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Chapter 6    Nonlinear Regression – Neural Network  

  

6.1  Generic mapping  

The generic empirical retrieval problem  

                                          Y = f(X)                                      (1)  

is essentially a mapping from X to Y .  This empirical mapping can be 

performed using conventional tools (linear and nonlinear regression).  

Linear regression is an appropriate tool for developing many empirical 

algorithms. It is simple to apply and has a well-developed theoretical basis. 

In the case of linear regression, a linear model is constructed for transfer 

function (TF) f,  

                  (2) 

This model is linear with respect to both a and X , thus it provides a linear 

approximation of the TF with respect to X. The most important limitation of 

such a linear approximation is that it works well over a broad range of 

variability of the arguments only if the function which it represents (TF in 

our case) is linear. If the TF, f, is nonlinear, linear regression can only 

provide a local approximation; when applied globally, the approximation 

becomes inaccurate.  

Because, TFs are generally nonlinear functions of their arguments X, linear 

regression and a nonlinear approximation with respect to X is often better 

suited for modeling TFs. In this case, f can be introduced as a linear 

expansion using a basis of nonlinear functions {ϕj }:  

                              (3) 

Finally, nonlinear regression may be applied. For example, f in (1) can be 

specified as a complicated nonlinear function, fNR:  
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                                  yi = fNR (X, a )                                         (4)  

The expression (3) is nonlinear with respect to its argument X but linear with 

respect to the parameters a. The nonlinear regression (4) is nonlinear both 

with respect to its argument, X, and with respect to the vector of regression 

coefficients, a. However, in either case, we must specify in advance a 

particular type of nonlinear function fNR, or ϕj. Thus, we are forced to 

implement a particular type of nonlinearity a priori. This may not always be 

possible, because we may not know in advance what kind of nonlinear 

behavior a particular TF demonstrates, or this nonlinear behavior may be  

different in different regions of the TF's domain. If an inappropriate 

nonlinear regression function is chosen, it may represent a nonlinear TF with 

less accuracy than with its linear counterpart.  

In the situation described above, where the TF is nonlinear and the form of 

nonlinearity is not known, we need a more flexible, self-adjusting approach 

that can accommodate various types of nonlinear behavior representing a 

broad class of nonlinear mappings. Neural networks (NNs) are well-suited 

for a very broad class of nonlinear approximations and mappings. 

6.2  A feed-forward neural network 

A feed-forward neural network (NN) is a non-parametric statistical model 

for extracting  nonlinear relations in the data. A common NN  model 

configuration is to place between the input and output variables (also called 

`neurons'),  a layer of `hidden neurons' (Fig.1). The value of the jth hidden 

neuron is 

    (5)  

where ix  is the ith input,  ijw  the weight parameters and jb the bias   

parameters.   
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The output neuron is given by      

                                        (6)  

A cost function 

                             (7) 

measures the mean square error between the model output z  and the 

observed values obsz .  The parameters ijw  , jw~  , jb  and b
~

 are adjusted as the 

cost function is minimized. The procedure, known as network training, 

yields the optimal parameters for the network. As in standard optimization 

procedure, steepest descent with momentum and adaptive learning rates was 

used during the optimization. 
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Fig.1 An example of a neural network model, where there are four neurons 

in the input layer, three in the hidden layer, and one in the output layer. The 

parameters ijw  and  jw~  are the weights, and jb  and b
~

are the biases. The 

parameters jb  and b
~

 can also be regarded as the weights for constant inputs 

of value 1. 

6.3 Optimization   

6.3.1 Newton’s method 

   Considering the relation  
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                           (8) 

 

                      (9)  
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(10) 

 
 

             (11)  

Applying the gradient operator to (10), we obtain  

 

(12) 

 

Next, let us derive an iterative scheme for finding the optimal w. At the 

optimal w, 0)( =∇ wJ , and (12), with higher order terms ignored, yields 

 

(13)  

 

                         (14)  

This is known as Newton’s method.  In the 1-dimensional case, (14) 

reduces to  

                                          (15)  

 

 

   6.3.2 Gradient descent method 

 A major simplification of Newton’s method (14) is to use a parameter 

ηηηη to replace 1−

kH , i.e.,  
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                              (16) 

 

ηηηη  is called learning rate, and can be either a fixed constant, or calculated by a   

line minimization algorithm. In the former case, one simply takes a step of fixed 

size along the direction of the negative gradient of J. In the later, one proceeds 

along the negative gradient of J until one reaches the minimum of J along that   

direction (Fig. 6.1).  More precisely. Suppose at step k, we have estimated  

 
 

                                      (17) 

 

      

        
 

  

    Fig6.1  The gradient descent approach starts from the parameters kw  
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with  

                                  (19) 

                       

   

                 (20) 

(21) 

,  

 We can reach the optimal w by descending along the negative gradient of J  

in (16) , hence the name gradient descent or steepest descent, as the negative 

gradient gives the direction of steepest descent.  

 

      (22) 

    

 
results in an inefficient zigzag path of descent (Fig.6.2) 
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                                                (23)  

    

 
  zigzag. The next estimate for the parameters in the momentum method is  

  also given by (19). 

    

6.4 Practical coding of a NN model in Matlab 

   

  %  train model 

 

net=init(net); 

%  if (16) is used, creating a network 

net= newff(minmax(xtrain), [nhide, L],{'tansig' 'purelin'},'trainlm');     

If (23) is applied  

net= newff(minmax(xtrain),[nhide,L],{'tansig' 'purelin'},'trainbr');   

    net.trainParam.epochs = 100;  % maximum number of iterations 

    net.trainParam.goal   = 1E-4;  %  min cost function value  

    [net,tr]=train(net,xtrain,ytrain); 
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     ytrain_nn = sim(net,xtrain); 

     ytest_nn =sim(net,xtest); 

     w1=net.iw{1,1}; 

     b1=net.b{1}; 

     w2=net.lw{2,1}; 

     b2=net.b{2}; 

 

    Note:  

 

xtrain:  [m,n],  m is he # of input, n is the # of time points 

ytrain:  [L,n],  L is the # of output. 

xtest:  [m, nnew],  test period 

nhide: number of hidden neurons 

 

The trained model is save in variable 'net'. Function 'sim' is used to 

simulate/predict predictant using built NN network.  'net' is a structure,  and 

contains lots of things, including W and bias parameters. 

 

    

   


