
  
      Chapter 9.    Ensemble based Data assimilation  
 
                                                  Youmin Tang 
 
In previous chapters, we introduced modeling techniques based on either observed data 
(statistical modeling) or numerical models (numerical modeling). In this chapter, we will 
talk the modeling and simulation using both approaches, that is, the observations will be 
incorporated into numerical models for optimal modeling and simulation. In statistics, 
this is called state-space estimation. In the earth science, it is called data assimilation. For 
example, a strict definition of data assimilation in atmospheric and oceanic sciences is 
“the process to estimate the state of a dynamic system such as atmospheric and oceanic 
flow by combining the observational and model forecast data (Talagrand 1997)”.  
 
Intuitionally, one might think that an optimal simulation scheme is to directly replace 
model variables by observations during numerical integrations. Such a direct replacement 
is usually not correct since observations are not perfect and contain errors.  A simple 
replacement will introduce observation errors into models, and ignore possible impact of 
observation errors on model behaviors, easily resulting in imbalance of model dynamics 
and physics. Thus, the application of observations into numerical models must consider 
both model and observation errors, which play a critical role in the assimilation process.  
 
We will start to display the assimilation concept by a simple example.   
 
For an unknown true state value, denoted by , there are two samples, denoted by  
(e.g. model simulation) and  (observation), which have the errors 

tT 1T

2T 1ε  and 2ε , 
respectively. Thus, we have: 
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If the measurement or observation is unbiased, and the variances of errors are known, i.e., 
 
E( 1ε )=E( 2ε )=0; Var( 1ε )= 1σ ; Var( 2ε )= 2σ .                (1)                                 
  
The question here is to seek an optimal estimate, denoted by (called analysis in the 
assimilation field), for  using  and .  This optimal estimate is the central issue of 
data assimilation.   

aT

tT 1T 2T

 
 There are several methods for this solution, as demonstrated below.  
  
7.1   The general framework of several assimilation approaches  
 
7.1.1 Least square method   



 
  Denote   .     should be unbiased. i.e., E( )=E( ), so  21 21 TaTaTa ** += aT aT tT
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The best (optimal) estimate should satisfy the below condition: 
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7.1.2 Variational approach  
 
In general, assimilation methods can be classified into two categories: variational and 
sequential. Variational methods such as three-dimensional variational (3D-VAR) method 
and four-dimensional variational (4D-VAR) method (Dimet and Talagrand 1986, 
Courtier et al. 1998) are batch methods, whereas sequential methods such as Kalman 
filter proposed by Kalman (1961) belong to the estimation theory. They both have had 
great success. The European Centre forMedium-RangeWeather Forecasts (ECMWF) 
introduced the first 4D-VAR method into the operational global analysis system in 
November 1997 (Rabier et al. 2000, Mahfouf and Rabier 2000, Klinker et al. 2000). 
EnKF was first introduced into the operational ensemble prediction system by Canadian 
Meteorological Centre (CMC) in January 2005 (Houtekamer et al. 2005).   
 
Below we will demonstrate the idea of variaonal assimilation by the above example. First, 
a cost function should be defined for variational assimilation approach. For this simple 
example, we define the cost function as below:  
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The solution is to seek an analysis , determined by a1 and a2, leading to the cost 
function minimum, i.e.,  minimum.  Obviously, we have  
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Eq. (3)  leads to 11
T

a
T

=
∂
∂ . Thus, the solution of (4), denoted by ,  satisfies  aT
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The above is a simple example of variaonal assimilation approach, where we only 
consider the analysis error (cost function) for a time point. However, in many cases, we 
need to consider the error growth during a period, i.e., the sum of errors during the period, 
in the cost function (2).  For example, the cost function is defined as below  
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Meanwhile   follows a dynamical model, saying , 

where F is a nonlinear dynamical model,  M is the integral operator, and  is the initial 
time.  Thus, the cost function value of (6) is only determined by . Namely, the 
objective here is to seek optimal initial condition  that enables (6) minimum, i.e., 
minimizing (6) subject to dynamical model F.  This is a standard conditional extreme 
problem which can be solved by Lagrange Multiplier approach. However the complexity  
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of dynamical model  excludes the possibility to get the analytical solution. We have to 
solve the minimum problem by aid of numerical methods, e.g., Newton conjugate 

gradient method. All of numerical methods require the gradient value (
0T

J
∂
∂ ) for solution. 

Again, it is almost impossible for obtaining analytical solution of 
0T

J
∂
∂  due to the 

complexity of F.  Usually researchers get the gradient value numerically using an 
approach of “tangent-linear and adjoint model”. The details on tangent-linear and adjoint 
model can be found in relevant references as cited above. It should be noticed that it is 



very difficult, even intractable sometimes, to construct tangent-linear and adjoint model 
in some cases. Thus, more and more researchers have started to apply sequential 
assimilation  methods instead of 4-D variational assimilation methods in recent years. 
Next we will introduce the concept of the sequential assimilation method using the above 
example.  
   
7.1.3 Bayesian approach  
 
Assume  is model prediction, which implies a prior probability distribution of truth T,  1T
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Given another observation , the posterior distribution of the truth can be expressed by 
Bayesian formula: 
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)( 2Tp  was ignored in (7) since it is independent of T.  The  is assumed to 

be Gaussian .  The objective here is to estimate the truth by maximizing 

the  a posteriori probability  (namely, we ask the truth to occur as much as 

possible --- maximum probability). Maximizing is equivalent to maximizing 
the logarithm of the right item of (7), i.e.,  
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 maximum                                                                                                                 (8)  
 

Obviously, maximum of  occurs at the minimum of the second item of right 
side hand of (8), i.e., minimum of the cost function  J of (2).  Thus, under the assumption 
of Gaussian distribution, maximizing a posterior probability (Bayesian approach) is 
equivalence to minimizing cost function  (varitonal assimilation approach). Further, if the 
model F is linear and the probability distribution is Gaussian, it can be proved that the 
Kalman filter is equivalent to 4-D Var adjoint assimilation method.  
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7.2 Optimal Interpolation (OI) and Kalman filter (KF) and KF-based 
derivatives  
 
7.2.1 Optimal Interpolation (OI)  
 
The most special case in data assimilation is that the forecast model is linear and the 
errors are Gaussian. The solution among sequential methods to this case is provided by 
Kalman filter. Typically the Kalman filter applies to the below state-space model: 
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where  M and h are linear operator of model and measurement. The x is model state and y 
is the observation. The tη  and tς  are the model errors and observed errors, respectively, 

which have variance:  var( tη )=< tη , > = Q, var(T
tη tς )=< tς , > =R. The objective here 

is to estimate model state x using y, making it close to true state (unknown) as much as 
possible.  

T
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Assuming the estimate of model state at a time step is a linear combination of model 
forecast  and observation , i.e., the filter itself is linear, so  

ax

bx 0y
 

][ bba hxyKxx −+= 0                                                             (10) 
 
Eq (10) is the standard expression of Kalman filter. K is called Kalman gain which 
determines the optimal estimate.  Before deriving the K, we denote the variance of the 
analysis error aε by , i.e.,   where  and  is the true 
value of model state. Similarly, observed errors and forecast errors are defined by 

 and , respectively. It should be noticed that the forecast 
error 
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bbB εε ,    ------------  background (forecast) error covariance  
>=< T

ooR εε ,    ------------  Observation error covariance  
  
Assuming the observation error is not related to forecast error, so  
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Clearly, we ask the K that can lead to  minimum.  Subtracting  on both sides of eq 
(10) leads to the below eq.  
 

aP trx
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  Namely,  
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T Here we used BB = aP.  The optimal estimate asks  the trace of  minimum, namely,  
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  where we invoked the below properties: 
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Thus we have the optimal estimate filter:  
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In the estimate (15) – (17), if the background error covariance  B is prescribed, the 
estimate is called optimal interpolation (OI). The OI does not involve  state equation  



(9) and B is unchanged during the entire assimilation process.  
 
7.2.2  Kalman filter   
 
Now, we consider B in (16) change with the assimilation cycle. This is more realistic 
since the model prediction errors should be expected to decrease with the assimilation.   
 
From Eq. (9), we have  
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  Eq (18)  indicates that even the true value is input at a time step, model can’t get a true 
value for next step due to model bias tη . Eq (19) shows a standard procedure for the 
model prediction of next step starting from the analysis of previous step.  
 
  Subtracting (18) from (19) produces: 
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      The above equation considers the evolution of the background (prediction) error 
covariance with the time, controlled by the dynamical model operator M. The equations 
(15)-(19) plus the above equation constitutes the framework of Kalman filter for eq (9), 
namely 
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Sometimes, B is also denoted by fP . The detailed procedure of Kalman filter (KF) is like 
below: 



(i) Q and R are specified. For convenience, Q and R are usually assumed to be 
diagonal matrix. An initial value of B is given, e.g., QBt ==0 ; 

(ii)  K is calculated using (21); 
(iii)  The analysis ax  is obtained using (20); 
(iv)  prediction (background) error covariance B is calculated; 
(v)  The model (9) is integrated forward using (24); 
(vi)  Repeat (ii) to (v) till the end of the assimilation period. So, KF is a recursive 

algorithm  
      
7.2.3  Extended Kalman filter (EKF)  
 
In deriving eqs. (12) and (20), we assume the state model M and measurement model h 
are both linear. Further, we also assume the error has Gaussian distribution. Therefore, 
classic KF only works for linear models and Gaussian distribution. If the dynamical 
model and measurement model are not linear, we can’t directly apply for KF. Instead, 
linearization must be performed prior to applying for KF. The linearized version of KF is 
called extened KF (EKF), which solves the below state-space estimate problem: 
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where F and H are nonlinear models.  Assume the error is additive noise, i.e.,  
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The filter is still assumed to be linear, i.e., 
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Eq (30) is identical to Eq (10).  Similarly, subtracting  on both sides of eq (30) leads to 
the below eq.: 

trx
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which is the same as  eq. (12). Following the same derivation as that for eq (12), we can 
obtain the equations similar to (15) to (17).  Therefore, if the measurement model H is 
nonlinear, the KF can be still applied with a linearization of H.   
 
Similar to (18) and (19), the state model is as below: 
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Subtracting (32) from (33) produces: 
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Comparing (19a) with (34) reveals that (20) still works here. Thus, the EKF can be 
summarized as below: 
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The procedure to perform EKF is similar to that for KF, as listed above. The disparities  
and similarities between EKF and KF include i) Kalman gain K has the same form for 
both, especially the linear or linearized measurement model should be used; ii) the update 
equation of model error covariance has the same form, with linear and linearized state 
model used; iii) forecast model is different, with KF using linear eq. (25) and EKF using 
nonlinear model (38); iv) the Kalman filter itself is different, linear measurement model h 
used in KF (eq. (21)) and nonlinear model H in EKF (eq. (34)).   
It should be noticed that EKF is only an approximate KF for nonlinear state model.  
 
7.2.4  Ensemble Kalman filter (EnKF)   



    
A challenge in EKF is to update background (prediction) error covariance by (37), which 
requires the linearization of nonlinear model. The linearization of nonlinear model is 
often difficult technically, and even intractable in some cases, e.g. non-continuous 
functions existing in models. Another drawback of EKF is to neglect the contributions 
from higher-order statistical moments in calculating the error covariance.  
 
To avoid the linearization of nonlinear model, the ensemble Kalman filter (EnKF) was  
introduced by Evensen etc. (Evensen 1992; Houtekamer and Mitchell 1998), in which the 
prediction (background) error covariances B of (37) are estimated approximately using an 
ensemble of model forecasts. The main concept behind the formulation of the EnKF is 
that if the dynamical model is expressed as a stochastic differential equation, the 
prediction error statistics, which are described by the Fokker–Plank equation, can be 
estimated using ensemble integrations (Evensen 1994, 1997); thus, the error covariance  
matrix B can be calculated by integrating the ensemble of model states. The EnKF can 
overcome the EKF drawback that neglects the contributions from higher-order statistical 
moments in calculating the error covariance. The major strengths of the EnKF include the 
following: (i) there is no need to calculate the tangent linear model or Jacobian of 
nonlinear models, which is extremely difficult for ocean (or atmosphere) general 
circulation models (GCMs); (ii) the covariance matrix is propagated in time via fully  
nonlinear model equations (no linear approximation as in the EKF); and (iii) it is well 
suited to modern parallel computers (cluster computing) (Keppenne 2000). EnKF has 
attracted a broad attention and been widely used in atmospheric and oceanic data 
assimilation.  
 
Simply saying,  EnKF used the below formula to replace (37) while other equations are 
kept the same, i.e,  
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where represents the system state vector at step t, and M is the ensemble size. The use 
of (41) avoids processing the M, the linearized operator of nonlinear model. In eq. (35), 
the measurement function h is still linear or linearized, which causes concern. To avoid 
the linearization of nonlinear measurement function, Houtekamer and Mitchell (2001) 
and Hamill (2006) wrote Kalman gain (35) by  
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(42) and (43) allow direct evaluation of the nonlinear measurement function h in 
calculating Kalman gain. However, (42) and (43) have not been proven mathematically, 
and only were given intuitionally. Tang and Amabadan (2009) argued that (42) and (43) 
approximately hold if and only if    
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Under the conditions of (44) and (45), Tang and Amabadan (2009) argued (42) and (43) 
actually linearize the nonlinear measurement functions H to h. Therefore, direct 
application of the nonlinear measurement function in (42) and (43) in fact imposes an 
implicit linearization process using ensemble members. In next discussions, we will see  
that (42) and (43) have good statistical foundations and hold without requiring conditions 
(44) and (45).  
 
Thus, the equations and procedure of EnKF are summarized as below: 
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i) put perturbations on initial conditions and integrate the model, i.e.,       
            where i=1,2…M (ensemble size) and is the initial condition;  )( i

i xFx γ+= 01 0x
ii) using (48), (49) and (50) to calculate Kalman gain K; 
iii) calculate analysis using (46) after K is obtained. It should be noted that each 

ensemble member produces an analysis;  the average of all analyses (M) can be 
obtained;  



iv) using (52) to obtain new ensemble members for next round analysis. Here iγ  is 
perturbation on the ith member. 

v) repeat ii) – v) until the end of assimilation period.    
vi) It should be noted that the observation should be treated as a random variable 

with the mean equal to 0 and covariance equal to R=< >Tεε . This is why there 
is iε  in (46). Simply, iε  is often drawn from a normal distribution 

),( RN~i 0ε  
From the above procedure, we find that eq (47) is not directly applied here. Instead, we 
use (49) and (50) to calculate K. This is because i) (48) and (49) avoid the linearization of 
nonlinear model; ii) avoid the explicit expression of matrix B, which is often very large 
and can’t be written in current computer sources in many realistic problems. This should 
be noticed that (48) and (49) avoid writing B directly. The measurement function H, 
projecting model space (dimension) to observation space (dimension), greatly reduce the 
number of dimension.     
 
7.2.5 Some remarks on EnKF   
 
(1) Initial perturbation  
 
The success of EnKF highly depends on the quality of ensemble members produced by 
initial perturbations. It is impractical to represent all possible types of errors within the 
ensemble because of the computational cost, the method of generating initial 
perturbations must be chosen judiciously. i) The first issue is the amplitude of initial 
perturbations. Usually the following two factors are considered when selecting the 
amplitude of initial perturbations: the amplitude of observation error and the amplitude of 
model errors induced by model parameters and uncertainty in model physics. If a model 
is perfect, the amplitude of the perturbations should be the same as the amplitude of 
observation errors. This combined error is used to determine the amplitude of 
perturbations. ii) When the perturbation amplitude is determined, the practical initial 
perturbation field generating each ensemble member could be constructed by a 
normalized pseudorandom field multiplied by the prescribed amplitude. Considering the 
spatial coherence, the pseudorandom field is red-noise as proposed by Evensen (2003), 
summarized as below:   
 
i) Calculate the statistical characteristics for the pseudorandom field to meet its variance  
of 1 and the mean of 0.  
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where N and M are the number of grid points in x-axis (lon.) and y-axis (lat.). For 
example, if your model domain is 114*42,  N=114 and M=42.  The l and p are wave-
number, changing from 1 to the maximum value of N/2 and M/2. y  and ΔΔx are the 
interval of two adjacent points, often set to 1.  is the de-correlation length.  The 
purpose of (53) is to derive the for the other feature:  
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ii)  After c and  are obtained,  we can construct a 2-dimension pseudorandom field: 2σ
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While  cover the whole domain, (55) produce a  2-dimensional random filed 
with spatial coherence structure and the variance of 1 and mean of zero. If the realistic 
uncertainty (error) has an amplitude

mn yx , mn *

β , the  perturbation should be Wβ . Similarly, (55) 
is often used for the error perturbation iγ  used in (52).   
 
Sometimes, we need to consider the vertical coherence of pseudorandom fields between 
adjacent levels in oceanic models. A simple method for this purpose is to construct the 

pseudorandom field at the kth level (k=1,2,3,…,L) by following equation:  kε
       
        kkk W2

1 1 ααεε −+= −                                                                       (56)  
 

where  (k=1,…,L) is the pseudorandom field at the kth level without considering 
vertical coherence, constructed using the above method. Initially, for the surface 

perturbation (k=1),  the vertical coherence is not considered, i.e., 

kW

0α = , since does 

not exist. Eq (4) indicates that a practical pseudorandom at the kth level ( ) is 

composed of and . As such the is correlated with , i.e., the practical 

pseudorandom fields of two adjacent levels (  and ) are coherent with each other. 
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Their correlation or coherent structure is determined by the coefficient [0,1]α ∈ . Eq (56) 

generates a sequence that is white in the vertical direction if 0α =  (i.e., = ), but a 

sequence that is perfect correlated in vertical if 

kε kW

1α = (i.e., = ).  Eq (56) is also 
often used to construct random fields that is temporally coherent, for example, a 
continuous random noise that has coherence in time , as used for 

k −kε

i

ε 1

γ   in (52) (Evensen 
2003). The random noise iγ  in (52) can also be replaced by the random noise imposed in 
model forcing.  For example, the random noise is continuously added to wind forcing for 
oceanic models. Even for some atmospheric models with transition processes, there are 
inherent random noises making iγ  not necessary. One important criteria for iγ  and the 
amplitude β  is to examine ensemble spread by some sensitivity experiments.  
 
(2) The computational cost of Kalman Gain.   
 
The Kalman gain, as expressed by (48), has dimension of m*m, where m is the number of 
model variables of observation. In many realistic problems, m is a very large number (m 
>> M), making the inversion very expensive.  
 
A simple procedure is to rewrite the Kalman gain K, as below: 
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 Where  indicates the model ensemble predictions removed the ensemble mean 

( = [

x
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i − xx ], i=1,2…M, M is the ensemble size);  TR 1
M

= εε * was invoked here.  

'x=If we assume the ensemble prediction error ( xxxx bbtr −≈−b ) is not correlated to 

observation error, i.e., , the following is valid (Evensen 2003),  Th ε'*x
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 )'x( ε+h has dimension m*M. Usually ensemble size M is much less than m. Using 
SVD technique, we have 
 

 ∑+ TVh )'x( ε =U  
 
  The Eq. (58) then becomes  
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where U and are the eigenvector and the square of eigenvalues of Λ )'x( ε+h . There are 
M non-zero eigenvalues for )'x( ε+h , therefore the dimension is not large, allowing us t
efficiently compute the inversion for a global analysis in most practical situation.  

o 

 
(3) Local analysis: Localization of EnKF 
 
 To avoid the problems associate with a large m, a so-called local EnKF (LEKF) is 
proposed to use. In LEKF, only measurements located within a certain distance from a 
grid point will impact the analysis in this grid point. This allows for an algorithm where 
the analysis is computed grid point by grid point. Mitchell et al. (2002) found that severe 
localization could lead to imbalance, but with large enough radius of influence (de-
correlation length) for the measurements, this was not a problem.  
 
 (4) Inflation approach  
   
 The forecast error covariance is defined by (41):  
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Eq. (60) is an approximation to B using forecast ensemble. Due to limited computational 
source, the ensemble size M is often restricted to a small value for many realistic issues. 
A small ensemble size may cause a very small ensemble spread, causing the  
approximation of B by (60) is seriously underestimated. To solve this problem, the B is 
multiplied by a inflator factor, λ  (slightly greater than 1). λ  is an empirically d
such as some sensitivity experiments, with the typical value of 1.01. The 

etermined, 
λ B is used to

replace B in EnKF formula (46) – (52).  This approach is equivalent to the below 
approach  
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(5) Ensemble square root filter (EnSRF)  
 
 In EnKF introduced in section 7.2.4, the observation assimilated into dynamical model 
should be treated to be stochastic variable, as expressed by iy ε+0

y

 in (46). It is a must if 
the classic EnKF algorithm, as expressed by (46) – (52), is used. It has been proven that if 
the EnKF assimilates deterministic observations (i.e., observation  not changed at each 
ensemble member), the analysis error covariance will be systematically underestimated, 
typically leading to filter divergence, as indicated by below (Houtekamer and Mitchell 
1998; Burgers et al. 1998).  
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 Eq (61) gives the analysis error covariance if the observed is not perturbed. Comparing 
(61) with  (51), a theoretically unbiased estimate,   is always less than . aP*

aP
 
However, the perturbed observation approach (i.e., iy ε+0 ) introduces an additional 
source of sampling error that reduces analysis error covariance accuracy and increases the 
probability of understanding analysis error covariance (Whitaker and Hamill 2002; 
Tippett et al. 2003). Thus an approach that only uses a single observation realization but 
avoids systematical underestimation of analysis error covariance was pursued. There are 
several approaches to implement this goal, as summarized by Tippett (2003). Below, we 
will introduce an approach developed by Whitaker and Hamill (2002), called EnSRF.  
 

Denote the deviation of analysis from the analysis mean by  aaa xxx −='
. It is easy to 

write  
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Where 000 yyy −=' . If a single observation realization is assimilated in all ensemble 

members,  and  00 ='y
  

    '''' )~(~
bbba xhKIhxKxx −=−= ,      

      
    T

a hKBhKIP )~()~(* −−= 1    
 
     We seek a definition for K~  that will result in an ensemble whose analysis error 
covariance satisfies (51), i.e.,  
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  Therefore, EnSRF is summarized as below: 
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It should be noted that there are two Kalman Gains used in EnSRF, the original K for 
ensemble analysis mean, and a new K~ .  Eq (65) indicates that one single observation  
 realization of classic EnKF has the same ensemble analysis mean as stochastic 
observations or EnSRF.  
 
7.2.6 General form of ensemble-based filters for Gaussian models 
 
In proceeding sections, we introduced Kalman based filters. Originally Kalman filter 
applies linear model and linear measurement function. Further, EKF and EnKF were 
developed to address nonlinear models. However the measurement functions are still 
assumed to be linear. Eqs (49) and (50) can directly evaluate nonlinear measurement 
functions but they were proposed intuitionally and not proven yet. In this section, we  
will present a general form for nonlinear measurement function, and further prove Eqs 
(49) and (50) mathematically using the general form.   
 
For generality, we assume the below model:  
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where  M and h are nonlinear operator of model and measurement. The x is model state 

and y is the observation. The tη  and tς  are the model errors and observed errors, 

respectively, which have variance:  var( tη )=< tη , > = Q, var(
T

tη tς )=< tς , > =R.  
T

tς



Assuming the estimate of model state at a time step is a linear combination of model 

forecast  and observation , i.e., the filter itself is linear, so  

ax

bx 0y
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The optimal estimate asks the trace of  minimum, namely,   aP
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Thus we have the optimal estimate filter:  
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Eqs. (78)-(81) give a general algorithm for Gaussian nonlinear model and nonlinear 
measurement function. Eq. (81) assumes the noise is additive. Eq. (79) can be interpreted 
as the cross-covariance between the state and observation errors, and the remaining 

expression can be interpreted as the error covariance of the difference between 

model observation and observation itself. Here, y’ is defined as the error between the 
noisy observation  and its prediction .  

''yxP

TyyP ''
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In the standard KF the state error covariance is calculated during the time update process 
and is updated during the measurement update process. Updating the error covariance 
matrix is important because it represents the change in forecast error covariance when a 
measurement is performed. The EnKF implementation does not require the covariance 
update equation because it can directly calculate the updated error covariance matrix 
from a set of ensembles. Evensen (2003) has derived the analysis covariance equation, 
which is consistent with the standard KF error covariance update Eq. (37). But the true 
representation of the updated error covariance requires a large ensemble size, which 
is often computationally infeasible. The above algorithm makes use of the reformulated 
error covariance to update Eq. (80) and chooses the ensembles deterministically in such a 
way that they can capture the statistical moments of the nonlinear model accurately; in 
other words, the forecast error covariance Eq. (78) is computed using deterministically 
chosen samples, called sigma points. In a broad sense, the above algorithm implicitly 
uses the prior covariance update equation (or the analysis error covariance matrix) to 
calculate the forecast error covariance. Thus, the above algorithm is fully consistent with 
the time update and measurement update formulation of the Kalman filter algorithm. In 
the next subsection we will discuss a new type of Kalman filter, called Sigma-Point 
Kalman filter, based on the above algorithm. 
 
If the model is linear, obviously  
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If the measurement function is linear, i.e.,   
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Eq. (82)  is identical to Eq. (48). Therefore, Eq. (48), or KF, EKF and EnKF, is a special 
case of Eq. (82) under the assumption of linear measurement function.   
 
7.2.7 Sigma-Point Kalman filters 
 
EnKF was developed in order to overcome the linearization of nonlinear models. As 
introduced earlier, the idea behind EnKF is to ‘integrate’ Fokker-Plank equation using 
ensemble technique to estimate the forecast error covariance. Theoretically if the 
ensemble size is infinite, the estimate approaches the true value. However in reality, we 
can only use finite ensemble size, even very small size for many problems, leading to 
transaction errors. Thus, some concerns exist such as how to wisely generate finite 
samples for the optimal estimate of prediction error covariance?; how much the least 
ensemble size is for an efficient estimate of error covariance?; and how much the true 
error covariance can be taken into account in the EnKF, given an ensemble size?  In this 
section, we will introduce a new ensemble technique for EnKF, which is called Sigma-
point Kalman filter (SPKF). 
 
The so-called sigma-point approach is based on deterministic sampling of state 
distribution to calculate the approximate covariance matrices for the standard Kalman 
filter equations. The family of SPKF algorithms includes the unscented Kalman filter 
(UKF; Julier et al. 1995; Wan and van der Merwe 2000), the central difference Kalman 
filter (CDKF; Nørgaard et al. 2000b; Ito and Xiong 2000), and their square root versions 
(Haykin 2001; van der Merwe and Wan 2001a,b). Another interpretation of the sigma-
point approach is that it implicitly performs a statistical linearization (Gelb 1974; 
Lefebvre et al. 2002) of the nonlinear model through a weighted statistical linear 
regression (WSLR) to calculate the covariance matrices (van der Merwe and Wan 
2001a,b; van der Merwe et al. 2004). In SPKF, the model linearization is done through a 
linear regression between n number of points (called sigma points) drawn from a prior 
distribution of a random variable rather than through a truncated Taylor series expansion 
at a single point (van der Merwe et al. 2004). It has been found that this linearization is 
much more accurate than a truncated Taylor series linearization (Schei 1997; Lefebvre et 
al. 2002; van der Merwe and Wan 2001a). 



Eqs. (78) – (81) construct a core of SPKF. A central issue here is how to generate the 
optimal ensemble members for applying these equations. There are two basic approaches 
aforementioned, UKF and CDKF.  For an L-dimensional dynamical system represented 
by a set of discretized state space equations of (75), it has been proven that 2*L+1 
ensemble members, constructed by UKF or CDKF, can precisely estimate the mean and 
covariance. We ignore the theoretical proof and only outline the UKF scheme as below. 
 
Denote t2L+1 sigma -points at time k for producing ensemble members by   

],,[ ,,,
−+= ikikkk χχχχ 0 , i=1,2,…,L ; the model state by  as in (75).  For simplicity, 

we ignore the time k in below expressions: 
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where i=1,2,…L,  ςη NNNL x ++=

xP
:  the dimension of model states, model noise and 

measurement noise.  is the covariance of  model state (analysis) at the previous step. x

The augmented state vector ],,[ ςηxX = , a L-dimensional vector. i
a

kXP ][ ,  is the ith row 
(column) of the weighted matrix square root of the covariance matrix (L dimension).  is 
a scale parameter which will be specified later. The key point here is to produce (2L+1) 
ensembles by integrating model (80) with 2L+1 initial conditions of (83)-(85); by the 
ensembles the filter (78)-(80) will be performed.  
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The procedure is summarized as below: 
 

1) Initially, perturb a small amount, denoted by 0x~  on initial condition 0x , using  
Evensen (2003) method; also randomly generate perturbation for q and r, drawn 
from normal distributions of N(0,Q) and N(0,R). Thus, we can construct the 
augmented state vector and corresponding covariance (k=0); 
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          From the above formula, we can calculate sigma-points using (83) and (85). Note    



           that each set of sigma-points, denoted by , has dimension L, e. g, the ith sigma-  kχ

           point can be expressed by   ],,[)( ,,,
sig

ik
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2) Using the 2L+1 sigma-points to integrates state-space model. For the ith  sigma-

point, we have ), . When i varies from 1 to 2L+1, we 
produce 2L+1 ensemble members, from which analysis mean and covariance will 
be obtained, which are in turn used to produce sigma-points for next step (k+1), to 
form a  recursive algorithm.   
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     Supposed we have 2L+1 ensembles, the analysis mean and the covariance are   
     calculated as follows 
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3) From , as well choosing random perturbation for model noise 
1+k

aP  η and observation 
noise ς , drawn from Gaussian distribution of N(0,Q) and N(0,R), we calculate sigma-
points using (83)-(85), and repeat 2), …and so on  until the assimilation is completed for 
the entire period.  
 
Remakes of SPKF 
 

1) SPKF was introduced into the earth sciences very recently (e.g., Ambadan and 
Tang, 2009; Luo and Moroz 2009). Until now, there have not a realistic 
application of SPKF on atmos./ocean. sciences, although some basic experiments 
were performed using a highly simplified Lorenz model.  
 

2) In SPKF, sigma-points are 2L+1, here L is the dimension of the augmented state 
vector ],,[ ςηx , i.e., X = ςη NNNL x ++= : model state, model noise and 

observation noise. Usually L is the odder 4310 − , so the computational expense is a 
huge challenge in SPKF for realistic problems. A solution is to use the truncated 
singular value decomposition (TSVD) to reduce the sigma-points. As seen the eqs 
(83) –(85), the a

kXP ,  is a  L*L matrix, where the first subscript indicates the 
ensemble member and the second subscript means a L dimensional vector for 

model inputs used in  )( . Thus the dimension of a
kXP ,  

determines the ensemble size. Supposed that a
kXP , can be expressed as  
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 Truncating the first m modes, so we can write the sigma-points (83) –(85) as below: 
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i=1,2…m. Thus the ensemble size becomes 2*m+1.  Some fast SVD algorithms can 
be used here such as Lanczos and block Lanczos (Chapter 9 of Golub and Loan). The 
application of the truncated SVD was also found in Hansen 1987; Ehrendorfer and 
Tribbia 1997).  
 

3) Further simplification of 
a

kXP ,  based on its definition (or Cholesky 

decomposition), i.e., 
Ta
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       (100)-(102) transfer the covariance matrix  to data matrix  in constructing  a
kXP ,

a
kXA ,

        sigma-points. The largest advantage is to avoid explicit expression of , which  a
kXP ,

        could be a very large matrix beyond memory of current computers. However (100)- 

       (102) can’t reduce the ensemble size (2L+1). A solution is to decompose such  
a

kXA ,

        as Principal Component Analysis, as used in  Ambadan and Tang, 2009).  Further  
       discussions on optimal construction of sigma-point should be conducted for a  
        realistic application of SPKF.  
  

4) Again, we look at Sigma-points generations, i.e., eqs (97)-(99) or (100)-(102). As 
we defined, an augmented matrix is applied here: ],,[ ςηxX = . Without losing   

 



 the generality, we take eqs (100) –(101) and rewrite them as below: 
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Similarly, we can write (102) using individual variables.  From (103) and (104), we 
can draw,  
 

i) Noise and model state analysis in constructing sigma-points at k step are  
independent; It should be noted that  is from eq. (93) and noise are draw 
from a Gaussian distribution. If we assume that  is independent with 

model noise and observation noise,  is a diagonal block matrix, i.e., 

k
ax
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ii) There are not update eqs. for noise so they are randomly taken from 
Gaussian distribution, i.e., the index i in iη  and iς actually does not have 

meaning. Thus, it should be a reasonable assumption that the iη  and iς , 

Used for constructing sigma-point at  time step k+1, is not related to   kXP ,

(time step of k). Thus, (105) always hold unless the noise is designed with 
the consideration of temporal coherence such as red noise in time.  
 

iii) Based on i) and ii), the actual ensemble size is 2* xN +1, not 2*L+1. This is 
because neither model noise nor observation noise can produce ensemble 

alone. Model error iη and i
f

kx )(  must jointly together to produce ensemble 
of x  N

. 
Let’s see this in details: 
 



Initial time:  initial perturbation on model states  , plus drawn noise for 
model errors and measurement errors          

0x
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                 Theoretically there are 1)(2 +++ ςη NNN x  ensembles, denoted by the ith  

                 column of  (i=1,…,0,XP ),....,1  ;,...1  ; ςηηη NNNNNNNN xxxx +++++   
                 and formula (83) – (85). However, at the ith column, the elements of the row,  
                 indicating the model inputs  ( ),, ςηx , have the non-zero values of .  xN

                 Obviously, the sigma-point of zero-values makes                )()( ,
sig

iki
f

k Mx χ=+1

                 not sense, thus, the actual ensemble size is 2* +1.  xN
  
5)  When truncation technique is applied to reduce the ensemble size, the ensemble  
     spread might be shrunk due to relatively small ensemble size. Like EnKF, an  
     inflation approach of SPKF might be helpful. It is interested in developing such a  
     scheme for SPKF. 
 
6)   Similar to EnKF, it is interested to develop a square root SPKF which can avoid the  
      perturbation of observation. There is already the square root SPKF but it is not clear  
      such a square root SPKF has the same sense as EnKF. A further configuration is  
      expected from readers. 
 
7)   Again, we can localize SPKF, like localized EnKF, to solve memory and computation   
      issues.  
 
 8)   All of the remarks of SPKF are from my personal thinking and understanding. It is  
       interesting to further test and validate these ideas and properties using simple models. 
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