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Chapter 3    Filtering and Spectrum analysis  

 

3.1  Fourier analysis 

 

With time series data, an alternative way to view the data is via the 

frequency representation first developed by J. B. Fourier in the early 

nineteenth century. Given a function y(t) defined on the interval [0,T], the 

Fourier series representation for y(t) is 
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With the (angular) frequency mωωωω  given by   
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Also the frequency ππππωωωω 2/=f  and  Tmfm /=  

The Fourier coefficients ma  and mb given by  
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For a discrete time series, ,)( nn yty ≡  n=1, …, N. With a sample interval ,t∆  

the samples are collected at time tntn ∆=  
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where M is the largest integer <=N/2 and N is the length of sample. 

 

The Fourier coefficients are given by   
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The cosine and sine functions have orthogonality properties: 
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where lmδδδδ is the Kronecker delta function (which equals when l=m, and 0, 

otherwise).  

 

General transform of Fourier: 
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3.2  The discrete spectrum  

 

The variance of the time series y can be written in terms of its Fourier 

coefficients  
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Using (3.6), (3.7) can be expressed in terms of the Fourier coefficients 
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 The autospectrum, also called the power spectrum, is defined as  
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Since 
ππππ4

tN∆
 is a constant,  the power spectrum is also defined as  
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Thus (3.8) can be expressed as  
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Hence, the spectrum mS can be viewed as the variance or ‘energy’ in the 

mωωωω frequency band (with bandwidth ωωωω∆ ), and the total variance var(y) can 

be computed by integrating mS over all frequency bands. When mS is plotted 

as a function of the frequency, peaks in mS reveal the frequencies where the 

energy is relatively high. 

 

From (3.2), the lowest frequency in the spectrum, known as the fundamental  

frequency, is  
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Often a time series displays a trend, i.e., a positive or negative slope in the 

data over the time record. Fort instance, the Canadian prairie yield shows a 
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positive trend with time, largely due to the gradual improvement in 

agricultural technology. The frequency associated with a trend is lower than 

the fundamental frequency, thus energy from the trend will leak to other low 

frequency spectral bands, thereby distorting the low frequency part of the 

spectrum. By subtracting the linear regression line from the data time series, 

trends can easily be removed prior to spectral analysis. 

 
             Fig.3.1 

 

The highest resolvable frequency from (3.2) is TM  /  2ππππωωωω = , but with 

2/NM ≈ , we have ).2/(1/ tTM ∆≈  Hence the highest resolvable frequency, 

called the Nyquist frequency, is  
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To resolve a wave of period of period ττττ , we need at least two data points to 

cover the period ττττ , i.e. 
Nf

t
1

2 =∆=ττττ . Aliasing arises when t∆  is too large to 

resolve the highest frequency oscillations in the data. Fig.3.2 illustrates a 

signal sampled too infrequently, resulting in an incorrect inference aliased 

signal of much low frequency.  
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     Fig3.2 

 

From (3.2), the frequency ωωωω∆  between adjacent frequency bands is  
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The ability to resolve neighboring spectral peaks is controlled by  ωωωω∆ , which 

is proportional to 1/T. Hence a longer record T will yield sharper spectral 

peaks, thereby allowing the resolution of two signals with close-by 

frequencies as distinct peaks in the spectrum. A shorter record will blur the 

two signals into a single spectral peak. 

 

The raw spectrum mS  calculated from (3.9) is often very noisy in appearance. 

There are two common methods for smoothing the spectrum: (a) band-

average (or running mean) is applied to the raw spectrum  
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where mS
~

is the smoothed spectrum resulting from averaging the raw  

spectrum over 2K+1 frequency bands. 

 

In method (b), the data record is divided into J blocks of equal length L=T/J. 

Compute the spectrum for each block to get )( j

mS  (j=1,…, J). The spectrum 

mS is then the ensemble average over the J blocks: 
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Method (b) has an advantage over (a) when there are data gaps --- in (b), the 

data gaps do not pose a serious problem since the data record is to be 

chopped into J blocks anyway, whereas in (a), the data gaps may have to be 

filled with interpolated values or zeros. The disadvantage of (b) is that the 

lowest resolvable frequency is TJLf //11 == , hence there is a loss of low 

frequency information when the record is chopped up. 

 

There is a trade off between the variance of the spectrum S and the band 

width. Increasing the band width (by increasing K or J) leads to a less noisy 

S, but spectrum peaks are broadened, so that nearby spectral peaks may 

merge together, resulting in a loss of resolution. 

 

3.3 The continuous spectrum  
 

The variance of the continuous time series y can be written by 
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Where (3.A) and (3.B) have been invoked.  
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Asterisk denotes complex conjugation.  So,  
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)(ωωωωF  is called the density of power spectrum, i.e.,  
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The continuous spectrum could be calculated using (3.19), but it is usually  
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got by the Fourier transform of autocorrelation function. Assuming y(t) is a 

continuous time series with zero mean and unity variance, its autocorrelation 

function can be expressed 
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  From  (3.17) and (3.19),  we have  
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(3.20) can also be written  
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So, the spectrum is related to the autocorrelation function by a Fourier 

transform. The procedure to estimate continuous spectrum using (3.21) is as 

below 

 

(1)  calculating autocorrelation  
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     Where ,,...,1 M=ττττ  and M is the maximum lag, usually set to ½ - 1/5 of N.  
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     (2) using the trapezoidal rule to approximate (3.2) 
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(3) smoothing raw spectrum to remove noise 
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(4) plotting lS as a function of wave number (k), and analyzing the period     

     using (3.2). 

 

(5) statistical test of spectrum  

      

(a) discrete spectrum test 
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(b) continuous spectrum test 
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When kS from (3.24) is greater than okS * , the criteria of  

significance, the kS  is statistically significant; otherwise it is 

statistically insignificant. 

 

3.4 Cross-spectrum  
 

Now let us consider two time series, )(tx and )(ty , their covariance: 
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Similar to (3.19),  )()()( ωωωωωωωωωωωω −= xyxy FFS   is defined the cross-spectrum. 

It describes the relationship between x and y in frequency domain. When 

x=y, )(ωωωωxyS  is equal to the spectrum as shown in (3.19). 

 

)(ωωωωxyS  is a complex, and can be split into a real part and an imaginary part, 
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where  )(ωωωωxyR  is the co-spectrum and )(ωωωωxyI is the quadrature spectrum. 

)(ωωωωxyS  can also be expressed in polar form, 
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where xyA is the amplitude spectrum and  xyθθθθ , the phase spectrum, with  
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Cross-spectrum can also expressed in terms of auto cross-correlation ).(ττττρρρρ xy  
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So,    
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Using (3.34), we can further write  
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Similarly,   ∫
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We can use (3.39) and (3.40) to calculate the cross-spectrum, the detailed 

procedure is as below  

 

(1) calculating cross-correlation )(ττττρρρρ xy  and )(ττττρρρρ yx  using the discrete form 

of  (3.32) and (3.33),   
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Where M,...1=ττττ , and M is the maximum lag, usually set to 1/3-1/5 of the 

original sample length N.    

 

     (2)  using the trapezoidal rule to approximate (3.39) and (3.40), we have  
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    (3)  smoothing raw spectrum to remove noise 
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         Where  

          =kB  1        ( 2/,0 Mk ≠ ) 

          =kB 1/2      (k=0, M/2) 

 

  A useful quantity is the squared coherency spectrum (where the word 

“squared” is often omitted for brevity): 
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        Physically, it indicates the representation of the relation (coherency) 

between x and y at the frequency of ωωωω . 

 

         In practice, (3.47) is used to examine the relation of two time series at 

different frequencies. A diagram is often plotted to show the relation of P 

and ωωωω . When a highly coherency frequency is found (corresponding the 

maximum of P), the lag phase between the two time series responsible for 

the most coherency frequency can be obtained by xyθθθθ  in (3.31), or by  
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Where T is the period of ωωωω . 
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 (3.49) can be used for significant test, where υυυυ  is determined by (3.27). 

 

   

3.5 Filters 

 

One often would like to perform digital filtering on the raw data. For 

instance, one may want a smoother data field, or want to concentrate on the 

low-frequency or high-frequency signals in the time series. Let us express a 

time series x(t) in terms of its complex Fourier components :)(ωωωωX  
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Where it is understood that ωωωω  and t denote the discrete variables mωωωω and nt . 

A filtered time series is given by 
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where )(ωωωωf is the filter “response” function.  

 

     
                Fig.3.3 

 

  Fig3.3 illustrates several ideal filters for low-pass, high-pass and band-pass 

filter. In these ideal filters, the step discontinuity as the cut-off frequency 
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cωωωω produces “ringing” (i.e. oscillations) in the filtered time series  

(especially at the two ends). This problem of a step discontinuity in the 

frequency domain leading to ringing in  the time domain is like a time series 

truncated by a rectangular window leading to energy leakage in the 

frequency domain. Thus in practice, )(ωωωωf needs to be taped at cωωωω to suppress 

ringing in the filtered time series.  

 

To perform filtering in the frequency domain, the steps are: (1) Fourier 

transform )(  to)( ωωωωXtx ; (2) multiply )(ωωωωX by )(ωωωωf ; and (3) inverse transform 

)(ωωωωf )(ωωωωX  to get )(~ tx , the filtered time series. 

 

Alternatively, filtering can be performed in the time domain as well. In fact, 

prior to the invention of last Fourier transform algorithms, filtering in the 

frequency domain was prohibitively expensive, although nowadays, the 

tasks are trivial in computing costs, and filtering can be performed in either 

the frequency or the time domain.  

 

A commonly used time domain filter is the 3-point moving average (or 

running mean) filter  

 

  11
3

1

3

1

3
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+− ++= nnnn xxxx                                              (3.52) 

i.e., average over the immediate neighbors. More generally, a filtered time 

series is given by  
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 where lw  are the weights of the filter. 

 

 Suppose the filtered time series has the Fourier decomposition  
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Comparing with (3.51), one sees that  
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ωωωωωωωωωωωω XfX =                                                           (3.55)  

 

So, 
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f =                                                                  (3.56) 

 

From (3.54) and (3.53)  
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 So, (3.56) can be expressed  
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which allows us to calculate the filter response function )(ωωωωf  from the 

given weights of a time domain filter. 

 

For example, moving average filter have the general form 
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                                                          (3.58) 

 

Another commonly used filter is the 3-point triangular filter, 
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One often encounters time series containing strong periodic signals, e.g., the 

seasonal cycle. While there periodic signals are important, it is often the no-
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periodic signals which have the most important impact on humans, as they 

produce the unexpected events. One often world remove the strong periodic 

signals from the time series first. 

 

Suppose one has monthly data for a variable x, and one would like to extract 

the seasonal cycle. Average all x values in January to get janx , and similarly 

for the other months. The climatology seasonal cycle is then given by  

 

],....,[ decjanseasonal xxx =  

 

The filtered time series is obtained by subtracting the climatological 

seasonal cycle from a raw data ---i.e., all January values of x will have 

janx subtracted, and similarly for the other months. 

 


