the files together with their read, write and execute permissions.

Changing the permissions on a file or directory: Type chmod u+x filename to add execute (x) per-
mission for the owner (u). Other versions of the same command can be constructed by replacing u
by g (group) or o (others) or replacing x by r (read) or w (write). Change + to - to take away the
permission rather than add it.

C Appendix: Advanced Programming Style in MATLAB

This section contains more advanced information on MATLAB programming style. It is designed to illustrate
performance improvements which may be obtained by replacing operations on scalars with operations on
vectors, wherever possible.

When you run a MATLAB script or function program by typing its name, it is automatically interpreted
into a program written in the language C. This program is compiled, linked and then run, all without you
having explicitly to ask for this. This is tremendously helpful and means that you can develop programs in
a fraction of the time it takes to develop the corresponding C code. But you may pay a price for this in the
run time of certain types of program. In particular, because of the way the interpreter works, loops created
with the MATLAB code (using the for, while or if commands) may run slowly, especially if they contain a
lot of arithmetic calculations.

Thus it is a very good idea to try to avoid such loops in your program where at all possible. It is not
always possible to avoid them but there are a surprising number of ways around the use of loops which may
not be obvious at first glance. The secret of good MATLAB programming is to try to identify situations when
the same arithmetic operations are being applied to a whole vector of numbers (or maybe even a matrix of
numbers). MATLAB contains many highly optimised built-in functions which allow you to operate on all the
elements of vectors and matrices with one command. These can be used to achieve effects which you may
first think can only be done using loops. Because you are using the highly optimised built in-functions your
program can run very much faster than if you wrote everthing elementwise inside loops.

This process of vectorising your code is relevant not only to the production of efficient MATLAB code but
also is useful for coding on certain special types of computer architecture which can exploit it.

The purpose of this section is to give you a sequence of examples illustrating these techniques.

Examples 1 and 2: Numerical integration using the composite trapezoidal rule.
To integrate a function f over the interval [0, 1], choose an integer n > 0 and set h = 1/n and xi =

ih, i = 0, . . . n. Then the composite trapeziodal rule is constructed by applying the trapezoidal rule on each
subinterval [xi−1, xi] to get: ∫ 1

0
f(x)dx ≈ 1

2
hf(x0) + h

n−1∑
i=2

f(xi) +
1
2
hf(xn) .

Computing the right-hand side involves doing the sum in the middle and then adding on the first and last
terms. Apparently the simplest way of doing this is by using a for loop. This is illustrated in program ex1.m,
in which we have also added a couple of lines to count and print out the number of flops (floating point
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operations) and cpu time (time taken by the processor) for the program. In this case we use the program to
compute the integral of exp(x)1/π. Here is a sample output from ex1.m:

n flops cputime approximation to integral

500 2503 0.03 0.856469345582
1000 5003 0.06 0.856469323888
2000 10003 0.10 0.856469318464
4000 20003 0.19 0.856469317108
8000 40003 0.40 0.856469316769
16000 80003 0.81 0.856469316685

Note that the cputime may vary a little each time the program is run, due to the timesharing property
of the machine. The cputimes reported are the averages of three consecutive experiments on the BUCS
machine amos. Here is the listing for the program ex1.m:
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Program ex1.m: script file to
Integrate exp(x)^{1/pi} over [0,1] using the composite
trapezoidal rule on a uniform mesh with n subintervals
use a loop to do the adding up

clear % remove any old variables
format long % prints out unformatted numbers to 12 digits

n = input(’type n: ’) % input n from the keyboard

h = 1/n; % uniform mesh

flops(0); % sets flop counter to 0
t = cputime; % records cputime

In the formula for the composite trapezoidal rule the
first and last terms are weighted by h/2:

integral = (h/2)*(exp(0)^(-1/pi) + (exp(1))^(-1/pi));

The remaining terms are weighted by h and can be done in a loop:

for j = 1:n-1 % repeats what’s inside the loop for j = 1,..,n

integral = integral + h*((exp(j*h)^(-1/pi)));

end % end of for loop

fprintf(’\n flops taken: %8.0f, CPUtime taken: %16.6g: \n’,flops,cputime-t)
fprintf(’\n Approximate integral : %16.12f\n’,integral)

end of program ex1.m

Note that the 1D trapezoidal rule with 4000 points is extremely accurate. We use such a large number
of points merely to illustrate the efficiency of the program.

The program ex1.m contains one loop inside which most of the computation is done. (Exercise: edit the
program so that it prints out the number of flops done inside and outside the for loop.) The loop is used
simply to add up the terms in the sum in the trapezoidal rule formula. A better way to do this is to use
the MATLAB built-in function sum. (Exercise: look up the help page for the command sum.) This command
is used in the program ex2.m, which is given as follows.
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program ex2.m: script file to
integrate exp(x) over [0,1] using the composite
trapezoidal rule on a uniform mesh with n subintervals
use the built-in function sum to do the adding up

clear % remove old variables
format long % prints out unformatted numbers to 12 digits
n = input(’type n: ’) % input n from the keyboard

h = 1/n; % uniform mesh

flops(0); % sets flop counter to 0
t = cputime; % records cputime

First and last terms are done manually

integral = (h/2)*((exp(0))^(-1/pi) + (exp(1))^(-1/pi));

the vector (1:n-1)*h gives the n-1 equally spaced points
inside the interval [0,1]
we need to evaluate the function (exp)^(-1/pi)
at each of these points and sum up the answers

integral = integral + h*sum((exp((1:n-1)*h)).^(-1/pi));

fprintf(’\n flops taken: %8.0f, CPUtime taken: %16.6g: \n’,flops,cputime-t)
fprintf(’\n Approximate integral : %16.12f\n’,integral)

end program ex2.m

Here is a sample output from program ex2.m. Note that the use of the built-in function sum has made
this program more than 10 times more efficient than program ex1.m. Note that the flop count is also
considerably lower for program ex2.m, although the difference to ex1.m on this indicator is not nearly as
great as for the cputime.

n flops cputime approximation to integral

2000 8007 0.01 0.856469318464
4000 16007 0.02 0.856469317108
8000 32007 0.03 0.856469316769
16000 64007 0.05
0.856469316685

Examples 3 and 4: Assembly of the Hilbert matrix.
The n× n Hilbert matrix, given by

Hi,j =
1

i+ j − 1
, i, j = 1, . . . n

is a famous example of a highly ill-conditioned matrix.
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Suppose we wanted write a program to assemble the Hilbert matrix for general n. Because matrices
have two indices (one each for the rows and columns) it is natural to do this using two nested loops as in
the program ex3.m:

program ex3.m : script to assemble the n x n Hilbert matrix

n = input(’type n: ’)

H = zeros(n,n); % Initialise H

t = cputime;

for i = 1:n % Use a double do loop to assemble H
for j = 1:n

H(i,j) = 1/(i+j-1);

end % end of j loop
end % end of i loop

fprintf(’\n time for assembling H: %16.8g\n’,cputime-t)

end of program ex3.m

Because of what we have learned from Examples 1 and 2 we may reasonably suspect that this program
will not be the most efficient way of handling the assembly of H because of the double loop inside which
computation is done. The program ex4.m addresses this problem by using built-in functions to assemble H
and avoiding loops entirely.

31



program ex4.m: script to assemble the n x n Hilbert matrix

n = input(’type n: ’)
H = zeros(n,n); % Initialise H
t = cputime;

H = ones(n,n)./((1:n)’*ones(1,n) + ones(n,1)*(1:n) - ones(n,n));

fprintf(’\n time for assembling H: %16.8g\n’,cputime-t)
end of program ex4.m

Exercise: check that you understand why program ex4.m has the same output as ex3.m. In doing so
it is very important to note that MATLAB distinguishes between a 1 × n row vector and an n × 1 column
vector. The product of the former times the latter (using the product function *) is a scalar, whereas the
product of the latter times the former is an n× n matrix!

The relative performance of programs ex3.m and ex4.m is illustrated in the following table:

n cputime (ex3.m) cputime (ex4.m)

100 0.36 0.01
200 1.41 0.05
400 5.56 0.31
800 21.59 1.38

Note that in both columns the cputime is growing with O(n2), but that the asymptotic constant in this
estimate is about 16 times bigger for ex3.m than for ex4.m. Put more simply, ex4.m is about 18 times faster
than ex3.m.

Of course a time of 22 seconds may be reasonable if your only aim was to compute the 800 x 800 Hilbert
matrix. However if proceses with loops lie inside programs which are called many times over it is clear that
a quite severe efficiency loss may be experienced. This can be alleviated by using the built-in matrix and
vector functions where possible.

Exercise: Look up the MATLAB built in function topelitz. Can you find a method for assembling the
n × n Hilbert matrix which is more efficient than ex4.m? Exercise: Look up the MATLAB built-in function
condest. Find an estimate for the condition number of H when n = 5, 10 and 20.
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