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Abstract  

This paper presents the emergence of the cooperative behavior for communicating 
agents by means of Genetic Programming (GP). Our experimental domains are the pur- 
suit game and the robot navigation task. We conduct experiments with the evolution of 
the communicating agents and show the effectiveness of the emergent communication in 
terms of the robustness of generated GP programs. The performance of GP-based mul- 
ti-agent learning is discussed with comparative experiments by using different breeding 
strategies, i.e., homogenous breeding and heterogeneous breeding. © 1998 Elsevier 
Science Inc. All rights reserved. 
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1. I n t r o d u c t i o n  

Recently intelligent agents and multi-agent systems have garnered much 
interest in Distributed Artificial Intelligence (DAI). Genetic Programming 
(GP) and its variants have been applied to multi-agent learning ([1], Ch. 12; 
[2-8]). They have introduced the following evolutionary strategies: 
1. Homogeneous  breeding (Fig. l(a)). All agents use the same program 

evolved by GP. Individuals breed as in an ordinary GP. 
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2. Heterogeneous breeding (Fig. l(b)). Each agent uses a distinct program. A 
GP individual maintains multiple branches, each of which serves as a spe- 
cialized program for a distinct agent. The breeding proceeds in the same 
way as the ADF version of GP [9], i.e., crossover operations are applied 
to the correspondent branch pairs. 
They showed that GP could evolve the cooperative behavior for a specific 

problem solving. However, in most of these studies, the agents had no commu- 
nicating mechanism. The communication is an essential factor for the emer- 
gence of cooperation. This is because a collaborative agent must be able to 
handle situations in which conflicts arise and must be capable of negotiating 
with other agents to reach an agreement [10]. Benda et al. [11] introduced 
the following three types of relationship between agents: 
1. Communicating agents (Type A), i.e., one agent is capable of requesting 

data from another agent. 
2. Negotiating agents (Type B), i.e., in addition to the above data request, 

agents can negotiate with each other about their movements. 
3. Controlling agents (Type C), i.e., an agent can control over another agent. 

[ GP Tree 

(a) Homogeneous Strategy. 
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(b) Heterogeneous Strategy. 

Fig. 1. Homo-/heterogeneous strategies. 
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This paper applies GP for evolving communicating agents and shows that 
the robustness of the generated program is increased with the communication 
in the following problem domains: 
1. The robot navigation task (Fig. 2), in which communication com- 

mands, such as SEND or RECEIVE, are used so that the agent can sig- 
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Fig. 2. Training and test cases. 
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nal what it sees to a remote agent and sometimes can tell it to stop (i.e., 
Type C). 

2. The pursuit game (Fig. 8), in which we introduce COM?'s  commands.  These 
commands  take one argument and request data from the agent? (i.e., Type 
A). 
The robustness is an important  feature of  a program evolved by GP [12]. It 

is defined as the ability to cope with noisy or unknown situations. In the robot 
navigation, the robustness could be examined by testing an evolved program 
for another  navigation task. In pursuit of  the robustness, we verify the valid- 
ness of  an evolved program for testing data, which are different from the train- 
ing data. We show that GP-based multi-agent learning evolves robust 
programs through the usage of communication. 

The rest of  this paper  is structured as follows. GP is applied to a robot nav- 
igation task in Section 2. Section 2.1 describes the experimental set-up of the 
robot  navigation. Section 2.2 introduces communicat ion commands  for our 
tasks. In Section 2.3, we show the experimental results and compare the perfor- 
mance. We use the above-mentioned two breeding strategies (Fig. 1) for com- 
parison 2. Section 3 describes another  multi-agent problem, i.e., the pursuit 
game. Section 3.2 shows some experimental results in order to test the robust- 
ness of  a generated program. In Section 3.3, we apply our approach to evolving 
communicating agents. Section 4 discusses these results, followed by some con- 
clusions in Section 5. 

2. The robot navigation problem 

The world of  our robot  navigation consists of  a rectangular grid on which 
agents (denoted as Ai, i = 0, 1 , . . . )  and some obstacles (#) can be placed (see 
Fig. 2). Each object occupies one cell of  the grid. The agent can move up, 
down, left, and right unless doing so would cause it to run into the world's 
boundaries or an obstacle. The agents'  goal is to find the optimal path in a grid 
world, f rom given starting locations to their respective goals (the agents'  desti- 
nations are shown by arrows in the figure). In our robot  navigation task, four 
agents have to pass through a narrow aisle to reach their goals. The deadlock 
problem often occurs when two agents try to move toward the opposite direc- 
tions in the aisle. For  instance, if agents move to their destinations without any 

2 We have proposed a new approach to co-evolving the multi-agent cooperation, i.e, the 
emergence of the job separation among the agents [5,6]. Experimental results have shown that this 
strategy seems to be promising for GP-based multi-agent learning, as an integration of both 
homogeneous and heterogeneous strategies. Actually, in the following experiments, we have often 
used this co-evolutionary breeding, instead of heterogeneous strategy. However, for the sake of the 
limitation of pages, we only report on the results by the heterogeneous strategy. 
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Agent0: Goal 
Agentl: (if>= Agl Goal Goal Goal) 
Agent2: Goal 
Agent3: (inv (inv Goal)) 
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Fig. 3. Behaviour of agents based on goal terminal• 

consideration, then they are very likely to block each other (see Fig. 3 for the 
example behavior). Hence, but for the necessary cooperation, the navigation 
task could not be solved effectively. 

Fig. 2 shows some of the training and testing cases. These cases are taken 
from various types of  navigation scenarios, and solving these distinct tasks re- 
quires the effective generalization of training examples (i.e., the robustness of  
an evolved problem). 

2.1. The robot navigation and genetic programming 

In order to apply GP  to evolving an agent 's problem in the robot navigation, 
we use the terminal and nonterminal sets shown in Table 1 3. In the table, a 
symbol without any argument is a terminal symbol. 

We have chosen vector operations for the GP tree representation. This is 
aimed at incorporating more precise directional information as to the environ- 
ment surrounding the agents. We assume agents, i.e., robots, have a potential- 
based sensor [13]. Thus, the Goal  terminal returns a directional vector, through 
which the agent draws nearer to the goal. The length of the vector is the dis- 
tance to the goal. For  instance, assuming that x and y axes are rightward 

/ - 9  
and upward as usual, the Goal  terminal returns a vector ~ ~ / for the agent u /  

k 

A3 in Tra in ing#1  (Fig. 2), because the agent A3 and its g0al are positioned at 
9 "~ 0 

/ - ~  
^ / and [ _ / ,  respectively. In the same way, the Agi terminal returns a vec- u) \~ )  

tor from the agent to the ith nearest agent, through which the agent draws 
nearer to the ith nearest agent. 

3 The usage of these symbols is motivated by the study reported by [4]. Luke studied evolving 
teamwork by GP for a pursuit game, in which the world is a continuous 2-dimensional. 
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Table 1 
GP terminals and functions (robot navigation) 

Name # Args. Description 

Goal 0 

Last 0 

Agi 0 

V1 0 
Rand 0 
+ 2 
- 2 

*2 1 
12 1 
- > 9 0  1 
inv 1 
if_dot 4 

if>= 4 

The directional vector by which to move the agent toward its 
goal. 
The last vector of the GP output for the agent. If this is the 
first move, then returns a random vector. 
The directional vector by which to move the agent toward 
the ith nearest agent. 
A unit vector, i.e., (1). 
A random vector. 
Add two vectors 
Subtract two vectors. 
Multiply the magnitude of a vector by 2. 
Divide a vector by 2. 
Rotate a vector clockwise 90 degrees. 
Invert a vector, i.e., if the input is v, then return -v. 
Evaluate the first and second arguments. If their dot product 
is greater than 0, then evaluate and return the third 
argument, else evaluate and return the fourth argument. 
Evaluate the first and second arguments. If the magnitude of 
the first argument is greater than the magnitude of the 
second argument, then evaluate and return the third argu- 
ment, else evaluate and return the fourth argument. 

W h a t  is requi red  by  a G P  tree p r o g r a m  is to  tell how to move  an agent ,  i.e., 
r ight ,  left, up,  down  and  stay. Thus,  the w r a p p e r  (i.e., the m a p p i n g  be tween the 
o u t p u t  o f  a parse  tree and  the ac t ion  to be taken)  is app l i ed  to the o u t p u t  o f  the 
G P  tree so as to decide the agent ' s  move.  The  m a p p i n g  between vectors  and  
ac t ions  is de t e rmined  as follows: I f  the n o r m  o f  the vec tor  ~' is less than  or  equal  
to  the p a r a m e t e r  Rad ius ,  then S T A Y  where  you  are. Otherwise ,  move  1 s tep 
R I G H T ,  UP,  L E F T  or  D O W N  depend ing  on  the d i rec t ion  o f  7. i.e., when ~' 

is be tween I -  9, + ~], [+ 9, + ~ ] ,  [+ ~ ,  + ~ ]  and  [+ ~ ,  + ~ ] ,  respectively.  This  
m a p p i n g  is shown in Fig.  4. W e  set the  R a d i u s  p a r a m e t e r  to 1.0. F o r  instance,  

if  the o u t p u t  o f  a G P  tree is a vec tor  ( ? 0 ) ,  then the agent ' s  move  is U P  as the 
resul t  o f  the wrapper .  

F i tness  funct ions  need to be des igned careful ly  so tha t  they sat isfy the fol- 
lowing requirements :  

Request 1: Give  a high score to a G P  p r o g r a m  which moves  an  agent  to its 
goal.  
Request 2: Give  a h igher  score to a G P  p r o g r a m  which finishes the tasks  (i.e., 
moves  all agents  to thei r  goals)  quickly.  
Request 3: I f  any  agents  have no t  reached  the goals  af ter  the execut ion o f  a 
G P  p r o g r a m ,  give a h igher  score when they  have  been m o v e d  neare r  to their  
goals.  
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Fig. 4. Wrapper, i.e., mapping between the output of a parse tree and the action to be taken. 

In order to meet the above requests, we use the following fitness for a GP 
tree T: 

Step 1. Set Step_Time := 51,Fitness := 0.0. 
Step 2. Evaluate T and move agents according to the result of the wrapper. 
Step 3. If an agent reaches its goal, then Fitness := Fitness + Bonus x fiT, 

where f i t  is the number of agents that have reached the goals at this step. 
Step 4. If  all agents reach their goals, then 

Fitness := Fitness + Speed_UP x Step_Time, (1) 

and return Fitness. 
Step 5. Step_Time := Step_Time - 1. 
Step 6. If Step_Time is zero, then 

Fitness := Fitness + Cr x Z {d(st(ag),gl(ag)) - d(cr(ag),gl(ag))} , 
agEA G 

(2) 
where AG is the set of  remained agents. Return Fitness. 

Step 7. Go to Step 2. 
Initially, the maximum number of evaluations is set to 51 (Step 1). In Step 3, 

the value of  Bonus is added to the fitness if an agent reaches its goal, which sat- 
isfies Request 1. If all agents are moved to their goals, i.e., the task is complet- 
ed, the fitness value is increased with the remained Step_Time (Step 4). This 
meets the above Request 2. In Step 6, d(x,y) means the distance of  x and y. 
st(ag), cr(ag), and gl(ag) are the original position, the current position, and 
the goal position for an agent ag. Thus, {d(st(ag), g l (ag))-d(cr(ag) ,  
gl(ag))} equals to the moved distance of an agent ag toward its goal. 
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Therefore, the Eq. (2) means that the fitness is more increased if the remained 
agents have been moved nearer of  their goals after the execution of the pro- 
gram, which satisfies the above Request 3. 

We have chosen the Bonus, Speed_UP, and Cr parameters as 3000.0, 80.0 
and 100.0, respectively. Since we used the tournament selection, (see Table 3), 
the absolute values of these parameters are not important. However, the Bonus 
parameter should be larger than the second term of the Eq. (2), so that GP 
searches for a program which completes the task at first. 

2.2. Communication among agents 

Communication is an essential factor for the emergence of cooperation. For  
example, Werner and Dyer [14] presented a simulation, in which a population 
of artificial organisms evolved simple communication protocols for mate find- 
ing. They showed how the organisms generated and interpreted meaningful sig- 
nals as a result of  evolution. 

In this section, we use communication commands such as SEND or RE- 
CEIVE, by which an agent can tell another agent to stop or move. The 
SEND_/funct ional  symbol takes two arguments and returns its second value 
(i.e. a two-dimensional vector). As a side effect, SEND_/sends its first argu- 
ment to the ith nearest agent as a command. The RECEIVE function returns 
the evaluated result of  the command message, if any, which has been sent to 
itself by the SEND_/command.  The message list is an FIFO (i.e., first in, first 
out) queue. If no message is sent, then the RECEIVE function returns its ar- 
gument by default. 

For  instance, consider the following GP trees for two agents: 
Agent O: (SEND_I (inv Goal) Goal) 
Agent 1." (if> = Agl Goal Goal (RECEIVE Goal)) 

Suppose that Agent 0 and Agent 1 compete with each other, e.g., A0 and A2 in 
Training #4 (see Fig. 2). That is, one's goal is another one's starting point and 
both agents have to pass through the same narrow path to reach their goals. At 
the first time step, the Agent 0 program returns the vector Goal. As a side ef- 
fect, the SEND_I function sends the command (inv Goal) to Agent 1. When 
evaluating the Agent 1 program for the first time, the RECEIVE function re- 
turns the Goal vector because there is no message in the queue. Thus, both 
agents draw near to their goals as a result. Next, at the second time step, the 
Agent 0 program sends (inv Goal) and returns the vector Goal as before. Then, 
in case of evaluating the Agent 1 program, if the Agent 0 is nearer to Agent 1 
than its goal 4, the RECEIVE function returns the evaluated result of  the pre- 

4 Note that when evaluating if > = function, if the magnitude of the first argument is greater than 
the magnitude of the second argument, then evaluate and return the third argument, else evaluate 
and return the fourth argument. 
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Table 2 
GP Functions for communication 

189 

Name # A r g s .  Description 

Send_/ 2 

Send_iY 1 

Send_iS 1 

Send_iR 1 

Receive 1 

Send its first argument to the ith nearest agent as a command. 
Return its second argument. 
Send the YIELD command to the ith nearest agent. Return its 
argument. 
Send the STOP command to the ith nearest agent. Return its 
argument. 
Send the RANDOM command to the ith nearest agent. Return its 
argument. 
Receive a message as a command. If no message is received, return 
its argument by default. 

vious message (inv Goal), i.e., the inverse vector of  Goal  5. Otherwise, the 
Agent  1 tree returns the third a rgument  o f  if > = function, i.e., the Goal  vector. 
As a result, Agent  0 draws near to its goal, whereas Agent  1 moves in the di- 
rection opposite to its goal if Agent  0 is near enough,  and moves toward its 
goal otherwise. Later  on, the evaluat ion proceeds in the same way. Therefore, 
intuitively, the above communica t ion  realizes the following cooperat ion:  
1. At  first, bo th  Agent  0 and Agent  1 approach  their own goals. 
2. When  Agent  0 comes closer to Agent  1, Agent  1 gives way by moving in the 

direction opposite to its own goal. 
3. When  Agent  0 reaches its goal and stops sending a command ,  Agent  1 starts 

moving toward  its destination. 
As can be seen in the above example, th rough  the usage o f  the communica t ion  
commands ,  G P  is expected to evolve a robust  program,  in the sense that  agents 
can coopera te  with each other  more  effectively in general situations. 

The funct ion symbols in t roduced for the communica t ion  are shown in 
Table 2. SEND_iY,  SEND_iS, and SEND_iR macros  send commands  such 
as Y I E L D  (i.e., the receiver moves to one o f  its adjacent empty cell), STOP 
(i.e., the receiver stays at its current position) and R A N D O M  (i.e., the receiver 
moves randomly) .  These c o m m a n d s  are commonly  used for the mot ion  con- 
trol. Thus,  in addit ion to the S E N D _ / a n d  R E C E I V E  primitives, we introduce 
these macros  for the sake o f  improving efficiency. 

5 Note that the terminal Goal is interpreted to each other. Thus, in this case. the received Goal 
message is interpreted as Agent l's goal, not as Agent O's goal. 
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Table 3 
GP Parameters for sgpcl.l 

maxgeneration 100 
population_size 2000 
steady_state 0 
grow_method GROW 
tournament K 6 
selectionmethod TOURNAMENT 

max_depth_after_crossover 17 
max_depth_for new trees 5 
max_mutant_depth 4 
crossover any_pt fraction 0.7 
crossover_func_pt_fraction 0.1 
fitness_prop repro_fraction 0.1 

2.3. Experimental results 

This section shows the experimental results of the robot navigation. We 
have implemented our GP based on sgpcl.1 6, a simple GP system in C lan- 
guage. The used parameters are shown in Table 3, Fig. 2 shows some of  the 
training and testing cases. We chose six training and three testing scenarios. 
They were modified to constitute a variety of  examples in several ways, such 
as rotating or widening a passage. The total number of  the training and testing 
data were 24 and 9, respectively. The fitness of a program is the averaged fit- 
ness over the various training cases. 

Experiment 1 (Communicating agents vs. non-communicating agents): First, 
we have conducted comparative experiments so as to confirm the effectiveness 
of communication. The heterogeneous strategy was applied for evolving agents 
without communication (i.e., with GP functions and terminals shown in 
Table 1) and for evolving communicating agents (i.e., Tables 1 and 2). 

Fig. 5(a) shows the result of  experiments. The figure plots the best fitness 
value with generations, averaged over 10 runs. The fitness value of 
4 x Bonus(= 12000.0) is given to a GP tree which completes the task i.e., moves 
all agents to the goals. Thus, on the average, GP reaches a solution around 60 
generations for the communicating agents, whereas agents without communi- 
cation could not solve the task after 100 generations. Note the superiority of  
the communicating agents for the testing cases as well as for the training cases. 

The poor  performance of  non-communicating agents results from the 
lack of appropriate generalization. They could adapt to a certain situation 
and memorize it as a specialized cognitive map. But they failed to generalize 
it so as to cope with multiple cases. For  instance, the trees acquired most often 
were a simple form of  Goal terminals. As mentioned in Section 1, these trees 
tend to move agents to their goals. But the agents are liable to fall into a dead- 
lock (see Fig. 3). The better programs described below were acquired in one 
run :  

6sgpcl.1 is available by anonymous FTP to ftp.io.com. The directory is /pub/genetic- 
programming. 
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Fig. 5. Experimental results (robot navigation task): (a) Heterogeneous strategy: (b) Homogeneous 
strategy, 

Agent O: (if>----Agl VI Goal (invGoal)) 
Agent I: (if>=Agl (*2VI) Goal (inv Goal)) 
Agent 2: (if>----Agl (*2 ('2 VI) Goal (inv Goal)) 
Agent 3: (if>----Agl VI Goal (inv Goal)) 

These programs realize a form of  cooperation, in the sense that an agent moves 
to its goal if the other agents are further than some threshold (i.e., 
(if > =  Agl***)). If the nearest agent is close, it gives way by moving in the di- 
rection opposite to its goal (i.e., (inv Goal)). Although this strategy succeeded 
in some limited situations, the agents failed to solve a complicated task such as 
Training #1. Fig. 6 shows the resultant behavior of  agents for this training 
case, in which only one agent reached its goal. 
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Fig. 6. Emergent behavior without communication. 

O n  the  o t h e r  hand ,  agen t s  wi th  c o m m u n i c a t i o n  were  ab le  to solve the  va r -  
ious  tasks .  F o r  ins tance ,  the  p r o g r a m s  s h o w n  in T a b l e  4 were  acqu i r ed  in one  
r u n  a t  the  g e n e r a t i o n  o f  56. These  p r o g r a m s  scored  the  s t a n d a r d  f i tness o f  

Table 4 
Acquired trees for heterogeneous strategy 

Agent 0 
Agent 1 

Agent 2 
Agent 3 

(Receive Goal) 
(if > = Goal Agl (if > = (Receive Goal) (Sendl_Y Goal) (if > = (if > = Goal Goal  
(Receive Goal) Goal) (Sendl Goal  Goal) (*2 (Receive Goal)) (Receive Goal)) Goal) 
Goal) 
(Receive Goal) 
(if > = ( i f  > = A g l  V1 (Receive Goal) V1) V1 (Sendl_Y Goal) (if > - A g l  Goal  Goal  
(Receive Goal))) 
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Fig. 7. Emergent behavior with communication• 

13520.0, which means that they solved most  o f  the training cases. Fig. 7 shows 
the emergent behavior o f  these agents for Training #3.  The key features o f  
these programs are as follows: 
1. Agent 0 and Agent 2 are receivers, which always give way if they receive a 

message. 
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2. Agent 3 is a receiver if the nearest agent is far, i.e., ]Agl] >/[VI[ => Receive. 
It sends a yield message otherwise, because (if >=  Agl V1 (Receive 
Goal) V1) returns V1 and (if >=  V1 Vl(Sendl_YGoal)***) always returns 
the third argument (Sendl_Y Goal). 

3. Agent 1 moves to its goal if the nearest agent is further than the goal. Oth- 
erwise, unless it has received any message, it sends a yield message to its 
nearest agent. If it has received any message, execute the received command. 

As can be seen in the behavior of A3 from Step 9 to Step 19 (Fig. 7), if an agent 
receives a message, it stops moving or gives way. As a result of this effective 
communication, agents cooperate with each other to avoid the deadlock situ- 
ation in the narrow path. 

The above experimental results have shown that the communicating agents 
complete the training tasks more effectively, i.e., the evolved program is more 
robust. It is also suggested that the GP-based adaptive learning resulted in es- 
tablishing the effective job separation among the communicating agents. 

Experiment 2 (Homogeneous Strategy; Fig. l(b)): For the sake of compari- 
son, we have experimented with the evolution of homogeneous agents with 
communication. The performance of the homogeneous strategy was almost 
as good as the heterogeneous strategy. Although they were controlled by the 
same program, the homogeneous agents also evolved so as to cooperate with 
each other for the sake of solving the task. Fig. 5(b) shows the experimental 
result, in which the best fitness value is plotted with generations, averaged over 
10 runs. Slightly poor performance seems to be due to the fact that homoge- 
neous agents require a large tree structure. The acquired tree was much more 
complicated than those by the heterogeneous strategy. For instance, in one run, 
the following tree was acquired: 

(if >=  Goal (Receive Goal)(Receive Goal) (if >=  (Receive Goal) 
(*2(if >--- (*2(if >=  Goal Agl Vl Goal))Agl V1 Goal))(if >=  Agl 
(Receive Goal) Goal(if >=  (if >=  (Sendl_YGoal)(*2(Receive Goal)) 
(Sendl_Rev Goal) Agl)(*2goal)Agl (Receive Goal))) Goal)) 

This program scored the standard fitness of 12250.0, which means that they 
solved most of the training cases. Considering the symmetry of the training and 
testing cases, the good performance of the homogeneous strategy may not be 
very surprising. For instance, the test cases #0 and #1 are identical to the ro- 
tated cases of the training case #3 by 90 ° and 180 °, respectively. For four 
agents, who have to move to their own goals, the relative goal direction is more 
important than the absolute direction. Because the ultimate goal of this task is 
to acquire a generalized strategy for a given set of cases, we believe that the ho- 
mogeneous agents have managed to do the job. The different setting, such as 
introducing agents with various sensors, will have shown the difficulty of the 
homogeneous strategy (see [8] for more details). 
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3. The pursuit problem 

The Predatory-Prey pursuit problem is a test bed in Distributed Artificial In- 
telligence (DAI) research to evaluate techniques for developing cooperation 
strategies [15]. The problem domain is a grid world, in which four blue (preda- 
tor) agents attempt to capture a red (prey) agent by surrounding it from four 
directions on a grid world (see Fig. 8(a)). In the figure, four agents are repre- 
sented by white circles (i.e., 1,2,3,4), and the prey by a small black dot (i.e., .). 
Agent movements are limited to one horizontal or vertical step per time unit. 

(a) Step0 

m l .  

(b) Step5 

(c) Step8 

-!!- 

(e) Stepl4 

(d) Stepl2 

i ; 

t i 

w I i T 

I r  i 
- - o  i 

(f) Trace 

Fig. 8. Solving a pursuit game. 
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The approach  under taken by Gasser et al. [16] was a Lieb configuration,  in 
which each predator  occupies a different quadrant ,  where a quadran t  is defined 
by diagonals intersecting at the location o f  the prey, while homing in on the 
prey (see [17] for details). 

The research o f  the pursuit  problem was aimed at showing the efficiency 
with which blue agents could capture the red agent. In  other  words,  when 
agents with limited ability and partial informat ion seek for  the same goal, 
how do they coopera te  with each other  in order  to solve the whole problem? 

This section describes GP-based  approach  to evolving a solution for this 
problem. 

3.1. The pursuit problem and genetic programming 

In order  to apply G P  to evolving an agent 's  p rogram in the pursuit  problem, 
we use the terminal and nonterminal  sets shown in Table 5. In the table, a sym- 
bol wi thout  arguments  is a terminal symbol.  The agents '  actions are S T A Y  or 
move R I G H T ,  UP,  L E F T  or D O W N .  

We have chosen vector operat ions  for  the G P  tree representation, in the 
same way as the robot  navigation. Fo r  instance, assuming that  x and y axes 
are r ightwards and upwards  as usual, the Target  terminal returns a vector 

(27)  for the agent A3 and ( _ 5 2 )  f o r A 2 ,  in the initial situation (Fig. 8(a)). 

The same wrapper  is also used to map  between the ou tpu t  o f  a parse tree 

Table 5 
GP Terminals and functions (pursuit problem) 

Name # Args. Description 

Target 0 
Agi 0 
Rand 0 
+ 2 
- 2 

*2 1 
/2 1 
- > 9 0  1 
inv 1 
if_dot 4 

if >= 4 

The vector from the agent to the target, i.e., the prey. 
The vector from the agent to Agent/. 
A random vector. 
Add two vectors. 
Subtract two vectors. 
Multiply the magnitude of a vector by 2. 
Divide a vector by 2. 
Rotate a vector clockwise 90 degrees. 
Invert a vector, i.e., if the input is g, then return -g. 
Evaluate the first and second arguments. If their dot 
product is greater than 0, then evaluate and return the third 
argument, else evaluate and return the fourth argument. 
Evaluate the first and second arguments. If the magnitude 
of the first argument is greater than the magnitude of the 
second argument, then evaluate and return the third 
argument, else evaluate and return the fourth argument. 
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and the action to be taken, i.e., it is applied to the output of the GP tree so as to 
decide the agent's move (see Fig. 4). 

At each time step, an agent is executing an action according the above map- 
ping. During this period, the agents can either complete the task, i.e., they have 
captured the prey, or the prey gets away without being captured. 

In order to assign a fitness Fitness to an agent's behavior, we use the follow- 
ing fitness calculation for a GP tree T: 

Step 1. Set Step_Time := 30, Fitness := 0.0. 
Step 2. Evaluate T and move agents according to the result of the wrapper. 
Step 3. Fitness := Fitness + ~ = 0  di where at, is the distance between the prey 

and the agent i. 
Step 4. If the prey is captured, then return Fitness. 
Step 5. Step_Time := Step_Time - 1. 
Step 6. If Step_Time is zero, then return Fitness. 
Step 7. Go to Step 2. 
Initially, the maximum number of evaluations (i.e., S tepT ime)  is set to be 

30 (Step 1). The above fitness calculation assures that the sooner the task is fin- 
ished, the better (i.e., the smaller) the fitness is. We have used the heteroge- 
neous strategy for this experiment. 

GP is using the fitness of an agent's behavior to evolve new and possibly bet- 
ter behaviors. The implementation chosen is sgpcl. 1. We used the same param- 
eters as that which was shown in Table 3, except that the population size was 
set to be 500. 

3.2. Robustness of  GP-based multiple-agent learning 

The robustness is defined as the ability of agents to cope with noisy or un- 
known situations. In the pursuit problem, the robustness of an acquired GP 
program is tested by examining the performance for the unknown test data. 
Thus, we conduct experiments under the following conditions: 
1. The fitness of a GP individual is calculated by using 15 different training 

maps. These maps are randomly generated. 
2. At each generation, the best GP individual is tested for validating its robust- 

ness, i.e., calculating the performance for 10 testing maps randomly generated. 
3. For  both training and testing maps, the initial position of agents and the 

prey constructs a Lieb configuration. This is to ensure that the problem is 
solvable, i.e., predators are able to capture the prey if they cooperate with 
each other effectively. The difficulty of  the pursuit problem in a different set- 
ting is discussed in details in [17]. 

4. When evaluating the fitness, the prey attempts to get away from the agents. 
More precisely, the prey moves in the direction opposite to the gravity cen- 
ter of  four agents. 
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Fig. 9 shows the experimental results for this problem. The figures plot the 
best fitness value with generations (Fig. 9(a)) and the ratio of success (i.e., the 
prey captured 'by~ four agents) for test and training data (Fig. 9(b)). The best 
fitness values were averaged over 30 runs. The non-monotomclty of  the fitness 
transition is due to the randomness of the data generation. Fig. 8 illustrates a 
trace of  agents for a typical run, in which four agents succeed in capturing the 
prey after 14 time steps. This trace resulted from GP programs acquired at the 
83rd generation. Note that agents did not necessarily go towards the prey. This 
deviation seems to ensure the robustness for unknown situations, because the 
other agents and the prey often behave unpredictably in such a new situation. 
As can be seen in Fig. 9, we can confirm that the robustness is increased with 
generations as a result of GP-based learning. 

Fitness 
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(a) Fitness vs. Generations. 
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(b) Success Ratio vs. Generations. 

Fig. 9. Experimental results (Lieb configuration): (a) Fitness vs. generations; (b) Success ratio vs. 
generations. 
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3.3. Evolving communicating agents 

We have introduced the communication for the pursuit problem by using 
the following functional symbols: 

F = {COM0,, COMl l ,  COM2,,  COM3, }. (3) 

This COM? command takes one argument and requests data from the agent? If 
the agent? can see the target, i.e., within the range of scope, then the COM? 
function returns the vector from the calling agent to the target. Otherwise, 
the COM? returns its argument (i.e., by default). 

We conduct the experiments under the following conditions: 
1. An agent has a finite scope area, i.e., an object is visible to an agent if it is 

within a circle whose radius is a given value V (i.e., visibility) and whose cen- 
ter is the agent. 

2. Initially, agents construct a Lieb configuration and the prey is visible to at 
least one agent. 

3. The prey makes a random motion. 
In our experiment, we set the visibility V to be 5. For  the sake of confirming the 
effectiveness of  communication, the following methods are compared: 
1. No communication commands are used, i.e., the function set is the same as 

Table 5. 
2. Communication commands are used (Eq. (3)). The communication cost is 

one time step. That is, if any communication command is used in evaluating 
a tree, then the agent has to wait one time step to make the motion based 
upon the wrapper result of the tree output. 

3. Besides communication commands, a special macro VIEW is used. The 
communication cost is the same as the above. The VIEW macro takes 
one argument and evaluates its argument if and only if the prey is visible 
to the agent. 
The experimental results are shown in Fig. 10, in which the fitness values for 

training and testing data are plotted with generations. The best fitness values 
were averaged over 30 runs. The non-monotonicity of the fitness transition is 
due to the randomness of  the data generation. Table 6 summarizes the perfor- 
mance comparison of  three methods. Although the superiority of  communicat- 
ing agents is clearly shown in terms of  the fitness transition (Fig. 10), the 
averaged numbers of  success are not remarkably different among these three 
methods. The agents without communication could capture the prey in some 
cases, because the prey moves randomly. But in most cases, they were unable 
even to draw near to the prey. On the other hand, the communicating agents 
succeeded in enclosing the prey. However, they did not always manage to 
capture it. In this experiment, agents were assumed to have a limited visibility. 
Thus, in earlier stage of pursuit, the communication is necessary. On the con- 
trary, later when the prey is near enough, the communication is becoming a 
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Fig. 10. Experimental results (communicating agents): (a) Fitness for training data; (b) Fitness for 
testing data. 

Table 6 
Performance comparison 

Communication × O O 
VIEW Command x x O 

Avg. # of success (training) 2.71 4.83 5.00 
Avg. # of success (test) 1.71 3.17 3.50 
#. of COM? - 653.48 363.11 
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burden because of the communication cost, i.e., the agent has to stop one time 
step for communication. Table 6 shows the averaged number of COM? com- 
mands when evaluating the training data for the best individual. As can be 
seen, the number is much smaller for the agents with VIEW macro. This shows 
that VIEW command is expected to work as a way of eliminating unnecessary 
communication. We are working on the further extension of this VIEW com- 
mand in order to improve the success ratio of testing data. 

4. Discussion 

4.1. Related works 

GP and its variants have been applied to multi-agent learning. For instance, 
Koza used GP to evolve sets of seemingly simple rules that exhibit an emergent 
behavior. The goal was to genetically breed a common computer program, 
when simultaneously executed by all the individuals in a group of independent 
agent, i.e., the homogeneous breeding, that causes the emergence of beneficial 
and interesting higher-level collective behavior ([1], Ch. 12). 

Fogarty et al. [2] studied the evolution of the multiple communicating clas- 
sifier systems in the heterogeneous environment of a distributed control system 
for a walking robot. They introduced the "symbiosis" analogy to realize a mac- 
ro-level operator to the evolution of heterogeneous species and showed the ef- 
fectiveness of their approach empirically. But they failed to observe the 
evolution of a "superorganism" by their experiments. They also investigated 
the evolution of multiple fuzzy controllers in the homogeneous environment 
of a distributed control system for a communication network. 

Haynes proposed an approach to the construction of cooperation strategies 
based on GP for a group of agents [3]. He experimented in the predator-prey 
domain, i.e., the pursuit game, and showed that the GP paradigm could be ef- 
fectively used to generate apparently complex cooperation strategies without 
any deep domain knowledge. 

Luke examined three breeding strategies (clones, free and restricted) and 
three coordination mechanisms (none, deictic sensing, and named-based sens- 
ing) for evolving teams of agents in the Serengeti world, a simple predator/prey 
environment [4]. Our paper has been partly motivated by this experiment. 

In our previous paper [6], we have applied GP-based multi-agent learning to 
the Tile World and proposed a co-evolutionary breeding scheme. Experimental 
results have shown the superiority of the co-evolutionary breeding over the two 
strategies, i.e., the homogeneous strategy and the heterogeneous strategy. In 
the co-evolutionary strategy, some individuals were expected to perform spe- 
cialized tasks for different agents with generations. We will make an attempt 
at extending this scheme for the evolution of communicating agents. 
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4.2. The robustness against noise 

In the previous experiments, the robustness was tested by validating the gen- 
erated programs for some unseen cases. It also can be measured by the ability 
to cope with noise, which is an important and inevitable feature for real-world 
applications. Thus, we have been studying the robustness of  the generated GP 
program against a noisy situation in the robot navigation. We used the best 
program evolved so far (i.e., that which was shown in Table 4) for the testing. 
The noisy situation was realized by reducing the sensor precision. More pre- 
cisely, we introduced the parameter ERROR_RATE and follow the steps de- 
scribed below: 
1. The Goal terminal returns a random vector with the probability of 

ERROR_RATE. 
2. The Agi terminal returns a random vector with the probability of  

ERR OR ~,4 TE. 
Fig. 11 shows the experimental result. The figure plots the fitness value of  

training and testing data with different error rates, averaged over 100 runs. 
As expected, the fitness became lower with higher error rates. However, the fig- 
ure shows that the fitness value above 8000 was kept with the error rate of  20%. 
Half  of the training cases were solved correctly with the error rate. Although 
we cannot make any concluding remarks with this small experiment, we think 
that the generated GP program is robust in terms of  the graceful degradation 
against noise. This topic in connection with real-world applications is our fu- 
ture research concern. 

4.3. Different coordination mechanism 

Terminal and functional symbols chosen in the previous experiments were 
based on name-based sensing coordination described in [4]. Luke showed that 

Std. Fitness 
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8 0 0 0 ~  
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Error Rate 0 0.2 0.4 0.6 0.8 1 
Fig. 11. Graceful degradation for a generated GP program. 
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the name-based sensing consistently outperforms the other two (i.e., none and 
deictic sensing) for his experiment. The effect of the agent's view range has been 
a key issue of DAI research. Thus, we also have studied the different coordina- 
tion mechanisms, i.e., the different view ranges and step lengths for the robot 
navigation [5]. Experimental results showed that the homogeneous strategy 
gave a poor result. This is because, in spite of different coordination mecha- 
nisms, all agents were controlled by the same program, i.e., the same GP indi- 
vidual. The performance of the heterogeneous breeding strategy was much 
better. However, we think that using communication helps agents to cooperate 
with each other in a different and effective manner. We are currently working 
on the extension of our scheme in this direction. 

4.4. Future research 

The previous experiments have shown that GP was successfully applied to 
multi-agent tasks. The tasks were achieved by the effective job separation, 
i.e., the cooperation emerged among multiple agents. Then, the following ques- 
tions arise. Which part of the resultant GP tree is the cooperation? Is the job 
separation explicitly represented in the acquired tree? 

These topics remain to be seen, and we are currently researching on them. 
The cooperative behavior is usually implicitly described in a GP tree. However, 
it might be possible to find a useful subtree (i.e., subroutine) in an acquired 
tree. For instance, Koza [18] experimented in an artificial ant problem by using 
the ADF-version of GP and observed that the useful subroutine, i.e., a semicir- 
cular counterclockwise inspecting motion, was expressed in the ADF branch of 
the resultant tree. Some researchers focused on the extension of GP to select an 
effective subtree and add it to a new function [19,20]. The subroutine discovery 
based on GP is also our current research interest [21]. We have been trying to 
extract a useful subtree from a population of GP trees for the sake of interpre- 
ting the cooperative behavior as well as improving the efficiency. 

5. Conclusions 

This paper described the emergence of cooperative behavior based on GP. 
We have confirmed the following points by experiments: 
1. GP was successfully applied to multi-agent test beds, i.e., the pursuit prob- 

lem and the robot navigation. 
2. The robustness of the acquired GP program was examined by testing data. 
3. We have confirmed how agents cooperate with each other via communica- 

tion as a result of the GP-based learning. 
Our goal was to realize the emergence of the job separation among commu- 

nicating agents. This paper has shown a feasibility study on GP-based multi- 



204 H. Iba I Journal of  Information Sciences 108 (1998) 181~05 

agent learning, and we believe that it is a first step to the emergence of coop- 
eration among communicating agents. 

Acknowledgements 

We are grateful to Walter Alden Tackett, for providing his Simple Genetic 
Programming in C ("sgpcl. 1"), which we used to conduct our comparative ex- 
periments. We have profited from comments by anonymous reviewers. 

References 

[1] J. Koza, Genetic Programming, On the Programming of Computers by means of Natural 
Selection, MIT Press, 1992. 

[2] T. Fogarty, L. Bull, B. Carse, Evolving Multi-Agent Systems, in: G. Winter, J. Phriaux, 
M. Galfin, P. Cuesta (Eds.), Genetic Algorithms in Engineering and Computer Science, Wiley, 
Chichester, 1995. 

[3] T. Haynes, R. Wainwright, S. Sen, Evolving a Team, in: Working Notes of the AAA1-95 Fall 
Symposium on Genetic Programming, AAAI Press, 1995. 

[4] S. Luke, L. Spector, Evolving teamwork and coordination with genetic programming, in: 
Genetic Programming, MIT Press, 1996. 

[5] H. Iba, Multiple-agent learning by genetic programming, in: ICML96 Workshop on 
Evolutionary Computation and Machine Learning, 1996. 

[6] H. Iba, Emergent cooperation for multiple agents using genetic programming, in: Parallel 
Problem Solving from Nature IV (PPSN96), 1996. 

[7] H. Iba, T. Nozoe, K. Ueda, Evolving communicating agents based on genetic program- 
ming, in Proc. of the IEEE International Conference on Evolutionary Computation 
(ICEC97), 1997. 
H. Iba, Multiple-agent learning for a robot navigation task by genetic programming, in: 
Proceedings of the Genetic Programming Conference (GP97), 1997. 
J. Koza, Genetic Programming II, Automatic Discovery of Reusable Programs, MIT Press, 
Cambridge, MA, 1994. 
J. Chu-Carroll, S. Carberry, Communicating for conflict resolution in multi-agent collabo- 
rative planning, in: Proceedings of the First International Conference on Multi-Agent Systems 
(ICMAS95), 1995. 
M. Benda, V. Jagannathan, R. Dodhiawalla, On optimal cooperation of knowledge sources, 
in: Proceedings of the Workshop on Distributed Artificial Intelligence, May 1988. 
T. Ito, H. Iba, M. Kimura, Robot programs generated by genetic programming, Japan 
Advanced Institute of Science and Technology, IS-RR-96-0001I, in: Genetic Programming, 
1996. 
H. Yokoi, Y. Kakazu, Autonomous grasp control of link mechanism by vibrating potential 
method, in: Control of Engineering Practice, Elsevier, 1994, pp. 1031-1038. 
G.M. Werner, M.G. Dyer, Evolution of communication in artificial organisms, in: C.G. 
Langton, C. Taylor, J.D. Farmer, S. Rasmussen (Eds.), Artificial Life, vol. II, Addison- 
Wesley, New York, 1991. 
R. Levy, J. Rosenschein, A game theoretic approach to distributed artificial intelligence and 
the pursuit problem, in: E. Werner, Y. Demazeau (Eds.), Decentralized Artificial Intelligence, 
Elsevier, Amsterdam, 1992. 

[8] 

[9] 

[10] 

[11] 

[12] 

[13] 

[14] 

[15] 



IL Iba / Journal of  In~rmation Sciences 108 (1998) 181 205 205 

[16] L. Gasser, N.F. Rouquette, R.W. Hill, J. Lieb, Representing and using organizational 
knowledge in distributed AI systems, in: L. Gasser, M.N. Huhns, (Eds.), Distributed Artificial 
Intelligence, vol. 2, Morgan Kaufmann, Los Altos, 1989. 

[17] T. Haynes, K. Lau, S. Sen. Learning cases to compliment rules for conflict resolution in 
multiagent systems, In: S. Sen, (Ed.), Working Notes for the AAAI  Symposium on Adaptation. 
Co-evolution and Learning in Multiagent Systems, Stanford University, CA, 1996, pp. 51 56. 

[18] J. Koza, Simultaneous discovery of reusable detectors and subroutines using genetic 
programming, in: Proceedings of the Fifth International Conference on Genetic Algorithms, 
Morgan Kaufmann, Los Altos, 1993. 

[19] P.J. Angeline, J.B. P611ack, Evolutionary module acquisition, in: Proceedings of the Second 
Annual Conference on Evolutionary Programming, 1993. 

[20] J.P. Rosca, D.H. Ballard, Hierarchical self-organization in genetic programming, in: 
Proceedings of the Eleventh International Conference on Machine Learning, 1994. 

[21] N. Hondo, H. Iba, Y. Kakazu, COAST: An approach to robustness and reusability in genetic 
programming, ETL-TR-96-4~ 1996. 


