
INFORMATION
SCIENCES

~N] ~ K ~ A ~ O N A L JOURNAl

ELSEVIER Journal of Information Sciences 108 (1998) 181-205

Evolutionary learning of communicating
agents

H i t o s h i Iba 1

Machine Inference Section, Electrotechnical Laboratory (ETL), 1-1-4 Umezono,
Tsukuba Science City, Ibaraki 305, Japan

Received 1 February 1997; received in revised form 1 September 1997; accepted 26 October 1997

Abstract

This paper presents the emergence of the cooperative behavior for communicating
agents by means of Genetic Programming (GP). Our experimental domains are the pur-
suit game and the robot navigation task. We conduct experiments with the evolution of
the communicating agents and show the effectiveness of the emergent communication in
terms of the robustness of generated GP programs. The performance of GP-based mul-
ti-agent learning is discussed with comparative experiments by using different breeding
strategies, i.e., homogenous breeding and heterogeneous breeding. © 1998 Elsevier
Science Inc. All rights reserved.

Keywords: Genetic programming; Multi-agent system; Distributed artificial intelligence

1. I n t r o d u c t i o n

Recently intelligent agents and multi-agent systems have garnered much
interest in Distributed Artificial Intelligence (DAI). Genetic Programming
(GP) and its variants have been applied to multi-agent learning ([1], Ch. 12;
[2-8]). They have introduced the following evolutionary strategies:
1. Homogeneous breeding (Fig. l(a)). All agents use the same program

evolved by GP. Individuals breed as in an ordinary GP.

i E-mail: iba@etl.go.jp.

0020-0255/98/$19.00 © 1998 Elsevier Science Inc. All rights reserved.
PII: S0020 -02 5 5 (97) 1 005 5-X

182 H. Iba / Journal of Information Sciences 108 (1998) 181-205

2. Heterogeneous breeding (Fig. l(b)). Each agent uses a distinct program. A
GP individual maintains multiple branches, each of which serves as a spe-
cialized program for a distinct agent. The breeding proceeds in the same
way as the ADF version of GP [9], i.e., crossover operations are applied
to the correspondent branch pairs.
They showed that GP could evolve the cooperative behavior for a specific

problem solving. However, in most of these studies, the agents had no commu-
nicating mechanism. The communication is an essential factor for the emer-
gence of cooperation. This is because a collaborative agent must be able to
handle situations in which conflicts arise and must be capable of negotiating
with other agents to reach an agreement [10]. Benda et al. [11] introduced
the following three types of relationship between agents:
1. Communicating agents (Type A), i.e., one agent is capable of requesting

data from another agent.
2. Negotiating agents (Type B), i.e., in addition to the above data request,

agents can negotiate with each other about their movements.
3. Controlling agents (Type C), i.e., an agent can control over another agent.

[GP Tree

(a) Homogeneous Strategy.

Agent1

\
Agent2

GP Population

Branch 1 f
I

I

\ individual 0 .~Branch 2

(b) Heterogeneous Strategy.

Fig. 1. Homo-/heterogeneous strategies.

H. Iba I Journal of lnformation Sciences 108 (1998) 181-205 183

This paper applies GP for evolving communicating agents and shows that
the robustness of the generated program is increased with the communication
in the following problem domains:
1. The robot navigation task (Fig. 2), in which communication com-

mands, such as SEND or RECEIVE, are used so that the agent can sig-

Robot Hsvtgstion Stop: 0 Step: 0

$! !~

- , , ,

Training #1

I

' # ' # - I# # f.~ #

l#i# #] # I # # #1
I ~ ° ' ~ " 1
~ !f_ ~.)# !# _# # i d
~ F ~ , I ~ /

Training #2

step: 0

, _ ! , + ! i i

#1#1#1#l# # 1 # #.t

Training #3 Training #4

~ #1# #i

i

............. # # !# ~

Test #0 Test #1

Fig. 2. Training and test cases.

184 H. Iba / Journal of lnformation Sciences 108 (1998) 181-205

nal what it sees to a remote agent and sometimes can tell it to stop (i.e.,
Type C).

2. The pursuit game (Fig. 8), in which we introduce COM?'s commands. These
commands take one argument and request data from the agent? (i.e., Type
A).
The robustness is an important feature of a program evolved by GP [12]. It

is defined as the ability to cope with noisy or unknown situations. In the robot
navigation, the robustness could be examined by testing an evolved program
for another navigation task. In pursuit of the robustness, we verify the valid-
ness of an evolved program for testing data, which are different from the train-
ing data. We show that GP-based multi-agent learning evolves robust
programs through the usage of communication.

The rest of this paper is structured as follows. GP is applied to a robot nav-
igation task in Section 2. Section 2.1 describes the experimental set-up of the
robot navigation. Section 2.2 introduces communicat ion commands for our
tasks. In Section 2.3, we show the experimental results and compare the perfor-
mance. We use the above-mentioned two breeding strategies (Fig. 1) for com-
parison 2. Section 3 describes another multi-agent problem, i.e., the pursuit
game. Section 3.2 shows some experimental results in order to test the robust-
ness of a generated program. In Section 3.3, we apply our approach to evolving
communicating agents. Section 4 discusses these results, followed by some con-
clusions in Section 5.

2. The robot navigation problem

The world of our robot navigation consists of a rectangular grid on which
agents (denoted as Ai, i = 0, 1 , . . .) and some obstacles (#) can be placed (see
Fig. 2). Each object occupies one cell of the grid. The agent can move up,
down, left, and right unless doing so would cause it to run into the world's
boundaries or an obstacle. The agents' goal is to find the optimal path in a grid
world, f rom given starting locations to their respective goals (the agents' desti-
nations are shown by arrows in the figure). In our robot navigation task, four
agents have to pass through a narrow aisle to reach their goals. The deadlock
problem often occurs when two agents try to move toward the opposite direc-
tions in the aisle. For instance, if agents move to their destinations without any

2 We have proposed a new approach to co-evolving the multi-agent cooperation, i.e, the
emergence of the job separation among the agents [5,6]. Experimental results have shown that this
strategy seems to be promising for GP-based multi-agent learning, as an integration of both
homogeneous and heterogeneous strategies. Actually, in the following experiments, we have often
used this co-evolutionary breeding, instead of heterogeneous strategy. However, for the sake of the
limitation of pages, we only report on the results by the heterogeneous strategy.

H. lba I Journal of lnformation Sciences 108 (1998) 181 205 185

Agent0: Goal
Agentl: (if>= Agl Goal Goal Goal)
Agent2: Goal
Agent3: (inv (inv Goal))

,,obot.av,~o... s . . , : . .o~ot,~,.-~ s.~p:Vii~7 . . ~ t .~ , . . - - - ~p: E !i~
. v I "] " " ? "" ~ ;" " "+ ~ .

" ! [i - i - l - l - V ' t - :C r - t - r ~ - r l - [T - I r T " i E 7 7 ' T ~ - T - ' [; 7

f i ' i7 i~ i •q i - lT i : i - r i ° r . i i -r-<-' ' ' . ' ,7/: i 7 i i 7 ~ 7 - 1 7 7 # ~tk:l.'~ r i '~;i # l#]# .# # # i i ~ l i A O

' r r - V [......................... ~ - - - U T I T i 7 7 7 ;i 7 ! ! Y [i i l
I x 2 Y i i i i 1 { ~ [{ 'i7 ! ; i ; ' l x 2 l ;I 7"~f - !;] [[! i ! ;;}7 i { ; ' 77

Step0 Step5 Stepl3

Fig. 3. Behaviour of agents based on goal terminal•

consideration, then they are very likely to block each other (see Fig. 3 for the
example behavior). Hence, but for the necessary cooperation, the navigation
task could not be solved effectively.

Fig. 2 shows some of the training and testing cases. These cases are taken
from various types of navigation scenarios, and solving these distinct tasks re-
quires the effective generalization of training examples (i.e., the robustness of
an evolved problem).

2.1. The robot navigation and genetic programming

In order to apply GP to evolving an agent 's problem in the robot navigation,
we use the terminal and nonterminal sets shown in Table 1 3. In the table, a
symbol without any argument is a terminal symbol.

We have chosen vector operations for the GP tree representation. This is
aimed at incorporating more precise directional information as to the environ-
ment surrounding the agents. We assume agents, i.e., robots, have a potential-
based sensor [13]. Thus, the Goal terminal returns a directional vector, through
which the agent draws nearer to the goal. The length of the vector is the dis-
tance to the goal. For instance, assuming that x and y axes are rightward

/ - 9
and upward as usual, the Goal terminal returns a vector ~ ~ / for the agent u /

k

A3 in Tra in ing#1 (Fig. 2), because the agent A3 and its g0al are positioned at
9 "~ 0

/ - ~
^ / and [_ / , respectively. In the same way, the Agi terminal returns a vec- u) \~)

tor from the agent to the ith nearest agent, through which the agent draws
nearer to the ith nearest agent.

3 The usage of these symbols is motivated by the study reported by [4]. Luke studied evolving
teamwork by GP for a pursuit game, in which the world is a continuous 2-dimensional.

11. Iba I Journal of Information Sciences 108 (1998) 181-205 186

Table 1
GP terminals and functions (robot navigation)

Name # Args. Description

Goal 0

Last 0

Agi 0

V1 0
Rand 0
+ 2
- 2

*2 1
12 1
- > 9 0 1
inv 1
if_dot 4

if>= 4

The directional vector by which to move the agent toward its
goal.
The last vector of the GP output for the agent. If this is the
first move, then returns a random vector.
The directional vector by which to move the agent toward
the ith nearest agent.
A unit vector, i.e., (1).
A random vector.
Add two vectors
Subtract two vectors.
Multiply the magnitude of a vector by 2.
Divide a vector by 2.
Rotate a vector clockwise 90 degrees.
Invert a vector, i.e., if the input is v, then return -v.
Evaluate the first and second arguments. If their dot product
is greater than 0, then evaluate and return the third
argument, else evaluate and return the fourth argument.
Evaluate the first and second arguments. If the magnitude of
the first argument is greater than the magnitude of the
second argument, then evaluate and return the third argu-
ment, else evaluate and return the fourth argument.

W h a t is requi red by a G P tree p r o g r a m is to tell how to move an agent , i.e.,
r ight , left, up, down and stay. Thus, the w r a p p e r (i.e., the m a p p i n g be tween the
o u t p u t o f a parse tree and the ac t ion to be taken) is app l i ed to the o u t p u t o f the
G P tree so as to decide the agent ' s move. The m a p p i n g between vectors and
ac t ions is de t e rmined as follows: I f the n o r m o f the vec tor ~' is less than or equal
to the p a r a m e t e r Rad ius , then S T A Y where you are. Otherwise , move 1 s tep
R I G H T , UP, L E F T or D O W N depend ing on the d i rec t ion o f 7. i.e., when ~'

is be tween I - 9, + ~], [+ 9, + ~] , [+ ~ , + ~] and [+ ~ , + ~] , respectively. This
m a p p i n g is shown in Fig. 4. W e set the R a d i u s p a r a m e t e r to 1.0. F o r instance,

if the o u t p u t o f a G P tree is a vec tor (? 0) , then the agent ' s move is U P as the
resul t o f the wrapper .

F i tness funct ions need to be des igned careful ly so tha t they sat isfy the fol-
lowing requirements :

Request 1: Give a high score to a G P p r o g r a m which moves an agent to its
goal.
Request 2: Give a h igher score to a G P p r o g r a m which finishes the tasks (i.e.,
moves all agents to thei r goals) quickly.
Request 3: I f any agents have no t reached the goals af ter the execut ion o f a
G P p r o g r a m , give a h igher score when they have been m o v e d neare r to their
goals.

H. Iba I Journal of lnJbrmation Sciences 108 (1998) 181~05

STAY, if II ,7 I1< Radius
RIGHT, if II '7 II- > Radius, o~ ~ [-~, +¥]

3~r Wrapper(~) = UP, if I[~7 I1> Radius, 0~ E [+¥, + T]
LEFT, if II '71[> Radius, Oe • [+~i~,+~i ~]

DOWN, if II ~7 [1> Radius, 0e • [+-~, +Zi~]
Y

187

Fig. 4. Wrapper, i.e., mapping between the output of a parse tree and the action to be taken.

In order to meet the above requests, we use the following fitness for a GP
tree T:

Step 1. Set Step_Time := 51,Fitness := 0.0.
Step 2. Evaluate T and move agents according to the result of the wrapper.
Step 3. If an agent reaches its goal, then Fitness := Fitness + Bonus x fiT,

where f i t is the number of agents that have reached the goals at this step.
Step 4. If all agents reach their goals, then

Fitness := Fitness + Speed_UP x Step_Time, (1)

and return Fitness.
Step 5. Step_Time := Step_Time - 1.
Step 6. If Step_Time is zero, then

Fitness := Fitness + Cr x Z {d(st(ag),gl(ag)) - d(cr(ag),gl(ag))} ,
agEA G

(2)
where AG is the set of remained agents. Return Fitness.

Step 7. Go to Step 2.
Initially, the maximum number of evaluations is set to 51 (Step 1). In Step 3,

the value of Bonus is added to the fitness if an agent reaches its goal, which sat-
isfies Request 1. If all agents are moved to their goals, i.e., the task is complet-
ed, the fitness value is increased with the remained Step_Time (Step 4). This
meets the above Request 2. In Step 6, d(x,y) means the distance of x and y.
st(ag), cr(ag), and gl(ag) are the original position, the current position, and
the goal position for an agent ag. Thus, {d(st(ag), g l (ag))-d(cr(ag) ,
gl(ag))} equals to the moved distance of an agent ag toward its goal.

188 H. Iba / Journal of Information Sciences 108 (1998) 181~05

Therefore, the Eq. (2) means that the fitness is more increased if the remained
agents have been moved nearer of their goals after the execution of the pro-
gram, which satisfies the above Request 3.

We have chosen the Bonus, Speed_UP, and Cr parameters as 3000.0, 80.0
and 100.0, respectively. Since we used the tournament selection, (see Table 3),
the absolute values of these parameters are not important. However, the Bonus
parameter should be larger than the second term of the Eq. (2), so that GP
searches for a program which completes the task at first.

2.2. Communication among agents

Communication is an essential factor for the emergence of cooperation. For
example, Werner and Dyer [14] presented a simulation, in which a population
of artificial organisms evolved simple communication protocols for mate find-
ing. They showed how the organisms generated and interpreted meaningful sig-
nals as a result of evolution.

In this section, we use communication commands such as SEND or RE-
CEIVE, by which an agent can tell another agent to stop or move. The
SEND_/funct ional symbol takes two arguments and returns its second value
(i.e. a two-dimensional vector). As a side effect, SEND_/sends its first argu-
ment to the ith nearest agent as a command. The RECEIVE function returns
the evaluated result of the command message, if any, which has been sent to
itself by the SEND_/command. The message list is an FIFO (i.e., first in, first
out) queue. If no message is sent, then the RECEIVE function returns its ar-
gument by default.

For instance, consider the following GP trees for two agents:
Agent O: (SEND_I (inv Goal) Goal)
Agent 1." (if> = Agl Goal Goal (RECEIVE Goal))

Suppose that Agent 0 and Agent 1 compete with each other, e.g., A0 and A2 in
Training #4 (see Fig. 2). That is, one's goal is another one's starting point and
both agents have to pass through the same narrow path to reach their goals. At
the first time step, the Agent 0 program returns the vector Goal. As a side ef-
fect, the SEND_I function sends the command (inv Goal) to Agent 1. When
evaluating the Agent 1 program for the first time, the RECEIVE function re-
turns the Goal vector because there is no message in the queue. Thus, both
agents draw near to their goals as a result. Next, at the second time step, the
Agent 0 program sends (inv Goal) and returns the vector Goal as before. Then,
in case of evaluating the Agent 1 program, if the Agent 0 is nearer to Agent 1
than its goal 4, the RECEIVE function returns the evaluated result of the pre-

4 Note that when evaluating if > = function, if the magnitude of the first argument is greater than
the magnitude of the second argument, then evaluate and return the third argument, else evaluate
and return the fourth argument.

ILL Iba / Journal of lnformation Sciences 108 (1998) 181-205

Table 2
GP Functions for communication

189

Name # A r g s . Description

Send_/ 2

Send_iY 1

Send_iS 1

Send_iR 1

Receive 1

Send its first argument to the ith nearest agent as a command.
Return its second argument.
Send the YIELD command to the ith nearest agent. Return its
argument.
Send the STOP command to the ith nearest agent. Return its
argument.
Send the RANDOM command to the ith nearest agent. Return its
argument.
Receive a message as a command. If no message is received, return
its argument by default.

vious message (inv Goal), i.e., the inverse vector of Goal 5. Otherwise, the
Agent 1 tree returns the third a rgument o f if > = function, i.e., the Goal vector.
As a result, Agent 0 draws near to its goal, whereas Agent 1 moves in the di-
rection opposite to its goal if Agent 0 is near enough, and moves toward its
goal otherwise. Later on, the evaluat ion proceeds in the same way. Therefore,
intuitively, the above communica t ion realizes the following cooperat ion:
1. At first, bo th Agent 0 and Agent 1 approach their own goals.
2. When Agent 0 comes closer to Agent 1, Agent 1 gives way by moving in the

direction opposite to its own goal.
3. When Agent 0 reaches its goal and stops sending a command , Agent 1 starts

moving toward its destination.
As can be seen in the above example, th rough the usage o f the communica t ion
commands , G P is expected to evolve a robust program, in the sense that agents
can coopera te with each other more effectively in general situations.

The funct ion symbols in t roduced for the communica t ion are shown in
Table 2. SEND_iY, SEND_iS, and SEND_iR macros send commands such
as Y I E L D (i.e., the receiver moves to one o f its adjacent empty cell), STOP
(i.e., the receiver stays at its current position) and R A N D O M (i.e., the receiver
moves randomly) . These c o m m a n d s are commonly used for the mot ion con-
trol. Thus, in addit ion to the S E N D _ / a n d R E C E I V E primitives, we introduce
these macros for the sake o f improving efficiency.

5 Note that the terminal Goal is interpreted to each other. Thus, in this case. the received Goal
message is interpreted as Agent l's goal, not as Agent O's goal.

190 H. Iba / Journal o f Information Sciences 108 (1998) 181-205

Table 3
GP Parameters for sgpcl.l

maxgeneration 100
population_size 2000
steady_state 0
grow_method GROW
tournament K 6
selectionmethod TOURNAMENT

max_depth_after_crossover 17
max_depth_for new trees 5
max_mutant_depth 4
crossover any_pt fraction 0.7
crossover_func_pt_fraction 0.1
fitness_prop repro_fraction 0.1

2.3. Experimental results

This section shows the experimental results of the robot navigation. We
have implemented our GP based on sgpcl.1 6, a simple GP system in C lan-
guage. The used parameters are shown in Table 3, Fig. 2 shows some of the
training and testing cases. We chose six training and three testing scenarios.
They were modified to constitute a variety of examples in several ways, such
as rotating or widening a passage. The total number of the training and testing
data were 24 and 9, respectively. The fitness of a program is the averaged fit-
ness over the various training cases.

Experiment 1 (Communicating agents vs. non-communicating agents): First,
we have conducted comparative experiments so as to confirm the effectiveness
of communication. The heterogeneous strategy was applied for evolving agents
without communication (i.e., with GP functions and terminals shown in
Table 1) and for evolving communicating agents (i.e., Tables 1 and 2).

Fig. 5(a) shows the result of experiments. The figure plots the best fitness
value with generations, averaged over 10 runs. The fitness value of
4 x Bonus(= 12000.0) is given to a GP tree which completes the task i.e., moves
all agents to the goals. Thus, on the average, GP reaches a solution around 60
generations for the communicating agents, whereas agents without communi-
cation could not solve the task after 100 generations. Note the superiority of
the communicating agents for the testing cases as well as for the training cases.

The poor performance of non-communicating agents results from the
lack of appropriate generalization. They could adapt to a certain situation
and memorize it as a specialized cognitive map. But they failed to generalize
it so as to cope with multiple cases. For instance, the trees acquired most often
were a simple form of Goal terminals. As mentioned in Section 1, these trees
tend to move agents to their goals. But the agents are liable to fall into a dead-
lock (see Fig. 3). The better programs described below were acquired in one
run :

6sgpcl.1 is available by anonymous FTP to ftp.io.com. The directory is /pub/genetic-
programming.

Std. Fitness

12000

i0000 S

8000 f

6000

4000

2000

20

Std, Fitness

12000

i0000

8000

6000

4000

2000

Homo.

H ~ t e r o . ~ . (3 o m m _ l

~v/o Comm.[~ T r a J n i n g

Iw. (3omm J

~w/o. Comm. I
~ Test

Generation
40 60 80 i00

(a) Heterogeneous Strategy.

Training

Test

H. Iba / Journal of Information Sciences 108 (1998) 181-205 191

.... ' ' , ' , Generation
20 40 60 80 I00

(b) Homogeneous Strategy.

Fig. 5. Experimental results (robot navigation task): (a) Heterogeneous strategy: (b) Homogeneous
strategy,

Agent O: (if>----Agl VI Goal (invGoal))
Agent I: (if>=Agl (*2VI) Goal (inv Goal))
Agent 2: (if>----Agl (*2 ('2 VI) Goal (inv Goal))
Agent 3: (if>----Agl VI Goal (inv Goal))

These programs realize a form of cooperation, in the sense that an agent moves
to its goal if the other agents are further than some threshold (i.e.,
(if > = Agl***)). If the nearest agent is close, it gives way by moving in the di-
rection opposite to its goal (i.e., (inv Goal)). Although this strategy succeeded
in some limited situations, the agents failed to solve a complicated task such as
Training #1. Fig. 6 shows the resultant behavior of agents for this training
case, in which only one agent reached its goal.

192 H. Iba I Journal o f Information Sciences 108 (1998) 181-205

i i U - 7 " F }- 1 " - i " T - i , ' - ! " "ii
i " - T - V - 7 T r T I T - r - T 7 T V - i I !
I / ' - - ~"'~<° ;~ 'I, ;/°='i~-~ ~]-~ =-] iiii

I iY~T~7~"[W i ~ ~ I ~ ~ ' " T

L . . . ! . ~ t ~ ~ .
: ~ ' .] + ~ i 4 7 ~

S t e p 0

Robot ltavlgaUon Step: t l i

i ~: 'i' i ! ; : ;~ ']

iiii i[[/i-iT[77] i[77] - 1 - 7 [7]77!i ill if] ' r T - "iliiiii
;I~,- [.*..]i I !2I !21!] ! I]~[I I ! I] [IU; I ~~# ".;~ , , ~ ~{~]~ I,,~= "

7 1777rTIT...T...._r__T_.T...._WT....._..
71711 , ~i~=I l r ~

S t e p 5

i ~ i ~ ! 1 1 i i i
i i [- - i f-F--T--ii---iiiiiill
i : 7 ; : : : ; i7 1] ; : : 7 f - r - r ,
IC,i:. i~[7;~]I ~[]i _.. ~2[.*..;22Z]]ii

17f~--i~-"~-" ~"'i~%~" ~"-r~ i.-m ii!i
iii 7/-i~ y ~ - - - i i i i i i ii ii
iiiii ! i !] T r r I] 7 T I I !

S t e p 9

Robot Navigauorl St ,~p ' l ' """ i 'O"-"

! ;] - - r - r - r - r - 2 - = = ;
i ' - r i i ' rY 71]I iiiIi] 17 7 - i 7iii
li---~ i,--i~-]~-Ti- '~--i!-ixiT-

iiiiiiiiI~.,,*,~=I~.~,]~,-]~.,i~--[I,,iW-.i..~=T,,,,.-,ii!7

i I~y~Yi4[(~ l~ ' ~ " ~ [# ~2iT--iliiiil

i ! i I } iA! ii

S t e p l O

. ~ o t . . , , ,got .on s t .p : " i 5

iliiil ! i i i ~ i ! ~ I i~ I . I !i ~/i i-~ " 1i!i

:L......~ _i.o, ~ 712_2 ~_I
iliii;* i# T.6 i'~--~]# # ~-~ ~ , i y iiiiiii

iiii ~-i~']~'1#]~=r--'I~- ~'i-~i-"iii:

iii Y I[T7717]7711171i]7 [7[]1[2]]ii ii]i]iii

S t e p l 5

: R ~ g t ' o , . ~ u ~ step= f-'i~ii
l 'T

iiii "T- i - I - - T ~ - I T G

........ i [i i
! ! i ! i i] i i - - !-r '"7;! i !

S t e p I 6

Fig. 6. Emergent behavior without communication.

O n the o t h e r hand , agen t s wi th c o m m u n i c a t i o n were ab le to solve the va r -
ious tasks . F o r ins tance , the p r o g r a m s s h o w n in T a b l e 4 were acqu i r ed in one
r u n a t the g e n e r a t i o n o f 56. These p r o g r a m s scored the s t a n d a r d f i tness o f

Table 4
Acquired trees for heterogeneous strategy

Agent 0
Agent 1

Agent 2
Agent 3

(Receive Goal)
(if > = Goal Agl (if > = (Receive Goal) (Sendl_Y Goal) (if > = (if > = Goal Goal
(Receive Goal) Goal) (Sendl Goal Goal) (*2 (Receive Goal)) (Receive Goal)) Goal)
Goal)
(Receive Goal)
(if > = (i f > = A g l V1 (Receive Goal) V1) V1 (Sendl_Y Goal) (if > - A g l Goal Goal
(Receive Goal)))

H. Iba I Journal of InJbrmation Sciences 108 (1998) 181.-205 1 9 3

n o ~ O i . o v ' g a . o " step: i ; i

" 7 r 7] 17 t7177 T [[i T
F - i - - - - ! - - U - ~ - T - 1 - - ~ - T I 7

l i - ~ ! - l i - T i - ! ~T l i - rw -~ - iT l -
7/i-rwG :- l i - r i - - r , i - I i - r i - -+~-] i - ;

i!i r ~ - - - f ' ~ - - i - - ? - - F - T - - ~ I - I !

Step6

I~ '~• :? 'T- l - : i I<:::'<T '~" ~!:: ::~Tsc~:77
i l i { i "i " iI T ! T 1 i
U-T-T- T ~ " < T - T ~ " F - - 7 - W - '-

i] , , " - " , , " , " - ~•-~}~••I~-i~"•T --ii]
i i!rw-~i~T-r=--1*-T*-TTwT]i~-~-7i
i i l~Li£]!! ' t~iR#'_ii[i .Y.~7;'!£7~[I]

!:f]] i ' T I T] 1 177771711!777] ~ ix~ !:Ji

Step9

g7]~7i ̀̀ 771T:?i :ii771
F - T - - ~ " F °i - i v - T r , -

i ITTT;; "f] TTTiT; ! ; ; - iT- i i i]] r , - ! i - ;

i !i~'i~+" i~" r~- i~- iwi~-? . - ' Iv-i~o"i!iil
l~.-i~.-Tf~- - [~.Y,~ < ~ i = ~ i ?#- 7777 71
W " " ~ "<" 7 1 " °] ~ ' i ; ~ ' " 5 ~ ' - 1 ~ ''`' " ~ " l ~ ' l - " :

i [T r :] i ~ : i ~ i
!!!{111 i711]]77171 { l IT]I 77ili1~11!!

Step13

R O b O t Navi.at iml S ~ p : i" '" ' ; i '7"'~'!

iii?"r =' i i ! ~i!
!i i F" i F Y ' 1 i 1 i i
iiiil ! °"~"T""~I .-.-,,.r-.-....-~{ I l i '''Y'~ "- -::"---ri !

! i'iii i# i# "] #] i . i# [~ !# ; ~ I , 17

i[7-FT- rTI'7"T-[71 "IXmi~TrT;~L7]iii!
T 7 11~ i ry~2]~: {iiili

Stepl7

Robot Navlgatioll Step: t ~ 1 9 "

............ ~: ; ~ ; ~ ~ ~' ~ ~ ~ - ~ ~ r

i - ~ - ~ - - ? - ~ i ' T - F - T - - F " - ~ -~ F - - ~ - F - 7 - - - F - T - I -
• " i ~ !~I~-T--~ ~ - ~ - i ~ ~ • T - -

i~3#- ~£T !-]jUI-i~+IIL=.T-" lit i!:ii iiiiii~..+ ,:..I~.,]~L?!~.i~... ~ ' ' ~

i i i [~ I = ~ , . = = = , , ~ i!iii i i i] {
• : i J i i

Stepl9 Step22

Robot NavigalliOrl Step: ZZ

i#•~i ~-

[! [T~-TT]!-7iTI 7 T-T - T - -

l~.g~..~i .-t,~,--~ • !~. 7.1~;-.i~,.~i ,---
i~ .~.!~..~,i~ ..].~,..]~•,•,~i~,.-i~-]ir-.~,.oix~ o

: ! T I 7 -)

Step24

i ~ T ~ . ! i , , . , i •

r~ -Y~ i~ - ~-jTi "TTg- ~~'~""";7i~"

- f - i T - ! ' " ! ' '~II I ' [- - [T I - U

Step41

Fig. 7. Emergent behavior with communication•

13520.0, which means that they solved most o f the training cases. Fig. 7 shows
the emergent behavior o f these agents for Training #3. The key features o f
these programs are as follows:
1. Agent 0 and Agent 2 are receivers, which always give way if they receive a

message.

194 H. lba / Journal of lnformation Sciences 108 (1998) 181-205

2. Agent 3 is a receiver if the nearest agent is far, i.e.,]Agl] >/[VI[=> Receive.
It sends a yield message otherwise, because (if >= Agl V1 (Receive
Goal) V1) returns V1 and (if >= V1 Vl(Sendl_YGoal)***) always returns
the third argument (Sendl_Y Goal).

3. Agent 1 moves to its goal if the nearest agent is further than the goal. Oth-
erwise, unless it has received any message, it sends a yield message to its
nearest agent. If it has received any message, execute the received command.

As can be seen in the behavior of A3 from Step 9 to Step 19 (Fig. 7), if an agent
receives a message, it stops moving or gives way. As a result of this effective
communication, agents cooperate with each other to avoid the deadlock situ-
ation in the narrow path.

The above experimental results have shown that the communicating agents
complete the training tasks more effectively, i.e., the evolved program is more
robust. It is also suggested that the GP-based adaptive learning resulted in es-
tablishing the effective job separation among the communicating agents.

Experiment 2 (Homogeneous Strategy; Fig. l(b)): For the sake of compari-
son, we have experimented with the evolution of homogeneous agents with
communication. The performance of the homogeneous strategy was almost
as good as the heterogeneous strategy. Although they were controlled by the
same program, the homogeneous agents also evolved so as to cooperate with
each other for the sake of solving the task. Fig. 5(b) shows the experimental
result, in which the best fitness value is plotted with generations, averaged over
10 runs. Slightly poor performance seems to be due to the fact that homoge-
neous agents require a large tree structure. The acquired tree was much more
complicated than those by the heterogeneous strategy. For instance, in one run,
the following tree was acquired:

(if >= Goal (Receive Goal)(Receive Goal) (if >= (Receive Goal)
(*2(if >--- (*2(if >= Goal Agl Vl Goal))Agl V1 Goal))(if >= Agl
(Receive Goal) Goal(if >= (if >= (Sendl_YGoal)(*2(Receive Goal))
(Sendl_Rev Goal) Agl)(*2goal)Agl (Receive Goal))) Goal))

This program scored the standard fitness of 12250.0, which means that they
solved most of the training cases. Considering the symmetry of the training and
testing cases, the good performance of the homogeneous strategy may not be
very surprising. For instance, the test cases #0 and #1 are identical to the ro-
tated cases of the training case #3 by 90 ° and 180 °, respectively. For four
agents, who have to move to their own goals, the relative goal direction is more
important than the absolute direction. Because the ultimate goal of this task is
to acquire a generalized strategy for a given set of cases, we believe that the ho-
mogeneous agents have managed to do the job. The different setting, such as
introducing agents with various sensors, will have shown the difficulty of the
homogeneous strategy (see [8] for more details).

H. Iba / Journal of lnfi)rmation Sciences 108 (1998) 181 205 195

3. The pursuit problem

The Predatory-Prey pursuit problem is a test bed in Distributed Artificial In-
telligence (DAI) research to evaluate techniques for developing cooperation
strategies [15]. The problem domain is a grid world, in which four blue (preda-
tor) agents attempt to capture a red (prey) agent by surrounding it from four
directions on a grid world (see Fig. 8(a)). In the figure, four agents are repre-
sented by white circles (i.e., 1,2,3,4), and the prey by a small black dot (i.e., .).
Agent movements are limited to one horizontal or vertical step per time unit.

(a) Step0

m l .

(b) Step5

(c) Step8

-!!-

(e) Stepl4

(d) Stepl2

i ;

t i

w I i T

I r i
- - o i

(f) Trace

Fig. 8. Solving a pursuit game.

196 H. lba / Journal of Information Sciences 108 (1998) 181~05

The approach under taken by Gasser et al. [16] was a Lieb configuration, in
which each predator occupies a different quadrant , where a quadran t is defined
by diagonals intersecting at the location o f the prey, while homing in on the
prey (see [17] for details).

The research o f the pursuit problem was aimed at showing the efficiency
with which blue agents could capture the red agent. In other words, when
agents with limited ability and partial informat ion seek for the same goal,
how do they coopera te with each other in order to solve the whole problem?

This section describes GP-based approach to evolving a solution for this
problem.

3.1. The pursuit problem and genetic programming

In order to apply G P to evolving an agent 's p rogram in the pursuit problem,
we use the terminal and nonterminal sets shown in Table 5. In the table, a sym-
bol wi thout arguments is a terminal symbol. The agents ' actions are S T A Y or
move R I G H T , UP, L E F T or D O W N .

We have chosen vector operat ions for the G P tree representation, in the
same way as the robot navigation. Fo r instance, assuming that x and y axes
are r ightwards and upwards as usual, the Target terminal returns a vector

(27) for the agent A3 and (_ 5 2) f o r A 2 , in the initial situation (Fig. 8(a)).

The same wrapper is also used to map between the ou tpu t o f a parse tree

Table 5
GP Terminals and functions (pursuit problem)

Name # Args. Description

Target 0
Agi 0
Rand 0
+ 2
- 2

*2 1
/2 1
- > 9 0 1
inv 1
if_dot 4

if >= 4

The vector from the agent to the target, i.e., the prey.
The vector from the agent to Agent/.
A random vector.
Add two vectors.
Subtract two vectors.
Multiply the magnitude of a vector by 2.
Divide a vector by 2.
Rotate a vector clockwise 90 degrees.
Invert a vector, i.e., if the input is g, then return -g.
Evaluate the first and second arguments. If their dot
product is greater than 0, then evaluate and return the third
argument, else evaluate and return the fourth argument.
Evaluate the first and second arguments. If the magnitude
of the first argument is greater than the magnitude of the
second argument, then evaluate and return the third
argument, else evaluate and return the fourth argument.

H. Iba / Journal of lnformation Sciences 108 (1998) 181~205 197

and the action to be taken, i.e., it is applied to the output of the GP tree so as to
decide the agent's move (see Fig. 4).

At each time step, an agent is executing an action according the above map-
ping. During this period, the agents can either complete the task, i.e., they have
captured the prey, or the prey gets away without being captured.

In order to assign a fitness Fitness to an agent's behavior, we use the follow-
ing fitness calculation for a GP tree T:

Step 1. Set Step_Time := 30, Fitness := 0.0.
Step 2. Evaluate T and move agents according to the result of the wrapper.
Step 3. Fitness := Fitness + ~ = 0 di where at, is the distance between the prey

and the agent i.
Step 4. If the prey is captured, then return Fitness.
Step 5. Step_Time := Step_Time - 1.
Step 6. If Step_Time is zero, then return Fitness.
Step 7. Go to Step 2.
Initially, the maximum number of evaluations (i.e., S tepT ime) is set to be

30 (Step 1). The above fitness calculation assures that the sooner the task is fin-
ished, the better (i.e., the smaller) the fitness is. We have used the heteroge-
neous strategy for this experiment.

GP is using the fitness of an agent's behavior to evolve new and possibly bet-
ter behaviors. The implementation chosen is sgpcl. 1. We used the same param-
eters as that which was shown in Table 3, except that the population size was
set to be 500.

3.2. Robustness of GP-based multiple-agent learning

The robustness is defined as the ability of agents to cope with noisy or un-
known situations. In the pursuit problem, the robustness of an acquired GP
program is tested by examining the performance for the unknown test data.
Thus, we conduct experiments under the following conditions:
1. The fitness of a GP individual is calculated by using 15 different training

maps. These maps are randomly generated.
2. At each generation, the best GP individual is tested for validating its robust-

ness, i.e., calculating the performance for 10 testing maps randomly generated.
3. For both training and testing maps, the initial position of agents and the

prey constructs a Lieb configuration. This is to ensure that the problem is
solvable, i.e., predators are able to capture the prey if they cooperate with
each other effectively. The difficulty of the pursuit problem in a different set-
ting is discussed in details in [17].

4. When evaluating the fitness, the prey attempts to get away from the agents.
More precisely, the prey moves in the direction opposite to the gravity cen-
ter of four agents.

198 H. Iba / Journal of lnformation Sciences 108 (1998) 181-205

Fig. 9 shows the experimental results for this problem. The figures plot the
best fitness value with generations (Fig. 9(a)) and the ratio of success (i.e., the
prey captured 'by~ four agents) for test and training data (Fig. 9(b)). The best
fitness values were averaged over 30 runs. The non-monotomclty of the fitness
transition is due to the randomness of the data generation. Fig. 8 illustrates a
trace of agents for a typical run, in which four agents succeed in capturing the
prey after 14 time steps. This trace resulted from GP programs acquired at the
83rd generation. Note that agents did not necessarily go towards the prey. This
deviation seems to ensure the robustness for unknown situations, because the
other agents and the prey often behave unpredictably in such a new situation.
As can be seen in Fig. 9, we can confirm that the robustness is increased with
generations as a result of GP-based learning.

Fitness

4000 I
3500

3000

2500

2000

1SO0

Lieb Config.

r l • s t C ; m e ~

[Fraining Cases]

Gen.
20 40 60 80 100

(a) Fitness vs. Generations.

Success Rate Lieb Config.

1 [l'ra/nin K Cases[

0.8 [Fe.~t Cage.4

0 . 6

0 . 4

0 . 2

C, e n .
20 40 60 80 I00

(b) Success Ratio vs. Generations.

Fig. 9. Experimental results (Lieb configuration): (a) Fitness vs. generations; (b) Success ratio vs.
generations.

H. Iba / Journal o f Information Sciences 108 (1998) 181-205 199

3.3. Evolving communicating agents

We have introduced the communication for the pursuit problem by using
the following functional symbols:

F = {COM0,, COMl l , COM2,, COM3, }. (3)

This COM? command takes one argument and requests data from the agent? If
the agent? can see the target, i.e., within the range of scope, then the COM?
function returns the vector from the calling agent to the target. Otherwise,
the COM? returns its argument (i.e., by default).

We conduct the experiments under the following conditions:
1. An agent has a finite scope area, i.e., an object is visible to an agent if it is

within a circle whose radius is a given value V (i.e., visibility) and whose cen-
ter is the agent.

2. Initially, agents construct a Lieb configuration and the prey is visible to at
least one agent.

3. The prey makes a random motion.
In our experiment, we set the visibility V to be 5. For the sake of confirming the
effectiveness of communication, the following methods are compared:
1. No communication commands are used, i.e., the function set is the same as

Table 5.
2. Communication commands are used (Eq. (3)). The communication cost is

one time step. That is, if any communication command is used in evaluating
a tree, then the agent has to wait one time step to make the motion based
upon the wrapper result of the tree output.

3. Besides communication commands, a special macro VIEW is used. The
communication cost is the same as the above. The VIEW macro takes
one argument and evaluates its argument if and only if the prey is visible
to the agent.
The experimental results are shown in Fig. 10, in which the fitness values for

training and testing data are plotted with generations. The best fitness values
were averaged over 30 runs. The non-monotonicity of the fitness transition is
due to the randomness of the data generation. Table 6 summarizes the perfor-
mance comparison of three methods. Although the superiority of communicat-
ing agents is clearly shown in terms of the fitness transition (Fig. 10), the
averaged numbers of success are not remarkably different among these three
methods. The agents without communication could capture the prey in some
cases, because the prey moves randomly. But in most cases, they were unable
even to draw near to the prey. On the other hand, the communicating agents
succeeded in enclosing the prey. However, they did not always manage to
capture it. In this experiment, agents were assumed to have a limited visibility.
Thus, in earlier stage of pursuit, the communication is necessary. On the con-
trary, later when the prey is near enough, the communication is becoming a

200 H. Iba / Journal of Information Sciences 108 (1998) 181-205

Fitness Lieb Confi~.

4500

~/o ~om.I

4000

3500

3000

2500

2000

[l~l,l ~ I W , c : [l i l ! _ n
1500

'°°°F ? : , 7
20 40 60 80 i00

(a) Fitness for Training Data.

F i t n e s s Lieb Config.

t~/o coma

2000 %% IVy'. (: [) l I l _ [

zooo h,.v_ corn. and VIFWI

i , , , J , , , , , , , i , , , , , , , , O e n .

20 40 60 80 100

(b) Fitness for Testing Data .

Fig. 10. Experimental results (communicating agents): (a) Fitness for training data; (b) Fitness for
testing data.

Table 6
Performance comparison

Communication × O O
VIEW Command x x O

Avg. # of success (training) 2.71 4.83 5.00
Avg. # of success (test) 1.71 3.17 3.50
#. of COM? - 653.48 363.11

H. Iba I Journal of Information Sciences 108 (1998) 181~05 201

burden because of the communication cost, i.e., the agent has to stop one time
step for communication. Table 6 shows the averaged number of COM? com-
mands when evaluating the training data for the best individual. As can be
seen, the number is much smaller for the agents with VIEW macro. This shows
that VIEW command is expected to work as a way of eliminating unnecessary
communication. We are working on the further extension of this VIEW com-
mand in order to improve the success ratio of testing data.

4. Discussion

4.1. Related works

GP and its variants have been applied to multi-agent learning. For instance,
Koza used GP to evolve sets of seemingly simple rules that exhibit an emergent
behavior. The goal was to genetically breed a common computer program,
when simultaneously executed by all the individuals in a group of independent
agent, i.e., the homogeneous breeding, that causes the emergence of beneficial
and interesting higher-level collective behavior ([1], Ch. 12).

Fogarty et al. [2] studied the evolution of the multiple communicating clas-
sifier systems in the heterogeneous environment of a distributed control system
for a walking robot. They introduced the "symbiosis" analogy to realize a mac-
ro-level operator to the evolution of heterogeneous species and showed the ef-
fectiveness of their approach empirically. But they failed to observe the
evolution of a "superorganism" by their experiments. They also investigated
the evolution of multiple fuzzy controllers in the homogeneous environment
of a distributed control system for a communication network.

Haynes proposed an approach to the construction of cooperation strategies
based on GP for a group of agents [3]. He experimented in the predator-prey
domain, i.e., the pursuit game, and showed that the GP paradigm could be ef-
fectively used to generate apparently complex cooperation strategies without
any deep domain knowledge.

Luke examined three breeding strategies (clones, free and restricted) and
three coordination mechanisms (none, deictic sensing, and named-based sens-
ing) for evolving teams of agents in the Serengeti world, a simple predator/prey
environment [4]. Our paper has been partly motivated by this experiment.

In our previous paper [6], we have applied GP-based multi-agent learning to
the Tile World and proposed a co-evolutionary breeding scheme. Experimental
results have shown the superiority of the co-evolutionary breeding over the two
strategies, i.e., the homogeneous strategy and the heterogeneous strategy. In
the co-evolutionary strategy, some individuals were expected to perform spe-
cialized tasks for different agents with generations. We will make an attempt
at extending this scheme for the evolution of communicating agents.

202 H. Iba / Journal of lnformation Sciences 108 (1998) 181-205

4.2. The robustness against noise

In the previous experiments, the robustness was tested by validating the gen-
erated programs for some unseen cases. It also can be measured by the ability
to cope with noise, which is an important and inevitable feature for real-world
applications. Thus, we have been studying the robustness of the generated GP
program against a noisy situation in the robot navigation. We used the best
program evolved so far (i.e., that which was shown in Table 4) for the testing.
The noisy situation was realized by reducing the sensor precision. More pre-
cisely, we introduced the parameter ERROR_RATE and follow the steps de-
scribed below:
1. The Goal terminal returns a random vector with the probability of

ERROR_RATE.
2. The Agi terminal returns a random vector with the probability of

ERR OR ~,4 TE.
Fig. 11 shows the experimental result. The figure plots the fitness value of

training and testing data with different error rates, averaged over 100 runs.
As expected, the fitness became lower with higher error rates. However, the fig-
ure shows that the fitness value above 8000 was kept with the error rate of 20%.
Half of the training cases were solved correctly with the error rate. Although
we cannot make any concluding remarks with this small experiment, we think
that the generated GP program is robust in terms of the graceful degradation
against noise. This topic in connection with real-world applications is our fu-
ture research concern.

4.3. Different coordination mechanism

Terminal and functional symbols chosen in the previous experiments were
based on name-based sensing coordination described in [4]. Luke showed that

Std. Fitness

14°°°~~a i 12000
i0000

nin~ Case~
8 0 0 0 ~
6000
4000
2 0 0 0

Error Rate 0 0.2 0.4 0.6 0.8 1
Fig. 11. Graceful degradation for a generated GP program.

H. Iba / Journal of lnformation Sciences 108 (1998) 181 205 203

the name-based sensing consistently outperforms the other two (i.e., none and
deictic sensing) for his experiment. The effect of the agent's view range has been
a key issue of DAI research. Thus, we also have studied the different coordina-
tion mechanisms, i.e., the different view ranges and step lengths for the robot
navigation [5]. Experimental results showed that the homogeneous strategy
gave a poor result. This is because, in spite of different coordination mecha-
nisms, all agents were controlled by the same program, i.e., the same GP indi-
vidual. The performance of the heterogeneous breeding strategy was much
better. However, we think that using communication helps agents to cooperate
with each other in a different and effective manner. We are currently working
on the extension of our scheme in this direction.

4.4. Future research

The previous experiments have shown that GP was successfully applied to
multi-agent tasks. The tasks were achieved by the effective job separation,
i.e., the cooperation emerged among multiple agents. Then, the following ques-
tions arise. Which part of the resultant GP tree is the cooperation? Is the job
separation explicitly represented in the acquired tree?

These topics remain to be seen, and we are currently researching on them.
The cooperative behavior is usually implicitly described in a GP tree. However,
it might be possible to find a useful subtree (i.e., subroutine) in an acquired
tree. For instance, Koza [18] experimented in an artificial ant problem by using
the ADF-version of GP and observed that the useful subroutine, i.e., a semicir-
cular counterclockwise inspecting motion, was expressed in the ADF branch of
the resultant tree. Some researchers focused on the extension of GP to select an
effective subtree and add it to a new function [19,20]. The subroutine discovery
based on GP is also our current research interest [21]. We have been trying to
extract a useful subtree from a population of GP trees for the sake of interpre-
ting the cooperative behavior as well as improving the efficiency.

5. Conclusions

This paper described the emergence of cooperative behavior based on GP.
We have confirmed the following points by experiments:
1. GP was successfully applied to multi-agent test beds, i.e., the pursuit prob-

lem and the robot navigation.
2. The robustness of the acquired GP program was examined by testing data.
3. We have confirmed how agents cooperate with each other via communica-

tion as a result of the GP-based learning.
Our goal was to realize the emergence of the job separation among commu-

nicating agents. This paper has shown a feasibility study on GP-based multi-

204 H. Iba I Journal of Information Sciences 108 (1998) 181~05

agent learning, and we believe that it is a first step to the emergence of coop-
eration among communicating agents.

Acknowledgements

We are grateful to Walter Alden Tackett, for providing his Simple Genetic
Programming in C ("sgpcl. 1"), which we used to conduct our comparative ex-
periments. We have profited from comments by anonymous reviewers.

References

[1] J. Koza, Genetic Programming, On the Programming of Computers by means of Natural
Selection, MIT Press, 1992.

[2] T. Fogarty, L. Bull, B. Carse, Evolving Multi-Agent Systems, in: G. Winter, J. Phriaux,
M. Galfin, P. Cuesta (Eds.), Genetic Algorithms in Engineering and Computer Science, Wiley,
Chichester, 1995.

[3] T. Haynes, R. Wainwright, S. Sen, Evolving a Team, in: Working Notes of the AAA1-95 Fall
Symposium on Genetic Programming, AAAI Press, 1995.

[4] S. Luke, L. Spector, Evolving teamwork and coordination with genetic programming, in:
Genetic Programming, MIT Press, 1996.

[5] H. Iba, Multiple-agent learning by genetic programming, in: ICML96 Workshop on
Evolutionary Computation and Machine Learning, 1996.

[6] H. Iba, Emergent cooperation for multiple agents using genetic programming, in: Parallel
Problem Solving from Nature IV (PPSN96), 1996.

[7] H. Iba, T. Nozoe, K. Ueda, Evolving communicating agents based on genetic program-
ming, in Proc. of the IEEE International Conference on Evolutionary Computation
(ICEC97), 1997.
H. Iba, Multiple-agent learning for a robot navigation task by genetic programming, in:
Proceedings of the Genetic Programming Conference (GP97), 1997.
J. Koza, Genetic Programming II, Automatic Discovery of Reusable Programs, MIT Press,
Cambridge, MA, 1994.
J. Chu-Carroll, S. Carberry, Communicating for conflict resolution in multi-agent collabo-
rative planning, in: Proceedings of the First International Conference on Multi-Agent Systems
(ICMAS95), 1995.
M. Benda, V. Jagannathan, R. Dodhiawalla, On optimal cooperation of knowledge sources,
in: Proceedings of the Workshop on Distributed Artificial Intelligence, May 1988.
T. Ito, H. Iba, M. Kimura, Robot programs generated by genetic programming, Japan
Advanced Institute of Science and Technology, IS-RR-96-0001I, in: Genetic Programming,
1996.
H. Yokoi, Y. Kakazu, Autonomous grasp control of link mechanism by vibrating potential
method, in: Control of Engineering Practice, Elsevier, 1994, pp. 1031-1038.
G.M. Werner, M.G. Dyer, Evolution of communication in artificial organisms, in: C.G.
Langton, C. Taylor, J.D. Farmer, S. Rasmussen (Eds.), Artificial Life, vol. II, Addison-
Wesley, New York, 1991.
R. Levy, J. Rosenschein, A game theoretic approach to distributed artificial intelligence and
the pursuit problem, in: E. Werner, Y. Demazeau (Eds.), Decentralized Artificial Intelligence,
Elsevier, Amsterdam, 1992.

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

IL Iba / Journal of In~rmation Sciences 108 (1998) 181 205 205

[16] L. Gasser, N.F. Rouquette, R.W. Hill, J. Lieb, Representing and using organizational
knowledge in distributed AI systems, in: L. Gasser, M.N. Huhns, (Eds.), Distributed Artificial
Intelligence, vol. 2, Morgan Kaufmann, Los Altos, 1989.

[17] T. Haynes, K. Lau, S. Sen. Learning cases to compliment rules for conflict resolution in
multiagent systems, In: S. Sen, (Ed.), Working Notes for the AAAI Symposium on Adaptation.
Co-evolution and Learning in Multiagent Systems, Stanford University, CA, 1996, pp. 51 56.

[18] J. Koza, Simultaneous discovery of reusable detectors and subroutines using genetic
programming, in: Proceedings of the Fifth International Conference on Genetic Algorithms,
Morgan Kaufmann, Los Altos, 1993.

[19] P.J. Angeline, J.B. P611ack, Evolutionary module acquisition, in: Proceedings of the Second
Annual Conference on Evolutionary Programming, 1993.

[20] J.P. Rosca, D.H. Ballard, Hierarchical self-organization in genetic programming, in:
Proceedings of the Eleventh International Conference on Machine Learning, 1994.

[21] N. Hondo, H. Iba, Y. Kakazu, COAST: An approach to robustness and reusability in genetic
programming, ETL-TR-96-4~ 1996.

