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Chapter 5 Extended linear multivariate analysis.

In the last chapter, we have introduced the linear multivariate techniques
based on PCA (EOF) for extracting features or recognizing patterns in a
dataset or in two datasets. The EOF is capable of using few leading modes to
describe the dominant structure that explains the majority of overall
variances. However, EOF only depicts stationary modes and fails to explore
the propagation features. In this chapter, we will introduce some methods
which are able to extract the propagation features.

5.1 Extended EOF (EEOF) analysis

EEOF is similar to EOF in methodology but uses an extended matrix to
compute the covariance. The extended matrix is constructed by the raw data
matrix plus a series of time-lagged data matrix. Denote by Y a mxn 2-

dimensional data matrix with m for the number of spatial grids and » for the
length, i.e.

Yiui - Yin
Y =|.. .. .. (5.1)

ym,l ym,n

With the matrix Y , lagged copies of the Y are stacked to form the
augmented data matrix YY

YY =" (5.2)

Where
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Yiie - Yin-ra
Y, =

ym,l ym,n—L+1

Yio - Yin-re
Y, =

Ym,Z Ym,n-L+2

Yie - Yin-r+k
Y, =

ym,k ym,n—L+k

Yir - Yia
Y, =

Ym,L Ym,n

YY is expanded to a (m x(L+1),n—L+1) 2-D matrix. Each eigenvector of
EOF for YY contains m*(L+1) elements, which can characterize the
propagation features.

t=0 t=k t=L
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Therefore, EEOF shows not only eigenvectors but also the temporal

evolutions of the eigenvectors.
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The EEOF (SSA) modes 1-6 for the tropical Pacific SSTA shown in (a)-

(f). respectively. The contour plots display the space-time eigenvectors (loading

patterns), showing the SSTA along the equator as a function of the lag.

Solid

contours indicate positive anomalies and dashed contours, negative anomalies,
with the zero contour indicated by the thick solid curve. In a separate panel
beneath each contour plot, the principal component (PC) of each SSA mode is
also plotted as a time series, (where each tick mark on the abscissa indicates

the start of a vear).

month in the space-time eigenvector.
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Fig5.1.2

The EEOF(SSA) modes 1-6 for the tropical Pacific SLPA shown in (a)-
(f). respectively. The contour plots display the space-time eigenvectors (loading
patterns), showing the SLPA along the equator as a function of the lag. The
PC of each SSA mode iz also plotted as a time series, beneath each contour plot.

(Hiseh and Wu 2002)
5.2 Complex EOF (CEOF)

EEOF accounts for patterns that evolve in time by representing a series of
eigenmode as a function of leading time, being able to describe propagating
and oscillatory behavior. A generalization of this approach is to model not

only the ‘state’ X'; but also an indicator of its tendency &t . How to

represent the information of ax ¢ 7 It has been proven that the Hilbert

- H
transform X ¢t 1s areasonable measure of é:f ¢ when variations in

- H
X; are confined to a relatively narrow time scale (van Storch and Zwiers

1999). Thus the conventional eigentechniques, EOFs, are applied to the

— — H
complexified time series X, T1X, , called CEQOF.

According to the theory of Hilbert transform,

L
%" = % ,(t—kh) 53
k=-L

where

2 ., .
hil) = Esm (kz/2)........ if k#0 5.4)

Ideally L=« in (5.4), but in practice L=7-15.
Two important measures are often used in CEOF: amplitude function R and
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phase function #. The former represents the anomalous amplitude of an
eigenvector whereas the latter depicts its propagation. Denote by B an
eigenvector, R and @ are respectively defined as below

R=BB
Im(B)
Re(B)

& &
where B is conjugate of B

@ = arctan|

|

(a) The first HSVD mode (b) Power of MJO frequencies
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Fig.5.2 (a) Spatial amplitude function of the first CEOF mode, accounting
for 31% of total variance; (b) Power of the MJO frequencies (30 to 90 47').
The units are m*s~ in both (a) and (b). (Tang 2006) .
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(a) El Nino (b) La Nina
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Fig.5.3 Composite MJO signals, obtained from the recovered field using
the first CEOF mode, for the three strongest El Nino (1982/83, 1987/88,
1997/98) and three strongest L.a Nina events (1983/84, 1988/89, 1998/99)
along the equator for the period 50 to 180 d prior to the time of the ENSO
peak (Tang 2006).

5.3 Singular spectrum analysis
The PCA (EOF) involves finding eigenvectors containing spatial
information. Is it possible to use PCA approach to incorporate time

information into eigenvectors?

Given a time series y; = y(¢,;) (j=1,..,n), a new matrix can be contracted

51 Ya e Up—n41
) Yo Ys SRR ¥
Y =
Yr. Y41 - Un

(5.5)

The number of lags L is usually taken to be at most Y4 of the total record
length.

The standard PCA can be performed on Y, resulting in

}-':‘J" =ylt;) = E ai(ty)e;,

j (5.6)

This method is known as singular spectrum analysis (SSA), or time-PCA,
where a; is the jth principal component (PC), a time series of length n-L+1,

and e; is the jth eigenvector (or loading vector) of length L. Together, a,
and e, represent the jth SSA mode.

SSA has become popular in the field of dynamical system, in particular in
the analysis of period and spectrum. As we talked before, the conventional
spectrum analysis is based on the Fourier transforms, i.e., the Fourier
spectral analysis. The Fourier analysis is generally restricted to sinusoidal
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shapes; whereas SSA is not restricted to using sinusoidal shaped function.
So, SSA can in principal capture an anharmonic wave more efficiently than
the Fourier method.

An example:

The Southern Oscillation Indexr (SOI) is defined as the normalized air pres-
sure difference between Tahiti and Darwin. There are several slight variations
in the SOI values caleulated at various centres; here we use the SOI calculated
by the Climate Research Unit at the University of East Anglia, based on the
method of ***Ropelewski and Jones (1987). The SOI measures the seesaw oseil-
lations of the sea level air pressure between the eastern and western equatorial
Pacific. When the SOI is strongly negative, the eastern equatorial Pacific sea
surface temperatures also become warm (i.e. an El Nino episode occurs); when
SOI is strongly positive, the central equatorial Pacific becomes cool (ie. a La
Nina episode oceurs). The SOI is known to have the main spectral peak at a
period of about 4-5 years ***( Troup, 1965). For SSA, the window L needs to be
long enough to accommodate this main spectral period, hence L = 72 months
was chosen for the S5A.

gigenvactor 1,2

giganvector 3.4

gigenvector 5 6

gigenvector 7 8
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_ lag (month) Fig.5.4
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Fig. 5.5 (Hsieh and Wu 2002).

The variances explained by
SSA: 11.0%, 10.5%, 9.0%, 8.1%
Fourier analysis: 4.0% .....

Fig.5.4 and 5.5: (1) a period of 50 months in first eigenvector
(2) The oscillation displays anharmonic features.

5.4 Principal Oscillation Patterns

For some datasets containing multiple time series, one would like to find a
low order linear dynamical system to account for the behavior of the data.
The Principal Oscillation Pattern (POP) method, proposed by Hasselmann
(1988), is one such technique.

Consider a simple system with two variables y, and y,, obeying the linear
dynamical equations

dys

d
v _ v

1(y1,u2) . = Lo(y1,y2) .
dt

(5.7)
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Where L, and L,are linear functions. The discretized version of the
dynamical equations is of the form

yi(t +1) = any(t) + apya(t),

yo(t + 1) = ao1y1(t) + azya(t),
(5.8)

Where the a; are parameters. For an m-variable first order linear dynamical
system, the discretized governing equations can be expressed as

y(t+1) = Ay(t), (5.9)

Where y is an m-element column vector, and A is an m xm matrix. A is a
real matrix, but generally not symmetric; hence, its eigenvalues 4 and
eigenvectors P are in general complex. Taking the complex conjugate of
eigenvector equation

AP = AP (5.10)

where P’s jth column is simply the jth eigenvector p,, i.e.,

P= [13'1|13':2| e |pm] 1

(5.11)
and
A 0 o 0T
0 As 0 “ee
*'I"" = . . . . ]
0 0 Am
) (5.12)
then
A O 0
0 As 0
P 1AP = A= . i ) ) ,
i 0 0 A

(5.13)
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Applying P~ to (5.9) yields

P ly(t+1) =P lAy(t) = P 'AP P ly(t),

(5.14)
which can be expressed as
where
N & T
z=P"y, (5.16)
By applying P to (5.16), the inverse transform is obtained:
r(t)=Pz(t), Ie.
y(t) z(t), Le (5.17)
y(t) =) p;z(t).
=1 (518)
The eigenvector
h, =p’ +ip’
Pi=P; TP, (5.19)

is called a Principal Oscillation Pattern (POP) of y(t). The corresponding
POP coefficient

zj(t) = z; (1) + 2z;(¢),

(5.20)
obeys (5.15), i.e.,
z:A(t+1) = A; z;(t),
¢+ N =% (5.21)
Where
}13 — |}\J|E’$Ej = —1/75 eiﬂ.‘r_.-"'T;i :

(5.22)
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as \x j‘ < 1 in the real world (von Storch and Zwiers, 1999, pp. 336-337).
Hence

zj(t + 1) = e~/ &2 /Ti 24(¢)
(5.23)
Where 1, is an e-folding decay time scale, and T; is the oscillatory period,

ie., z; will evolve in time displaying exponential decay and oscillatory

behavior, governed by the parameters t;and T,, respectively. As y(t) is real,
(5.17) gives:

y(t) = Re[Pz(t)] = ) [pj=}(t) - pjz;(t)].

; (5.24)

r i
As t progresses, the sign of £; and < oscillate, resulting in an evolving
Pz} — P;z; pattern:

.’;]- . e — ﬁDﬁ—ﬁDﬁ S -
J i + (5.25)
o =0 = -0 - —- =50 — -..
J + (5.26)
Pj?; —Pj% ¢ T P; — TPy = P —Pj P~
(5.27)

Unlike PCA, POP allows the representation of propagating waves using
only one POP mode. For instance, Fig. 5.6 shows a POP pattern representing

wave propagating from right to left, while Fig. 5.7 represents a pair of eddies
rotating around the centre of the figure.

For real data, noise ¢ must be added to the dynamical system,

vt +1)=Ay(t) +e. (5.28)

From E[Eq(5.28) yT (t)] and the fact that E[g]=0, one can estimate A
from

A=Eyt+1)y"®O{Ey®y @) ".
(5.29).

From A, one can computer the eigenvectors p;, eigenvalues 4,, and z;
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from (5.16).
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An example of POP analysis:
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