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Chapter 7 Nonlinear multivariate statistical analysis

7.1 Nonlinear PCA (NLPCA)

If the data are in the form x(¢) = [#1,..., x|, where each variable z;,(: = 1,...,1), is a
time series containing n observations, the PCA method looks for u, a linear combination

of the x;, and an associated vector a, with

u(t) =a-x(t), (1)
so that
{||x(t) — au(t)||*} is minimized, (2)

where (---) denotes a sample or time mean. Here u, called the first principal component
(PC), is a time series, while a, the first eigenvector of the data covariance matrix, (also
called an empirical orthogonal function, EOF), often describes a spatial pattern.

The fundamental difference between NLPCA and PCA is that NLPCA allows a non-
linear mapping from x to w whereas PCA only allows a linear mapping. To perform
NLPCA, a nonlinear mapping is made, i.e.

u(t) = f(x(t), w) (3)
where f denotes the nonlinear mapping function from the data space to the u (the non-
linear PC) space, and w, the parameters determining the f structure inherent to the
dataset. Denoting ¢ as the inverse mapping function from u to the data space, we have

x'(t) = g(u, W) (4)
where g is the f-adjoint operator. For linear PCA, g is simply the transpose of f. x'(t) is

the approximation to dataset x(¢), when the 1-D PC space is used to describe the dataset.
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As in linear PCA, the cost function defined by the error between x(t) and x'(t) is used to

determine the parameters w and W, i.e.
{||x(t) — x'()]|*) is minimized. (5)

An important issue in NLPCA is how to derive the nonlinear operators f and g from
the inherent structure of the dataset. This has been implemented by neural networks

(NN) (Kramer 1991), since NN can simulate any nonlinear continuous functions (Cybenko

1989).

The NLPCA is basically a standard feed-forward NN with 4-layers of
transfer functions mapping from the inputs to the outputs.

Fig. 1:

(a) A schematic diagram of the NN model for calculating nonlinear PCA
(NLPCA). There are 3 ‘hidden’ layers of variables or ‘neurons’ (denoted by circles) sand-
wiched between the input layer x on the left and the output layer x" on the right. Next to
the input layer is the encoding layer, followed by the ‘bottleneck’ layer (with one neuron
u), which is then followed by the decoding layer. A nonlinear function maps from the
higher dimension input space to the lower dimension bottleneck space, followed by an in-
verse transform mapping from the bottleneck space back to the original space represented
by the outputs, which are to be as close to the inputs as possible by minimizing the
cost function J = (||x — x'||?). Data compression is achieved by the bottleneck, with the
bottleneck neuron giving u, the nonlinear principal component (NLPC).
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One can view the NLPCA network as composed of two standard 2-layer

feed-forward NNs placed one after the other. The first 2-layer network maps
from the inputs x through a hidden layer to the hottleneck layer with only one
neuron u, i.e. a nonlinear mapping u = f(x). The next 2-layer feedforward NN
inversely maps from the nonlinear PC (NLPC) u back to the original higher
dimensional x-space, with the objective that the outputs x" = g{u) be as close
as possible to the inputs x, where g{u) nonlinearly generates a curve in the
x-space, hence a 1-dimensional approximation of the original data. Because the
target data for the output neurons x" are simply the input data x. such networks
are called auto-associative NNs. To minimize the MSE of this approximation,
the objective function J = {||x — x'[|?} is minimized to solve for the weight
and offset parameters of the NN. Squeezing the input information through a
bottleneck layer with only one neuron accomplishes the dimensional reduction.

In Fig.1, the transfer function f, maps from X, the input column vector of

length /, to the first hidden layer (the encoding layer), represented by A, a
column vector of length m, with elements

R = f ((W®x + by,
& ({ ) ©)

where W& is an m x | weight matrix, b'®, a column vector of length m
containing the offset parameters, and & = 1, ... .m. Similarly, a second transfer
function fy maps from the encoding layer to the bottleneck layer containing a
single neuron. which represents the nonlinear principal component .,

w= fo(w® . n@ 4 5y

(7)

The transfer function f; is generally nonlinear {usually the hyperbolic tangent
or the sigmoidal function, though the exact form is not critical), while f5 is
usually taken to be the identitv function.

Next, a transfer function f3 maps from u to the final hidden layer {the
decoding layer) hi),
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B = fy((wu + b))

©))
(k= 1,...,m); followed by f, mapping from h'*) to x’, the output colnmn
vector of length I, with
2! = f((WR™ +5™),).
9)

The objective function J = {||x — x'||?} is minimized by finding the optimal
values of W), b | wi® 5 wiw) p) W and B™. The MSE (mean
square error) between the NN output x" and the original data x is thus min-
imized. The NLPCA was implemented using the hyperbolic tangent function
for f; and f3. and the identity function for fy and fy. so that

w=w® . n@ 45

(10)

! — (W@R™ 4 ™), |
;1']- I'-\. :' A (11)

Furthermore, we adopt the normalization conditions that (u) = 0 and (u?) =

1. These conditions are approximatelv satisfied by modifving the objective
funetion to

J = {lx = X|%) + () + ((u?) — 12

(12)

The total number of (weight and offset) parameters used by the NLPCA is
2lm 4+ 4m + 1 + 1, though the number of effectively free parameters is two less
due to the constraints on (u) and (u?).

The choice of m, the number of hidden neurons in hoth the encoding and

decoding lavers, follows a general principle of parsimony. A larger m increases
the nonlinear modelling capability of the network, but could also lead to over-
fitted solutions (i.e. wiggly solutions which fit to the noise in the data). If f,

is the identity function, and m=1, then (11) implies that all x,' are linearly
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related to a single hidden neuron, hence there can only be a linear relation be-
tween the x! variables. Thus, for nonlinear solutions, we need to look at m = 2.
Actually, one can use different numbers of neurons in the encoding layer and
in the decoding laver; however, keeping them both at m neurons gives roughly
the same number of parameters in the forward mapping from x to u and in the
inverse mapping from u to x". It is also possible to have more than one nearon
at the bottleneck layer. For instance, with two bottleneck neurons, the mode
extracted will span a 2-D surface instead of a 1-D curve.

The transfer function tanh has the property that given » in the interval [—L, L],
one can find a small enough weight w. so that tanh(wzr) = wx, i.e. the transfer
function iz almost linear. Similarly, one can choose a large enough w, so that
tanh approaches a step function, thus vielding Z-shaped solutions. If we can
penalize the use of excessive weights, we can limit the degree of nonlinearity in
the NLPCA solution. This is achieved with a modified objective function

J=(lx =%+ @)+ ((?) = )2+ PY_ (W),
= (13)

where P is the weight penalty parameter. A large P increases the concavity of
the objective function, and forces the weights W) to be small in magnitnde,
therebv vielding smoother and less nonlinear solutions than when P is small or
zero. Hence, increasing P also reduces the number of effectively free parameters
of the model. We have not penalized other weights in the network. In principle.
w'®) also controls the nonlinearity in the inverse mapping from = to x’. However
if the nonlinearity in the forward mapping from x to u is already being limited
hv penalizing W'®) | then there is no need to further limit the weights in the
inverse mapping.

The percentage of the variance explained by the NLPCA mode is given by

(14)

with X heing the mean of x.
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In effect, the linear relation (v = e - x) in PCA is now generalized to u =
f(x), where f can be any nonlinear continuous function representable by a
feed-forward NN mapping from the input layer to the hottleneck laver; and
{|lx — &(u)|[*} is minimized. The residual, x — g(u), can be input into the same
network to extract the second NLPCA mode, and so on for the higher modes.

That the classical PCA is indeed a linear version of this NLPCA can be
readilv seen by replacing all the transfer functions with the identity funection.
therebv removing the nonlinear modelling capability of the NLPCA. Then the
forward map to u involves only a linear combination of the original variables as
in the PCA.
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7.2 Nonlinear complex PCA (NLCPCA)

Complex principal component analysis (CPCA) is PCA applied to complex
variables. In the first type of application, a 2-dimensional vector field such as
the wind (u,v) can be analyzed by applying CPCA to w=u+iv (Chap. 4).
In the second type of application, a real time-varying field can be
complexified by the Hilbert transfer and analyzed by CPCA, often called
Hilbert PCA (Chap. 5) to distinguish from the first type of application.

Earlier this chapter, we have examined a feed-forward NN for performing
Nonlinear PCA. In this section, we will discuss how the same approach
can be applied to complex variables, giving rise to nonlinear complex PCA.

The NLCPCA model uses basically the same architecture (Fig. 1) as the
NLPCA model as discussed above (with three layers of hidden neurons
where the middle layer is the bottle-neck layer), except all the input
variables, and the weight and offset parameters are now complex-values.

The cost function is defined as
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/ ’|2 |2
J=(llz= 2% + P Juw,[?,
i (15)
where z is the model output, z’, the target data, w;, the individnal weights from
hidden layers 1, 2 and 3. and P. the weight penalty parameter.

Since the objective function J is a real funetion with complex weights, the
optimization of J is equivalent to finding the vanishing gradient of J with re-

spect to the real and the imaginary parts of the weights. All the weights
(and offsets) in the model are combined into a single weight vector w.
Hence the gradient of the objective function with respect to the complex
weights can be split into

o1 _ 0] . 0]
dw  dwR wl

(16)

where w® and w! are the real and the imaginary components of the weight
vector. The two components can be put into a single real parameter vector
during nonlinear optimization using an algorithm for real variables.

R

7.3 Nonlinear singular spectrum analysis

In Chapter 5, we have learned that by incorporating time lagged version of
the dataset, the PCA method can be extended to the singular spectrum
analysis (SSA) method. We have also learned earlier in this chapter, that the
leading PCs of a dataset can be nonlinearly combine by an NN to produce
nonlinear PCA. We will see in this section that the leading PCs from an SSA
can also be nonlinearly combined to produce nonlinear SSA (NLSSA).

The NLSSA procedure is as follows. First SSA is applied to the dataset as a
prefilter, and after discarding the higher modes, we retain the leading SSA
PCs, x(t)=[x,,...,x,], where each variable x;, (i=1...,,1), is a time series of
length n. The variables x are the inputs to the NLPCA model. For details,
See Heish’ s paper.
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7.4 Nonlinear canonical correlation analysis (NLCCA)

Consider two vector variables x and v, each with n samples. CCA looks for
linear combinations

P . - = 'T'r

where the canonical variates u and v have maximum correlation, i.e. the weight
vectors f and g are chosen such that cor{u, v), the Pearson correlation coefficient
between u and v, is maximized (see chapter 4). For NLCCA, the nonlinear
maps f and g, and their inverse maps, are replaced below by nonlinear
mapping function using NNs.

The mappings from x to u and y to v are represented by the double-barreled

NN on the left hand side olf'Fig. 2.

=
<

Fig.2
The three teed-forward NNs used to perform NLCCA. The double-
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barreled NN on the left maps from the inputs x and y to the canonical
variates u and v. The objective function .J forces the correlation between
# and v to be maximized. On the right side, the top NN maps from u
to the output layer x’. The objective function J; basically minimizes the
MSE of %’ relative to x. The third NN maps from v to the output layer y’.
The objective function J; basgically minimizes the MSE of y' relative to

y.

By minimizing the cost function J = —cor(u,v), one finds the parameters
which maximize the correlation cor(u,v). After the forward mapping with
the double-barreled NN has been solved, inverse mapping from the
canonical variates u and v to the original variables, as represented by the two
standard NNs on the right of Fig. 2, are to be solved, where the NN of their
outputs x' and y' are minimized with respect to x and y, respectively.

In Fig.2, the input x and y are mapped to the neurons in the hidden layer:

hy = tanh(W@x + b)), AY = tanh(WWy + b)),
(18)

where W= and W) are weight matrices, and b and b'¥), the offset or bias
parameter vectors. The dimensions of x, v, h'®) and h') are 11, mq, Iz and my
respectively.

The canonical variate neurons u and v are calculated from a linear combi-
nation of the hidden neurons h'*) and h'¥), respectively, with

{y)

w=w® . h@® 13 = w® K 1 p

(19)
These mappings are standard feedforward MLP NNs, and are capable of repre-
senting any continuous functions mapping from x to v and from y to v to any
given accuracy, provided large enough l5 and ms are used.

To maximize cor{u, v), the objective function J = —cor(u, v) is minimized
by finding the optimal values of W& Wl pl#) b)) =) wlv) 5
Fh J . i Y T joon joiry .
5. The constraints (u) = 0 = (v), and (u?) = 1 = (v?) are also used, which
are approximately satisfied by modifying the objective function to

and
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J = —cor(u,v) + (u)? + () + ((u)1? - 1)? + ()12 - 1)2.

¢ 1)

(20)
On the right side of Fig. 2, the top NN maps from u to x' in two steps:

B = tanh((w™u+ b)), and x' = WL 45

1)

The ohjective function J; = (||x’ — x||?) is minimized by finding the optimal

values of w(*), b(®), W{% and b, The MSE between the NN output x’ and
the original data x is thus minimized.

Similarly, the bottom NN on the right side of Fig. 2 maps from v to y':

() = tanh((wv +b™),), and y' = WER® £+,

(22)

with the objective function Jy = {||y’ — y|/*) minimized. The total number of
parameters used by the NLCCA is 2(11lo+myma )+4(la+ms ) +11 +1m1+2, though
the number of effectively free parameters is four less due to the constraints on
(u), {(v), (u?) and {v?).

A number of runs mapping from (x,y) to (u,v), using random initial pa-
rameters, was performed. The run attaining the highest cor(u,v) was selected
as the solution. Next a number of runs (mapping from u to x’) was used to find
the solution with the smallest MSE in x’. Finally, a number of runs was used
to find the solution yielding the smallest MSE in y'. After the first NLCCA
mode has been retrieved from the data, the method can be applied again to the
residual to extract the second mode, and so forth.

With three NNs in NLCCA, overfitting can occur in any of the three net-
works. With noisy data, the three objective functions are modified to:
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2

J = —cor(u,v) + (u)? + (v)* + ((u

+P [ (W2 + S w2,

) nj

Ju= (I =x|?) + P Y (wi”)?,
k

T = (¥ = ¥IP) + P ()2,
"

where P, P, and % are nonnegative weight penalty parameters. Since the
nonlinearity of a network is controlled by the weights in the hyperbolic tangent
transfer tunction, only those weights are penalized.
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Fig.3

The spatial patterns for the first NLCCA mode between the winter
Z500 anomalies and the tropical Pacific SST anomalies as the canonical
variate u takes its (a) minimum value and (b) maximum value. The Z500
anomalies with contour intervals of 10m are shown north of 20°N. SST
anomalies with contour intervals of 0.5°C are displayed south of 20°N.
The SST anomalies greater than +1°C or less than -1°C are shaded, and
heavilv shaded if greater than +2°C or less than -2°C. The linear CCA
mode 1 is shown in panels (¢) and (d) for comparison.



