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Chapter 5    Extended linear multivariate analysis. 

 

In the last chapter, we have introduced the linear multivariate techniques 

based on PCA (EOF) for extracting features or recognizing patterns in a 

dataset or in two datasets. The EOF is capable of using few leading modes to 

describe the dominant structure that explains the majority of overall 

variances. However, EOF only depicts stationary modes and fails to explore 

the propagation features. In this chapter, we will introduce some methods 

which are able to extract the propagation features.  

 

5.1 Extended EOF (EEOF) analysis  

 

EEOF is similar to EOF in methodology but uses an extended matrix to 

compute the covariance. The extended matrix is constructed by the raw data 

matrix plus a series of time-lagged data matrix. Denote by Y  a nm ×  2-

dimensional data matrix with m for the number of spatial grids and n for the 

length, i.e.   
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 With the matrix Y , lagged copies of the Y  are stacked to form the 

augmented data matrix YY  
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Where   

     



NRES-798     Geophysical data analysis ---   Chapter 5                                       UNBC 

             

y     ...  y

...      ...     ...

y     ...   y

1L-nm,m,1

1,11,1

)0(

















=

+

+−Ln

Y  

 

 

             

y     ...  y

...      ...     ...

y     ...   y

2L-nm,m,2

2,12,1

)1(

















=

+

+−Ln

Y  

 

                                   …… 

 

             

            

 

 

y     ...  y

...      ...     ...

y     ...   y

kL-nm,km,

,1,1

)(

















=

+

+− kLnk

kY

 

           

             

 

 

y     ...  y

...      ...      ...

y     ...   y

nm,Lm,

,1,1

)(

















=

nL

LY

 

YY  is  expanded to a ( 1),1( +−+× LnLm ) 2-D matrix.  Each eigenvector of 

EOF for YY contains m*(L+1) elements, which can characterize the 

propagation features. 
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Therefore, EEOF shows not only eigenvectors but also the temporal 

evolutions of the eigenvectors. 

 

  

 
     Fig.5.1:  The first two EEOF modes for zonal wind as a function                     

                    of leading times along the equator (Tang et al 2006).  

  

      

The other example 
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 Fig. 5.1.1  
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 The EEOF (SSA) modes 1-6 for the tropical Pacific SSTA shown in (a)-
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Fig5.1.2  

The EEOF(SSA) modes 1-6 for the tropical Pacific SLPA shown in (a)-  

                                  
           (Hiseh and Wu 2002) 

 

5.2 Complex EOF (CEOF) 

 

EEOF accounts for patterns that evolve in time by representing a series of  

eigenmode as a function of leading time, being able to describe propagating   

and oscillatory behavior.  A generalization of this approach is to model not 

only the ‘state’ tx
r

 but also an indicator of its tendency tx
r
δδδδ . How to 

represent the information of tx
r
δδδδ ?  It has been proven that the Hilbert 

transform 
H

tx
r

is a reasonable measure of tx
r
δδδδ  when variations in 

H

tx
r

are confined to a relatively narrow time scale (van Storch and Zwiers 

1999). Thus the conventional eigentechniques, EOFs, are applied to the 

complexified time series 
H

tt xix
rr

+ , called CEOF. 

 

According to the theory of Hilbert transform,  
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   Ideally ∞=L  in (5.4), but in practice 157 −=L . 

Two important measures are often used in CEOF: amplitude function R and 
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phase function θθθθ . The former represents the anomalous amplitude of an 

eigenvector whereas the latter depicts its propagation. Denote by B an 

eigenvector, R and θθθθ  are respectively defined as below 
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*B is conjugate of  
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    Fig.5.2 (a) Spatial amplitude function of the first CEOF mode, accounting 

for 31% of total variance; (b) Power of the MJO frequencies (30 to 90 1−d ). 

The units are 22 −sm  in both (a) and (b). (Tang 2006) . 
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Fig.5.3   Composite MJO signals, obtained from the recovered field using 

the first CEOF mode, for the three strongest El Nino (1982/83, 1987/88, 

1997/98) and three strongest La Nina events (1983/84, 1988/89, 1998/99) 

along the equator for the period 50 to 180 d prior to the time of the ENSO 

peak (Tang 2006). 

 

 

5.3  Singular spectrum analysis  

 

The PCA (EOF) involves finding eigenvectors containing spatial 

information. Is it possible to use PCA approach to incorporate time 

information into eigenvectors? 

 

Given a time series )( jj tyy = (j=1,..,n), a new matrix can be contracted  

     

                          (5.5) 

 

 The number of lags L is usually taken to be at most ¼ of the total record 

length.  

 

  The standard PCA can be performed on Y, resulting in 

 

                                      (5.6)  

 

   This method is known as singular spectrum analysis (SSA), or time-PCA,      

 where ja  is the jth principal component (PC), a time series of length n-L+1, 

and je  is the jth eigenvector (or loading vector) of length L. Together, ja  

and je , represent the jth SSA mode.  

 

SSA has become popular in the field of dynamical system, in particular in 

the analysis of period and spectrum. As we talked before, the conventional 

spectrum analysis  is based on the Fourier transforms, i.e., the Fourier 

spectral analysis.  The Fourier analysis is generally restricted to sinusoidal 
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shapes; whereas SSA is not restricted to using sinusoidal shaped function. 

So, SSA can in principal capture an anharmonic wave more efficiently than 

the Fourier method.  

 

An example: 

 

 
  

     Fig.5.4 
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              Fig. 5.5  (Hsieh and Wu 2002). 

 

 

   The variances explained by   

   SSA:                         11.0%, 10.5%, 9.0%, 8.1%  

   Fourier analysis:       4.0% ….. 

 

   Fig.5.4 and 5.5:  (1) a period of 50 months in first eigenvector  

                              (2) The oscillation displays anharmonic features. 

 

5.4  Principal Oscillation Patterns 

 

For some datasets containing multiple time series, one would like to find a 

low order linear dynamical system to account for the behavior of the data. 

The Principal Oscillation Pattern (POP) method, proposed by Hasselmann 

(1988), is one such technique. 

 

Consider a simple system with two variables 1y and 2y , obeying the linear 

dynamical equations 

 

         (5.7)  
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Where 1L  and 2L are linear functions. The  discretized version of the 

dynamical equations is of the form 

 

                         (5.8) 

Where the ija  are parameters. For an m-variable first order linear dynamical 

system, the discretized governing equations can be expressed as 

 

                                                        (5.9) 

 Where y is an m-element column vector, and A is an mm × matrix. A is a 

real matrix, but generally not symmetric; hence, its eigenvalues λλλλ  and 

eigenvectors P are in general complex. Taking the complex conjugate of 

eigenvector equation 

 

              PAP Λ=                                                         (5.10) 

 

  where P’s  jth column is simply the  jth eigenvector jp , i.e.,  

                                                  (5.11) 

  and  
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then 
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NRES-798     Geophysical data analysis ---   Chapter 5                                       UNBC 

 

 

Applying 1−P  to (5.9) yields  

 

    (5.14) 

 

which can be expressed as  

 

                                                               (5.15) 

where   

                                                                           (5.16) 

 

 By applying P  to (5.16), the inverse transform is obtained: 
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                                                        (5.18) 

 

The eigenvector  

                                                                   (5.19) 

is called a Principal Oscillation Pattern (POP) of y(t).  The corresponding 

POP coefficient  

                                               (5.20) 

obeys (5.15), i.e.,  
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 Where  

                                     (5.22) 
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as jλ  < 1 in the real world (von Storch and Zwiers, 1999, pp. 336-337). 

Hence  

 

                                  (5.23) 

Where jτ is an e-folding decay time scale, and jT  is the oscillatory period, 

i.e., jz  will evolve in time displaying exponential decay and oscillatory 

behavior, governed by the parameters jτ and jT , respectively. As y(t) is real, 

(5.17) gives: 
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As t progresses, the sign of 
r

jz  and 
i

jz  oscillate, resulting in an evolving 
r

j

i

j

r
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r

j zPzP −  pattern: 
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                                                                                               (5.27) 

Unlike PCA, POP allows the representation of propagating waves using 

only one POP mode. For instance, Fig. 5.6 shows a POP pattern representing 

wave propagating from right to left, while Fig. 5.7 represents a pair of eddies 

rotating around the centre of the figure.  

 

 For real data, noise εεεε  must be added to the dynamical system, 

                                               (5.28) 

From )]()28.5([ tyEqE
T

 and the fact that ,0][ =εεεεE  one can estimate A 

from  

            (5.29). 

 

From A, one can computer the eigenvectors jp , eigenvalues jλλλλ , and jz  
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from (5.16). 

 

 Fig.5.6  

 

 

           

         Fig 5.7 
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An example of POP analysis: 

 

 

 


