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Chapter 4 Linear Multivariate Statistical Analysis

As one often encounters datasets with more than a few variables, multivariate
statistical techniques are needed to effectively extract the information contained
in these datasets. In the environmental sciences, examples of multivariate
datasets are ubiquitous --- the air temperatures recorded by all the weather
stations around globe, the satellite infrared images composed of numerous small
pixels, the gridded output from a general circulation model, ... The number of
variables or time series from these datasets range from thousands to millions.
Without a mastery of multivariate techniques, one is overwhelmed by these
gigantic datasets. In this chapter, we review the principal component analysis
method and its many variants, and the canonical correlation analysis method.
These methods, using standard matrix techniques such as singular value
decomposition, are relatively easy to use, but suffer from being linear, a
limitation which will be lifted with neural network techniques in later chapters.

4.1 Principal component analysis (PCA)
4.1.1 Geometric approach to PCA

We have a dataset with variables y,,...,y,, . These variables have been sampled

n times, e.g. the m variables could be m time series containing n observations in
time. If m is a large number, we would like to capture the essence of y,,...,y, by

a smaller set of variables z,,...,z, (i.e. k <m; and hopefully k << m for truly

large m). This is the objective of principal component analysis (PCA), also
called empirical orthogonal function (EOF) analysis in meteorology and
oceanography. We first begin with a geometric approach, which is more
intuitive than the standard eigenvector approach to PCA.

Let us start with only 2 variables y, and y,, as illustrated in Fig. 4. Clearly
the bulk of the variance is along the axis z1. If r, is the distance between the

i" data point and the axis z1, then the optimal z1 is found by minimizing 'r,*.

i=1
Note that PCA treats all variables equally, whereas regression divides variables
into independent and dependent variables, hence the straight line described by
z1 1s in general different from the regression line.
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Fig. 4.1
4.1.2 Eigenvector approach to PCA
Taking the above example, a data point is transformed from its old coordinates

(yl,y2) to new coordinates (z1,z2) via a rotation of the coordinate system (Fig.
4.2):

Fig. 4.2

zl=y,cos@+y,sind
yl ‘ y2 (4'1)
22=-y,sin@+y, cos@
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In the general m-dimensional problem, we want to introduce new coordinates:

Z; :Zejlyl ,j=1,....,m 4.2)
-1

The objective is to find
e =le,,..e,. ] (4.3)

which maximizes var(z,), i.e., find the coordinate transformation such that the
variance of the dataset along the direction of the z, axis is maximized.

z T
With <, = Zellyl =€, ), y =[y1...ym]T,

=1

We have
var(z,) = El(z, —2:1)(z, —z0)] = Ele,” (y =)y = y)"e,], (4.4)

where we have used the vector property a’b =b"a . Thus,

var(z,) = el E[(y —y)(y —y)" le, =e! Ce, (4.5)

Where the covariance matrix C is given by
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C=El(y-y)y-»"] (4.6)

Clearly, the larger is |,

, the larger var(z,) will be. Hence, we need to place a
constraint on |le, | while we try to maximize var (z,). Let us impose a
normalization constraint |e,|=1, i.e.

e/e =1 @.7)

Thus our optimization problem is to find ¢, which maximize e/ Ce,, subject to
the constraint

e/ e,~1=0 (4.8)

The method of Lagrange multiplier s is commonly used to tackle optimization
under constraints. Define the Lagrange function L by

L=e Ce —)\Me e, —1) (4.9)
Where A is a Lagrange multiplier.

To obtain e,, we ask for

oL
—=0 (4.10)
oe,

Ce,— e, =0 4.11)

Which says that Ais an eigenvalue of the covariance matrix C, which e, the
eigenvector. Multiplying this equation by e/ on the left, we obtain

A=e'Ce, = var(z,) (4.12)

Since e/ Ce, is maximized, the so are A and var(z,) . The new coordinate z,,
called the principal component (PC), is found from (4.2).



NRES-798  Geophysical data analysis --- Chapter 4 UNBC

Next, we want to find z,--- our task is to find e, which maximizes

. : T :
var(z,) :ezT Ce, , subject to the constraint €, €, = 1, and the constraint that zZ,
be uncorrelated with z,, 1.e., the covariance between z, and z,be zero,

cov(z,,z,) =0. (4.13)

As C =C", we can write

0=cov(z,,z,) = cov(e” y,el y) = E[e] (y — y)(y — y)e, ]

4.14
=e Ce,=e.Ce, =ei\e =hele =)\ele, ( )
The orthogonal condition

T
e,e, =0 (4.15)

can be used as a constraint in place of (4.13).

Upon introducing another Lagrange multiplier y, we want to find an e, which
gives a stationary point of the Lagrange function L,

L=elCe,—\ele,—1)—rele, (4.16)
oL _,. oL _,

oe, * Oe,

Ce, —)e, =0 4.17)

Once again X is an eigenvalue of the covariance matrix C, which e, the
eigenvector. As

L=e)Ce, = var(z,) (4.18)

which is maximized, this A =4, is as large as possible with A, <X.,. (The case
A, = ., 1s degenerate and will be discussed later). Hence, 2,1s the second largest
eigenvalue of C, with A, = var(z,) . This process can be repeated for z,,z,....
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So far, C is the data covariance matrix, but it can also be the data correlation
matrix, if one prefers correlation over covariance. In combined PCA, where
two or more variables with different units are combined into one large data
matrix for PCA --- e.g. finding the PCA modes of the combined sea surface
temperature data and the sea level pressure data --- then one needs to normalize
the variables so C is the correlation matrix.

So, the general procedure of PCA analysis for dataset y is as below:

(1) calculating covariance matrix (or correlation matrix) C ={C,}
N _ o . )
C, =D (xy —x)x; —x;,) (=1,...M, j=1,..M)
k=1

where M denote the number of variables (or grids), and N, the length of
samples.

(2) calculating the eigenvalues and eigenvectors of C
Ce—Je =0

where e:{el,---,eL), A={\,..., .} L=min{M, N}

(3) Usually A, >\, >,...,> A, but sometimes, the outputs are in
reverse order. In this case, the first eigenvector corresponding

with A, .

(3) calculating the PCs, i.e., Z = e’y
4.1.3 Real and complex data

In general, for y real,

C=El(y-y)(y-»"] (4.19)

implies that C* =C, i.e., C is a real, symmetric matrix. A positive semi-defined
matrix A is defined by the property that for any v = 0, it follows that v" Ay > 0.
From the definition of C (4.5), it is clear that v"Cv > 0is satisfied. Hence Cis a
real, symmetric, positive semi-definite matrix.
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If y is complex, then

C=E[(y-y)(y-y" (4.20)

With complex conjugation denoted by the superscript asterisk. As C"" =C,Cis a
Hermitian matrix. It is also a positive semi-definite matrix.

Theorems on Hermitian matrix, positive semi-definite matrices tell us that: C
has real eigenvalues:

>\,1 > >\,2 >y > >"L >=(), ZL:XJ. = var(y) (4.21)

4.14 Orthogonality relations

Thus PCA amounts to finding the eigenvectors and eigenvalues of C. The
orthogonal eigenvectors then provide a basis, i.e., the data y can be expanded in
terms of the eigenvectors e; :
y-y=>a,@e, 4.22)
j=1
where a;(¢) are the expansion coefficients. To obtain a;(¢), left multiply the

T
above equation by €; , and use the orthogonal relation of the eigenvectors,

ele. =0, (4.23)

a,t)=el (y-y), (4.24)

i.e., a,(r) 1s obtained by the projection of the data vector y —y onto the
eigenvector €, as the right hand side of this equation is simply a dot product

between the two vectors. a,(¢) are usually called PCs, and €, cigenvectors or

EOFs.
There are two important properties:
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k
(1) The expansion Za (e, (x) explains more of the variances of the data
j=1

k
than any other linear combination Zb ;@ f;(x). Thus PCA provides the
j=1

most efficient way to compress data.

(2) The time series in the set {a,} are uncorrelated. We can write
a;(t)=e;(y-y)=(y-y,
Fori=j,

covia;,a;)=Ele] (y-y)(y-y)e;1=e] E[(y - y)(y - )" le,

_ T _ T _ T _
=e; Cej =e,; kjej —kjei e =0

(4.25)

Hence PCA extracts the uncorrelated modes of variability of the data
field. Note that no correlation between (a;.a;) only means no linear

relation between the two, there may still be nonlinear relation
between them, which can be extracted by the nonlinear PCA method

using neural network.

4.1.5 An Example: PCA of the tropical Pacific climate variability

Normal Conditions

Tharmoeciina

120°E S0
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El Nino Conditions

120°E BO"W
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Let us study the monthly tropical Pacific SST from NOAA (National Oceanic
and atmospheric administration) for the period January, 1950 to August 2000.
The SST field has 2 spatial dimensions, but can easily be rearranged into the
form of y(t) for PCA analysis. Fig.4.3 is the spatial pattern for the first 3 modes
(accounting for 51.8%, 10.1% and 7.3% respectively, of the total SST variance).
Fig.4.4 are PCs corresponding with the first 3 modes.
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Fig4.4
Model (Fig. 4.3a) shows the largest SST anomalies occurring in the eastern
and central equatorial Pacific. The PC1 (Fig4.4) can be used as an index for El
Nino/La Nina.

Mode?2 (Fig. 4.3b) has, along the equator, positive anomalies near the east and
negative anomalies further west.

Mode3 (Fig. 4.3c) shows the largest anomaly occurring in the central
equatorial Pacific, and the PC shows a rising trend after the mid 1970s.

4.1.6 Scaling the PCs and eigenvectors
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There are various options for the scaling of the PCs {a,(¢)} and the
eigenvectors {e; }. One can introduce an arbitrary scale factor o,

aj':laj e;'=ae, (4.26)
o
so that
y-y=2a'e, (4.27)

Our choice for the scaling has so far been
e.e. =0, (4.28)

which was the choice of Lorenz. The variance of the original data y is then
contained in {a;(?)}, with

var(y) = E[) a’}] (4.29)
j=1
Another common choice is Hotelling’s original choice

aj:%jaj, e=fhe, (4.30)

whence
var(n =30, =Y e, |
j=1 j=1

1 A
From (4.25), cov(a,-"aﬁ:W"OV(“”“f):ﬁ]x ¢le; =8, (431)
i j i j

The variance of the original data is now contained in {e;(¢)} instead. In sum,

regardless of the arbitrary scale factor, the PCA eigenvectors are orthogonal and
the PCs are uncorrelated.

If y, is y, with mean removed and normalized by standard deviation, then one
can show that the correlation
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pla;t),y)=e;' (4.32)

the /th element of e,'. Hence the /th element of e,' conveniently provides the

correlation between the PC ;' and the standardized variable y, .

4.1.7 Degeneracy of Eigenvalues

A degenerate case arises when 4, =1,. When two eigenvalues are equal,
the eigenvectors are not unique.

A simple example of degeneracy is illustrated by a propagating plane wave,
h(x,y,t) = Acos(ky — ot) (4.33)
Which can be expressed in terms of two standing waves:
h(x,y,t) = Acos(ky)cas(mt) + A sin(ky) sin(wt) (4.34)

If we perform PCA on Ah(x,y,t), we get two modes with equal eigenvalues. To
see this, note that in the x-y plane, cos(ky) and sin(ky) are orthogonal, while
cos(ot) and sin(ot) are uncorrelated, so (4.34) satisfies the properties of PCA
modes in that the eigenvectors are orthogonal and the PCs are uncorrelated. As
(4.34) is a PCA decomposition, with the two modes both having the same
amplitude A, hence the eigenvalues %, =,, and the case is degenerate. Thus

propagating waves in the data leads to degeneracy in the eigenvalues. If one
finds eigenvalues of very similar magnitudes from a PCA analysis, that implies
near degeneracy and there may be propagating waves in the data.

4.1.8 A smaller covariance matrix

Let the data matrix be

Yu - Y
Y=|.. .. .. (4.35)

le Ymn

Where m is the number of spatial points and »n the number of time points.
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Assuming the temporal mean has been removed, then covariance matrix

c=Llyy" and c=ly'y (4.36)
n n

C1s a mxmmatrix, and C' 1S a nxn matrix.

In most problems, the size of the two matrices are very different. For instance,
for global 5° x5° monthly sea level pressure data collected over 50 years, the
total number of spatial grid points is m=2592 while the number of time points is
n=600. Obviously, it will be much cheaper to solve the eigen problem for C'
than for C.

The matrix theory says: C and C' have same eigenvalues. The question is now
how to get eigenvectors of C from eigenvectors of C'?

C':lYTY
n

Lytyw, =aw, (4.37)
n

where v, and A, are eigenvectors and eigenvalues of C'.

Multiplying Y on both sides of (4.36), we have

1

Y;YTYVJ. =YA,v; (4.38)
(%YYT)(YVJ.) =1,(¥v)) (4.39)
Denoting

e; =Yy, (4.40)
we have

Ce, =he; (4.41)
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(4.41) 1s just the eigen equation for C, meaning €;is an eigenvector for C.

In summary, solving the eigen problem for the smaller matrix C' yields the
eigenvalues {};} and eigenvectors {v,}. The eigenvectors {e,} for the bigger

matrix C are then obtained from (4.40) ¢, =Yv,.

4.1.9 Singular value decomposition
Instead of solving the eigen problem of the data covariance matrix C, a
computationally more efficient way to perform PCA 1is via Singular Value

Decomposition (SVD) of the mxn data matrix Y given by (4.35). Without loss
of generality, we can assume m > n, then the SVD Theorem says that

Y = ESF” (4.42)

E:-mxm; S:mxn, F:nxn
E and F are orthonormal matrices, i.e., they satisfy

E'E =1, F'F =1, (4.43)
Where I is the identity matrix. The leftmost n columns of E contain the n left
singular vectors, and then columns of F the n right singular vectors, while the

diagonal elements of S are the singular values.

The covariance matrix C can be rewritten as

C :lYYT :lESSTET (4.44)
n n
The matrix lSS T=A (4.45)

n

is diagonal and zero everywhere, except in the upper left nxn corner,

containing —s(i,i)* --- s(i,i) is singular values
n

Right multiply Eq. (4.44) by E gives
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CE = EA (4.46)

(4.46) is a standard eigen equation, with E is the eigenvectors and Ais the
eigenvalues. So, we can use SVD to derive eigenvectors and eigenvalues

with the relation: A, = ls( i
n

SVD approach to PCA is at least twice as fast as the eigen approach. So, SVD
is in particular useful for large datasets. Matlab program for SVD is
svd.

4.1.10 Significance tests

In practice, the higher PCA modes, which basically contain noise, are rejected.
How does one decide how many modes to retain? There are some “rules of
thumb”. One of the simplest approach is to plot the eigenvalues 1, as a function
of the mode number j. Hopefully, from the plot, one finds an abrupt transition
from large eigenvalues to small eigenvalues around mode number m. One can
then retain the first m modes. Alternatively, the Kaiser test rejects the modes
with eigenvalues A less than the mean value A .

Computationally more involved is the Monte Carlo test, which involves setting
up random data matrices R, (k =1,...K), of the same size as the data matrix Y.

The random elements are normally distributed, with the variance of the random
data matching the variance of the actual data. PCA is performed on each of the
random matrices, yielding eigenvalues A*;. Assume for each k, the set of

eigenvalues are sorted in descenting order. For each j, one examines the
distribution of the K values of A%, and finds the level A 05, which is exceeded

only by 5% of the L, values. The eigenvalues % ; from ¥ which failed to rise
above this X 005 level are then rejected.

Since the Monte Carlo method performs PCA on K matrices and K is typically
about 100, it can be costly for large data matrices.

4.2 Rotated PCA

When physical interpretation, rather than data compression, is a primary goal
of PCA, it is often desirable to rotate a subset of the initial eigenvectors to a
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second set of new coordinate vectors. This is because the orthogonality
constraint on the eigenvectors can lead to problems with these interpretations,
especially for the second and subsequent principal components. While the
orientation of the first eigenvector in its M-dimensional space is determined
solely by the direction of the maximum variation in the data, subsequent vectors
must be orthogonal to previously determined eigenvectors, regardless of the
nature of the physical processes of the data.

Given a matrix P composed of the column vectors p,,...,p,,, and a matrix Q

containing the column vectors g¢,....,q,,, then P can be transformed into Q by
QO=PR,ie.,

du = 2Pyt (4.47)
J
where R is a rotation matrix with elements I; . When R is orthonormal, i.e.,
R'R=1, (4.48)
the rotation is called an orthonormal rotation. Clearly
R'=R", (4.49)

for an orthonormal rotation. If R is not orthonormal, the rotation is an oblique
rotation.

Given the data matrix Y,

Y=y, =2 e, =2 en, =EAT (4.50)
J=1 J
we rewrite it as
Y = ERR™'A” (4.51)
with
E =ER (4.52)

and AT =R'A” (4.53)
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If R is orthonormal, (4.49) and (4.52) yield
A —AR (4.54)

So, the key issue here is to determine the rotation matrix R. In general, out of a
total of m modes, only the k leading ones are selected for rotation, while the
higher modes are discarded as noise. As there are many possible criteria for
rotation, there are many RPCA schemes .

The varimax scheme proposed by Kaiser (1958) is the most popular among
the orthogonal rotation schemes (also see Preisendorfer 1988, 273-277)

For illustration, supposed only the first 2 eigenvectors are chosen for rotation.
The data are first projected onto the 2 PCA eigenvectors to get the first two PCs

aj(tl)zzejiyil (4.55)

with the rotated eigenvectors ¢, , the rotated PCs are
a ()= Zgjiyil (4.56)

k
The varimax criterion is to maximize ) var(@,”).i.e.,
j=1

~72 2 1 Z ~7 2
[a@; @)’ -[=>.a;@)I) (4.57)

=1 =1

n

{

S | =

L=

2
j=1
Meanwhile, we have (4.1), i.e.,

a (t,)=a,(t,)cos@+a,(t,)sinf

a,(t,)=—a,(t,)sin@+a,(t,)cosd (4.58)

Plugging (4.58) into (4.57), and asking Z—Z =0, we can derive € in terms of

(a,,a,) . Thus we obtain the rotation matrix
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cos@,—sin @

sin @, cos 8

Thus, we can obtain the rotated PCs from (4.52) and (4.54)

An Example:
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Let us return to the tropical Pacific SST PCA modes. The PC1-PC2 values
are shown as dots in a scatter plot (Fig4.5) , where the cool La Nina states lie in
the upper left corner, and the warm El Nino states in the upper right corner. The
first PCA eigenvector lies along the horizontal line, and the second PCA, along
the vertical line, neither of which would come close to the El Nino nor the La
Nina states. Using the varimax criterion on the PCs, a rotation is performed.
The first RPCA eigenvector, shown as a dashed line, spears through the cluster
of EI Nino states in the upper right corner, thereby yielding a more accurate
description of the SST anomalies during El Nino (Fig4.6a) than the first PCA
mode (Fig4.3a), which did not fully represent the intense warming of Peruvian
waters during El Nino. In terms of variance explained, the first RPCA mode
explained only 91.7% as much variance as the first PCA mode. The second
RPCA eigenvector, also shown as a dashed line in Fig. 4.5, did not improve
much on the second PCA mode, with the RPCA spatial pattern shown in
Fig4.6b.

4.3 PCA for vectors

When one has vector variables, e.g., wind velocity (u,v), there are several
options for perform PCA. (a) One can simply apply PCA to the u field and to
the v field separately. (b) One can do a combine PCA, i.e., treat the v variables
as though they were extra u variables, so the data matrix becomes

Uy s Uy,
5 eees
Y = uml LA umn
Vis s Vy,
cees sesey
Voo = Von

Where m is the number of spatial points and n the number of time points. In
cases (a) and (b), the vector can of course be generalized to more than two
dimensions. If the vector is two-dimensional, then one has option (c) as well,
namely one can combine u and v into a complex variable, and perform a
complex PCA.
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Let W=u-+1iy (4.59)

PCA applied to w allows the data matrix to be expressed as
“T
Y=)ea, (4.60)
J

Where the superscript *T denotes the complex conjugate transpose. Since the
covariance matrix is Hermitian and positive-semi definite ) (see section 4.1.3),
the eigenvalues of C are real and non-negative, though e, and a; are in general

complex.
4.4 Canonical correlation analysis (CCA)

Given a set of variables {y;}, PCA finds the linear modes accounting for the
maximum amount of variance in the dataset. When there are two sets of vari-
ables {x;} and {y;}, canonical correlation analysis (CCA) , first introduced by
#**Hotelling (1936), finds the modes of maximum correlation between {x;}
and {y;}. rendering CCA a standard tool for discovering linear relations be-
tween two fields. CCA is a generalization of the Pearson correlation between
two variables  and y to two sets of variables {z;} and {y;}. Thus CCA can be
viewed as a “doubled-barreled PCA™. A variant of the CCA method finds the
modes of maximum covariance between {z;} and {y;}— this variant is called
the mazimum covariance analysis (MCA) by von Storch and Zwiers (1999),
and because it uses the SVD matrix technique, it is also simply called the SVD
(singular value decomposition) method by other researchers, though this name
is confusing as it is used to denote both a matrix technique and a multivariate
statistical technique.

In PCA, one finds a linear combination of the y; variables, i.e. ely, which
has the largest variance (subject to ||e;|| = 1). Next, one finds edy with the
largest variance, but with ely uncorrelated with efy; and similarly for the
higher modes.

In CCA, one finds f; and g;, so that the correlation between fi'x and gy
is maximized. Next find f; and go so that the correlation between fi x and g3 v
is maximized, with f}'x and gy uncorrelated with both f'x and gl y. And so
torth for the higher modes.

4.4.1 CCA theory

Consider two datasets
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X(t) = x4, i=1,---,ng, I=1-- ng,

(4.61)
and

T j=1,---.,n,, =1 n,.
vit)=yu. ] My M (4.62)

i.e., X and y need not have the same spatial dimensions, but need the same time
dimension n,. Assume x and y have zero means. Let

u=fTx, v= gT}r.

(4.63)
The correlation
_cov(u,v)  cov(fTx,gly) flcov(x,y)g
\/rvar{u} var(v) \/xm‘(-u} var(v) \/rlm‘(fTX} var(gTly) 1
(4.64)

Where we have invoked

cov(f'x, g'y) = E(f 'x(g'y)") = E(f'xy'g) = f "E[xy ' ]g.
(4.65)
We want u and v, the two canonical variates or canonical correlation
coordinates, to have maximum correlation between them, i.e., f and g are
chosen to maximize #. We are of course free to normalize f and g as we like,
because if f and g maximize #, so will of and Bg, for any nonzero o and f.
We choose the normalization condition:

var(fTx) = 1 = var(g"y).
(4.66)
Since
var(fx) = cov(f"x, £7x) = T cov(x, x)f = £7C,..f
(4.67)
and
_ F T T
var(g'v) =g C,,g
g y)=g Cyug (4.68)
So, we have
T — U'T : L —
fC.f=1, g C,g=1. (4.69)

With (4.66), (4.64) reduces to
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=fTC, e,
P zy8 (4.70)

Where C,, =cov(x,y)

The problem is to maximize (4.70) subject to constraints (4.69). We will
again use the method of Lagrange multipliers, where we impose the constrains
into the Lagrange function L,

L=f"C,g+a(f"C,.f —1)+3(g'Cyg—1), @71

where o and B are the unknown Lagrange multipliers. To find the stationary
points of L., we need

-'% )
L_-_L = ijt:'-!,rg + Qtllcjxtut:f =0 )
of :
4.72)
OL T P
E = {:"ﬂ‘yf ‘I‘ 2:!_3(:25,?;% = D
Hence
Cjt_tl Cjﬁt:'e.rg = —2af ?
x: ! 4.73)
i—1 ~T I ¥
C,lClf=-25g. 74
Substituting (4.74) into (4.73) yields
C-lc,, ClCT f =Mf = Af,
e I yy ey f ' (475)

WithA = 4aff . Similarly, substituting (4.73) into (4.74) yields

yy “wy Tz Ty 95 (4.76)

Both these equations can be viewed as eigenvalue equations, with M, and
M , sharing the same non-zero eigenvalues L. As M, and M are known from

the data, f can be found by solving the eigenvalue problem (4.75). Bg can then
be obtained from (4.74). Since B is unknown, the magnitude of g is unknown,
and the normalization conditions (4.69) are used to determine the magnitude of
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g. Alternatively, one can use (4.76) to solve for g first, then obtain f from
(4.73), and the normalization condition (4.69). The matrix M, is of dimension

n,xn, , while M is n,xn_, so one usually picks the smaller of the two to solve
the eigenvalue problem.

From (4.70),

p?=f1C.gg " CLf =403 (f"C..f) (g Cyyg) .

4.77)

Where (4.72) has been invoked. From (4.69) , (4.77) reduces to

Pt =2 (4.78)
The eigenvalue problems (4.75) and (4.76) yield n number of A , with
n=min(n_,n, ). Assuming the i to be all distinct and nonzero, we have for each
A; (j=1,...,n), a pair of eigenvectors, f, and g,, and a pair of canonical variates,

u; and v;, with correlation p; = \/XT between the two.

Let us write the forward mapping from the variables x(t) and y(t) to the
canonical variates u(t) =[u,(t),...,u t}]" and v(t) = [v,(0),...,v (t}]]" as

u=[fi'x,- f;x]"' =F'x, v=¢ly (4.79)

Next, we need to find the inverse mapping from u(¢) =[u,(t),...,u, (t}]" and
v(t) =[v,(0),..., v, (t}]" to the original variables x and y. Let

x=Fa, v=Gv.
(4.80)
We note that

cov(x,u) = cov(x, Fix) = E[}L{FTXJT] = E[xxT.'F] =C,.F,

(4.81)
and

covix,u) =cov(Fu,u) = Fcoviu,u)=F. (4.82)
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Eqgs (4.81) and (4.82) imply

F=C,.F. (4.83)

G=0C,0G

Similarly yy= - (4.84)

Hence the inverse mappings F and G (from the canonical variates to x and y)

. T +T .
can be calculated from the forward mapping F* and G | The matrix F
1s composed of column vectors F;, and G, of column vectors G;. F; and G
are the canonical correlation patterns associated with u; and v;, the canonical
variates. In general, orthogonality of vectors within a set is not satisfied by any
of the four sets {F;}, {G,}. {f;} and {g;}, and

cov(u;, u;) = cov(v, vj) = coviu;,vy) = 0.

Fig.4.7 schematically illustrates the canonical correlation patterns.

Figd.7

4.4.2 Pre-filter with PCA

When x and y contain many variables, it is common to use PCA to pre-
filter the data to reduce the dimensions of the datasets, i.e. apply PCA to x
and y separately, extract the leading PCs, then apply CCA to the leading PCs
of x and y.
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Using Hotelling’s choice of scaling for the PCAs (Eq 4.30), we express the
PCA expansions as

ror et
r — . . r = . .
X E Iﬂ’j'E‘j._. A E a.i' e;,i' ;
1 1

CCA is then applied to
T = ! r 1T
:?1m] . y = [ﬂ]j" 00 G 1ﬂ:ny] Y (4 86)

where only the first m, and m, modes are used. Another reason for using the

(4.85)

X=[a}, - ,a

PCA pre-filtering is that when the number of variables is not small relative to
the number of samples, the CCA method may become unstable, as the many
higher modes may by chance attain high correlation although they account
for negligible variance.

With Hotelling’s scaling

c'm-'[a;-,ai.} = djk, Cm-'[a:, ay) = 0k » (4.87)
leading to
i35 = Cgz =1. (4.88)
Egs. (4.75) and (4.76) simplify to
1 T v
25 Ciy £ = Myt = A, (4.89)
C:i;Cigg =Myg = Ag. (4.90)

As M ,and M are non-negative definite symmetric matrices, the eigenvectors

{f;} 185} are now sets of orthogonal vectors. Eqs (4.83) and (4.84) simplify
to

F=F, G=¢. 4.91)
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Hence {F;} and {G;} are also two sets of orthogonal vectors, and are identical
to {f;} and {g;}. respectively. Because of these nice propoerties, pre-filtering
by PCA (with the Hotelling scaling) is recommended when x and y have many
variables (relative to the number of samples). However, the orthogonality only
holds in the reduced dimensional spaces, X and y. If transformed into the
original space x and y, {F;} and {G,} are in general not two sets of orthogonal

vectors.

Fig4.8 shows the mode 1 CCA of the tropical Pacific sea level pressure

(SLP) field and the SST field, showing clearly the Southern Oscillation pattern
in the SLP and the El Nino/La Nina pattern in the SST. The canonical variates
u and v (not shown) fluctuate with time, both attaining high values during El
Nino, low values during La Nina, and neutral values around zero during normal

conditions.
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4.4.3 Singular value decomposition (SVD)

Instead of maximizing the correlation as in CCA, one can maximize the
covariance between two datasets. This alternative method is often called the
singular value decomposition (SVD).

SVD is identical to CCA except that it maximize the covariance instead of the
correlation. As mentioned before, CCA can be somewhat unstable (when the
number of variables is not small relative to the number of samples) in that
modes with high correlation may account for negligible variance, hence the
recommended pre-filtering of data by PCA before applying CCA. SVD, by
using covariance instead of correlation, does not have the unstable nature of the
CCA, and does not need the pre-filtering by PCA.

In SVD, one simply performs SVD on the data covariance matrix C,,

2., =USV!,
o (4.92)
Where the matrix U contains the left singular vectors f,, V the right singular

vectors g, , and S the singular values. Maximum covariance between «; and v,is
attained (Bretherton et al. 1992)

wi =% v =gl
(4.93)
The inverse transform is given by
X = Z 'U-éf]._., Yy = Z Ui .
f’ (4.94)

For most application, SVD yields rather similar results to the CCA (with CCA
pre-filtering).

The matrix technique SVD can also be used to solve the CCA problem. Similar
to (4.63), we seek
u=fTx, v= g V.

(4.95)
such that
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cov(u,v)=cov(f x,g"y)= f" cov(x,y)g > maximum (4.96)
subject to

f'f=1 and g'g=1 (4.97)
The solution is obtained by using Lagrange multiplier
L=f"cov(x,y)g+a(f" f-D+B(g"g-1

Similar to CCA (4.72)-(4.76), we have

C,g+2af =0
T
C, f+2pg=0 (4.98)
C,g=s.f
B (4.99)
C:yf _Syg

(4.99) implies that the solution g and can be solved by a singular value
decomposition. The same solution is obtained by substituting the two
equations into each other to obtain

T
C, C,g=40Pg =g

C,C.Tf =4off =)f (+-100)

(4.50) is very similar to (4.75) or (4.76). So, the solution can be obtained by
eigen equations.

So, there are two approaches to perform SVD: (1) simply perform SVD on
C,, =cov(x,y); (2) solving eigen equations (4.100)



