
NRES-798 Geophysical data analysis --- Chapter 6 UNBC

Chapter 6 Nonlinear Regression – Neural Network

6.1 Generic mapping

The generic empirical retrieval problem

 Y = f(X) (1)

is essentially a mapping from X to Y . This empirical mapping can be

performed using conventional tools (linear and nonlinear regression).

Linear regression is an appropriate tool for developing many empirical

algorithms. It is simple to apply and has a well-developed theoretical basis.

In the case of linear regression, a linear model is constructed for transfer

function (TF) f,

 (2)

This model is linear with respect to both a and X , thus it provides a linear

approximation of the TF with respect to X. The most important limitation of

such a linear approximation is that it works well over a broad range of

variability of the arguments only if the function which it represents (TF in

our case) is linear. If the TF, f, is nonlinear, linear regression can only

provide a local approximation; when applied globally, the approximation

becomes inaccurate.

Because, TFs are generally nonlinear functions of their arguments X, linear

regression and a nonlinear approximation with respect to X is often better

suited for modeling TFs. In this case, f can be introduced as a linear

expansion using a basis of nonlinear functions {ϕj }:

 (3)

Finally, nonlinear regression may be applied. For example, f in (1) can be

specified as a complicated nonlinear function, fNR:

NRES-798 Geophysical data analysis --- Chapter 6 UNBC

 yi = fNR (X, a) (4)

The expression (3) is nonlinear with respect to its argument X but linear with

respect to the parameters a. The nonlinear regression (4) is nonlinear both

with respect to its argument, X, and with respect to the vector of regression

coefficients, a. However, in either case, we must specify in advance a

particular type of nonlinear function fNR, or ϕj. Thus, we are forced to

implement a particular type of nonlinearity a priori. This may not always be

possible, because we may not know in advance what kind of nonlinear

behavior a particular TF demonstrates, or this nonlinear behavior may be

different in different regions of the TF's domain. If an inappropriate

nonlinear regression function is chosen, it may represent a nonlinear TF with

less accuracy than with its linear counterpart.

In the situation described above, where the TF is nonlinear and the form of

nonlinearity is not known, we need a more flexible, self-adjusting approach

that can accommodate various types of nonlinear behavior representing a

broad class of nonlinear mappings. Neural networks (NNs) are well-suited

for a very broad class of nonlinear approximations and mappings.

6.2 A feed-forward neural network

A feed-forward neural network (NN) is a non-parametric statistical model

for extracting nonlinear relations in the data. A common NN model

configuration is to place between the input and output variables (also called

`neurons'), a layer of `hidden neurons' (Fig.1). The value of the jth hidden

neuron is

 (5)

where ix is the ith input, ijw the weight parameters and jb the bias

parameters.

 xx

xx

ee

ee
x

−

−

+

−
=)tanh(

NRES-798 Geophysical data analysis --- Chapter 6 UNBC

The output neuron is given by

 (6)

A cost function

 (7)

measures the mean square error between the model output z and the

observed values obsz . The parameters ijw , jw~ , jb and b
~

 are adjusted as the

cost function is minimized. The procedure, known as network training,

yields the optimal parameters for the network. As in standard optimization

procedure, steepest descent with momentum and adaptive learning rates was

used during the optimization.

NRES-798 Geophysical data analysis --- Chapter 6 UNBC

Fig.1 An example of a neural network model, where there are four neurons

in the input layer, three in the hidden layer, and one in the output layer. The

parameters ijw and jw~ are the weights, and jb and b
~

are the biases. The

parameters jb and b
~

 can also be regarded as the weights for constant inputs

of value 1.

6.3 Optimization

6.3.1 Newton’s method

 Considering the relation

NRES-798 Geophysical data analysis --- Chapter 6 UNBC

 (8)

 (9)

NRES-798 Geophysical data analysis --- Chapter 6 UNBC

(10)

 (11)

Applying the gradient operator to (10), we obtain

(12)

Next, let us derive an iterative scheme for finding the optimal w. At the

optimal w, 0)(=∇ wJ , and (12), with higher order terms ignored, yields

(13)

 (14)

This is known as Newton’s method. In the 1-dimensional case, (14)

reduces to

 (15)

 6.3.2 Gradient descent method

 A major simplification of Newton’s method (14) is to use a parameter

ηηηη to replace 1−

kH , i.e.,

NRES-798 Geophysical data analysis --- Chapter 6 UNBC

 (16)

ηηηη is called learning rate, and can be either a fixed constant, or calculated by a

line minimization algorithm. In the former case, one simply takes a step of fixed

size along the direction of the negative gradient of J. In the later, one proceeds

along the negative gradient of J until one reaches the minimum of J along that

direction (Fig. 6.1). More precisely. Suppose at step k, we have estimated

 (17)

 Fig6.1 The gradient descent approach starts from the parameters kw

NRES-798 Geophysical data analysis --- Chapter 6 UNBC

 (18)

with

 (19)

 (20)

(21)

,

 We can reach the optimal w by descending along the negative gradient of J

in (16) , hence the name gradient descent or steepest descent, as the negative

gradient gives the direction of steepest descent.

 (22)

results in an inefficient zigzag path of descent (Fig.6.2)

NRES-798 Geophysical data analysis --- Chapter 6 UNBC

 (23)

 zigzag. The next estimate for the parameters in the momentum method is

 also given by (19).

6.4 Practical coding of a NN model in Matlab

 % train model

net=init(net);

% if (16) is used, creating a network

net= newff(minmax(xtrain), [nhide, L],{'tansig' 'purelin'},'trainlm');

If (23) is applied

net= newff(minmax(xtrain),[nhide,L],{'tansig' 'purelin'},'trainbr');

 net.trainParam.epochs = 100; % maximum number of iterations

 net.trainParam.goal = 1E-4; % min cost function value

 [net,tr]=train(net,xtrain,ytrain);

NRES-798 Geophysical data analysis --- Chapter 6 UNBC

 ytrain_nn = sim(net,xtrain);

 ytest_nn =sim(net,xtest);

 w1=net.iw{1,1};

 b1=net.b{1};

 w2=net.lw{2,1};

 b2=net.b{2};

 Note:

xtrain: [m,n], m is he # of input, n is the # of time points

ytrain: [L,n], L is the # of output.

xtest: [m, nnew], test period

nhide: number of hidden neurons

The trained model is save in variable 'net'. Function 'sim' is used to

simulate/predict predictant using built NN network. 'net' is a structure, and

contains lots of things, including W and bias parameters.

