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Abstract 

 
Predicting the occurrence of species is a central problem in ecology and conservation. 

The ability to accurately predict species occurrence requires an understanding of the relations 

among species and the environment defined at appropriate spatial and temporal scales. 

Through my research, I test the hypothesis that forest structure can reliably predict the 

occurrence of vertebrate species and vertebrate-species assemblages using logistic regression 

models and classification and regression tree (CART) analysis. With the results, I assess the 

potential of using forest structure as a surrogate measure for monitoring species diversity. I 

also investigate how deriving species presence from different types of detection data (i.e., 

audio and visual detections versus sign) and using different measures of forest structure 

affect prediction accuracy and model selection. To assess prediction accuracy, I use the area 

under the receiver-operating characteristic curve (ROC) for logistic regression models and a 

classification matrix of predicted and observed group membership for CART analysis. In 

addition, I use spatially and temporally independent data to validate single-species models. 

Models constructed using presence derived from detections of sign resulted in higher 

prediction accuracy, probably due to lower spatial uncertainty. Models for single species (n = 

101) had good prediction accuracy (ROC ≥ 0.70) only 56.4% of the time and few models 

retained good accuracy when validated with spatially and temporally independent data. Only 

spatial uncertainty appeared to systematically affect ROC values when sources of uncertainty 

(i.e., identification, spatial, or temporal) were examined with ANOVA.   CART analysis 

successfully predicted 45.8% of group membership of plots. Together these results suggest 

that spatial uncertainty and measuring structural characteristics of forests at the appropriate 

spatial scale, for the species being modelled, have the largest effect on model outcome. 
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Models developed cannot be assumed to be transferable to different areas or applicable in 

different years. Overall, forest structure did not accurately predict species presence or species 

groups well and, therefore, is not a suitable surrogate measure for species occurrence or 

monitoring diversity of vertebrate species. 
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Chapter 1. Introduction 

Background 

Activities driven by anthropogenic values have contributed to habitat loss and 

fragmentation resulting in a global decline of many species (Hunter, 1990; Harper and 

Hawksworth, 1995). Protecting biodiversity in reserves will not fully mitigate the effects of 

anthropogenic activities on biodiversity loss (Lindenmayer and Franklin, 2002; Beazley et al., 

2005). In addition, many species are adapted to various levels of disturbance that should 

allow human use concurrent with conservation objectives. Therefore, biodiversity assessment 

and monitoring have become an important part of management planning, such as for forest 

harvesting (Hunter, 1999; Noss, 1999). 

Forests provide habitat necessary for approximately 65% of terrestrial taxa (World 

Commission of Forests and Sustainable Development, 1999), as well as considerable 

economic and social resources to humans. With estimates of less than 12% of the world’s 

forests remaining intact outside the boreal forests (Bryant et al., 1997), a better understanding 

of the relations among species distribution and forest structures, both in the short and long 

term, will provide the knowledge to help mitigate the loss of species from forest 

environments. This understanding is a relevant and necessary component of efforts that will 

lead to an improved balance between economic, social, and ecological values, which includes 

the conservation of biodiversity.  

Measuring and monitoring biodiversity  

Biodiversity is a relatively new word in the scientific and political arenas and holds 

several meanings, often dependent on perspective. In the scientific community it is generally 
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considered synonymous with ‘biological diversity’ defined as encompassing all genetic, 

species, and ecosystem variability (Norse et al., 1986). Because this definition is so broad, 

researchers must state explicitly the component(s) of biological diversity of interest, as the 

focus of research is rarely, nor practically, inclusive of all three levels of biodiversity. Even 

species diversity is difficult to quantify, as accurately measuring all species in an area is not 

easily done. Most studies, therefore, focus on a subset of species for estimates of species 

richness (i.e., the number of species within an area) or other surrogate measures of 

biodiversity.  

Surrogate approaches 

A good surrogate measure of biodiversity is sensitive to environmental change, both 

physical and biological, and data are reasonably easy to sample and analyse. Surrogates may 

also be selected because of economic importance or because of their usefulness as a planning 

or management tool (Hannon and McCallum, 2001). Surrogate measures can broadly be 

categorised into coarse-, medium-, and fine-filter approaches. 

Coarse-filter approaches focus at the level of ecosystems, processes, or habitats with 

the goal of maintaining biodiversity within them across broad areas (Hunter, 1990; Noss and 

Cooperrider, 1994). The assumption of a coarse-filter approach is that complete 

representation of environmental variability and the preservation or emulation of processes 

that contribute to this variability will maintain species diversity. Less emphasis is placed on 

full knowledge of species biology and species richness and, therefore, this approach 

recognises that for many species this knowledge is unknown.  In forest management, 

measurements of structural diversity, including stand complexity, composition, connectivity, 

and heterogeneity, are proposed as suitable surrogate measures of species diversity in a 
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coarse-filter approach (Kimmins, 1997; Önal, 1997; Lindenmayer et al., 2000). Structural 

diversity increases as variation in tree-species composition and tree size, across both 

horizontal and vertical spaces, increases (Zenner and Hibbs, 2000; Staudhammer and LeMay, 

2001; McElhinny et al., 2005). If a relationship exists between structural diversity and 

vertebrate-species diversity, measures of structural diversity should be correlated with 

measures of species richness when the unit of area is the same for both measures (Araújo et 

al., 2001). 

Medium-filter approaches (meso-filter, sensu Hunter, 2005) focus at a stand scale and 

centre on specific elements of habitat (Bunnell et al., 1999). For example, several studies 

have identified the importance of dead and dying trees, coarse-woody debris, riparian areas, 

and deciduous species to forest-dwelling species in western forests (e.g., Zabel and Anthony, 

2003). The retention and enhancement of these structural elements may contribute to the 

maintenance of species diversity. Monitoring the distribution and abundance of these habitat 

elements may thus be a sufficient means to ensure that sensitive species are maintained in an 

industrial landscape (Bunnell et al., 1999; Lindenmayer et al., 2000). 

Fine-filter approaches focus on the population dynamics, presence and absence, or the 

specific needs of a plant or animal species (Hunter, 1991; Hansen et al., 1999). Changes in 

the population or distribution of a fine-filter surrogate should indicate changes to medium- or 

coarse-filter objectives (e.g., loss of a certain ecosystem type or habitat elements) and are, 

therefore, not exclusive of other approaches. Designation of indicator species, keystone 

species, umbrella species, and rare or endangered species can all be categorised as fine-filter 

approaches. The selection of the fine-filter surrogate depends upon the context, goals, and 

objectives of the study or problem (Caro and O’Doherty, 1999).  
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The general disagreement of the success of fine-filter approaches (Simberloff, 1998; 

Caro and O’Doherty, 1999) and a concern that coarse-filter approaches will not be sensitive 

enough (Reyers et al., 2000) have resulted in the recommendation that a combination of 

approaches is necessary (Hansen et al., 1999; Sarakinos et al., 2001).  Regardless of the 

approach, or complement of approaches, the task remains to test and validate indicators and 

surrogates to ensure they are telling us what we think they are (Lindenmayer, 1999; Noss, 

1999).  

Modelling the occurrence of species 

Single species 

Niche, island-biogeography, and metapopulation theories have all played important 

roles in predicting species occurrence at various spatial and organisational scales. Niche 

theory predicts species occupancy at a site given specific habitat conditions relative to the 

species’ physiology, morphology, behaviour, and ecology (Wiens, 1989). In this context, 

habitat is defined as the area that provides the resources (e.g., food, water, and cover) and 

environmental conditions (e.g., temperature and precipitation) that support an individual or 

population of a given species, its survival, and successful reproduction (Morrison et al., 

1998). The set or range of environmental features that allow a species to survive and 

reproduce is one way to describe a species’ niche (Grinnell, 1917). Other definitions of a 

species’ niche include defining the functional role of a species in a community (Elton, 1927) 

or as a multidimensional hypervolume where numerous axes represent individual resources 

or other important factors (Hutchinson, 1957). In investigations of the relations among 

species and physical aspects of habitats, assumptions about the existence of, or role of, a 

species within a community should be avoided (Morrison, 2001). Therefore, delineating the 
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physical habitat and biological components of a species’ niche allows independent focus on 

the interactions among species and habitat, and species with other species (Leibold, 1995).  

Predictions of species occurrence may be based on both the physical and biological 

components of the species’ environment. Predictions relative to the physical components of 

habitat, described in terms of spatial extent, vegetation structure, and vegetation species 

composition (Morrison and Hall, 2002), are traditionally approached through a variety of 

single-species models that build on knowledge of life history, habitat selection, and / or 

foraging theory (reviewed in Morrison et al., 1998). 

Multiple species 

Predictions of species occurrence relative to the biological component of a species’ 

niche require an understanding of the presence or absence of prey species, predators, 

facilitators (i.e., a species dependent on another species for the efficient acquisition of 

resources), or competitors. To determine the importance of biological contributors to species 

distributions, a multi-species approach to predictions and analyses is necessary. Multi-species 

approaches include categorising species into guilds, compiling species-habitat matrices, and 

community-structure models (reviewed in Morrison et al., 1998, Root et al., 2003). 

To avoid assumptions based on species interactions, species groups can also be 

defined based on their occurrence together in space and in time. These groupings are simply 

defined as assemblages (Fauth et al., 1996). Assembling species into groups that share 

similar characteristics is a compromise to deal with the impracticality of considering all 

species at the same time or all species individually. The general aim of forming species 

groups, regardless of how the group is defined, is to make predictions that are more general 

than for individual species, but not so general, or unrealistic, as making predictions for all 
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species combined (Wilson, 1999). Species selected as representatives of the species 

categorised within groups may then be monitored with fine-filter approaches.  

Scale 

Measures of species diversity are inherently scale-dependent (Magurran, 2003). For 

example, species-area curves (i.e., species richness plotted against area; Arrhenius, 1921; 

Coleman, 1981) repeatedly plotted for data collected at different spatial scales do not produce 

constant slopes, but rather show systematic variation dependent on spatial scale of 

measurement (Crawley and Harral, 2001). Thus, for any study examining biological diversity, 

the specific level of diversity being studied and the scale must be defined. Determining the 

appropriate spatial and temporal scale of measurement should coincide with the goals and 

objectives relevant to the study, ecological processes, and the physical and behavioural traits 

of an organism.  How a habitat patch is defined in space (i.e., pattern, area, and isolation) 

depends on the ecological scale at which the species uses the habitat patch (Vos et al., 2001). 

For example, an ideal habitat patch situated 500 m from a similar habitat patch is very 

isolated for a terrestrial mammal with a home range of less than a hectare.  For a terrestrial 

mammal with a home range of several 100 ha, however, this habitat patch is not isolated. The 

assessment of isolation is further confounded by the structure of the vegetation that surrounds 

the habitat patch and the flexibility of the organism to tolerate sub-optimal conditions. The 

probability of a species occurring in a suitable habitat patch will, therefore, relate to the 

effective isolation distance, juxtaposition of habitat types, the combined area of the suitable 

habitat in relation to the species’ area needs, and the ability of the species to exploit resources 

in the surrounding habitat matrix.  Determining the scale that is ecologically relevant for the 
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species is an important step in the classification of the landscape and subsequent prediction 

of species occurrence; therefore, forest structure should also be described at multiple scales. 

Frequentist versus Bayesian approaches 

There are several statistical approaches to modelling the prediction of species’ 

occurrence, many of which have been applied only in recent years. Review articles (e.g., 

Guisan and Zimmerman, 2000; Rushton et al., 2004) summarize approaches and how 

advances in new technologies have made ecologists play a “catch-up game” to determine 

how characteristics of data may affect accuracy and interpretation of model results. Although 

a review of individual techniques is beyond the scope of this introduction, a brief overview of 

two paradigms, frequentist and Bayesian, is important.  

The debate between frequentist (i.e., classical) and Bayesian statisticians is not new 

(Clark, 2005). Frequentist statistics are those typically thought of as probabilistic techniques 

that rely on falsification of hypotheses, whereas Bayesian approaches use prior information 

to develop the formulation of competing hypotheses. Recently, information-theoretic 

approaches, a paradigm rooted in Bayesian statistics, have become more prevalent in 

ecological studies (Rushton et al., 2004). Comparison studies have reported that information-

theoretic approaches (Burnham and Anderson, 2002) often had a better ability than a 

frequentist approach to fit the data and furthered ecologic understanding of the system 

studied (e.g., Greaves et al., 2006). In instances, however, where the system is not well 

studied, or the investigator cannot use prior knowledge to formulate competing hypotheses, 

information-theoretic approaches are undermined. Therefore, there are situations where 

frequentist or a combination of Bayesian and frequentist approaches are appropriate (e.g., 

Boone and Krohn, 1999; Rushton et al., 2004). 
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Summary and outline of chapters 

Accurately predicting the occurrence of species is a central problem in ecology. As 

well, predicting species occurrences based on surrogate measures for biodiversity is an 

important aspect of sustainable forest management. Overall, our ability to predict species 

occurrence requires an understanding of the relations among species and the environment 

defined at appropriate spatial, temporal, and organisational scales relative to the goals and 

objectives of the study. In forest management, approaches such as ecosystem representation 

and objectives aimed at mimicking natural-disturbance regimes, contribute to coarse-level 

biodiversity objectives. This study focuses on determining the relationship between the 

presence of a species or group of species (fine-filter) and structural elements of the stand 

(medium-filter). The results of my research are intended to contribute to both ecological and 

conservation problems.  

My dissertation is divided into 3 main chapters. In Chapter 2, I investigate the effect 

of detection method and different sources of structure data on model selection and validation. 

Different methodologies can result in different ways of determining species presence. Further, 

forest managers maintain databases of forest-inventory measures that are commonly derived 

through photo interpretation, whereas species may be responding to structure at local scales. 

It is, therefore, important to understand if these differences affect model results and 

inferences that are drawn. My specific objectives include determining: 1) the effect that 

detection type (i.e., sign, audio, visual) has on selection of model variables and predictive 

accuracy; and 2) how data sources (i.e., local or photo interpreted measures) affect prediction 

accuracy.  
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In Chapter 3, I examine the role that physical aspects (i.e., forest structure) of a 

species’ environment play in determining the presence or absence of individual vertebrate 

species. If forest structure predicts species occurrence well, then there is the potential for 

efficiently incorporating its use as a surrogate measure in species-diversity monitoring 

programs. Because species use landscapes at different scales (i.e., small or large territories 

and a range of mobility), this approach may be more appropriate for a subset of species with 

specific life-history traits. Therefore, my specific objectives include determining: 1) the 

viability of using attributes of forest structure to predict the occurrence of vertebrate species; 

2) the prediction accuracy of models when validated with spatially and temporally 

independent data; and 3) if statistical artefacts (e.g., prevalence or detection uncertainty) or 

specific traits of species (e.g., mobility or territory size) systematically affect prediction 

accuracy.   

In Chapter 4, I examine how the physical aspects of the environment explain presence 

or absence of assemblages of vertebrate species. If biological aspects of species occurrence, 

which are not accounted for by structural aspects of habitat, can be accounted for by 

grouping species, forest structure may still be useful as a surrogate measure for monitoring. 

Specifically, in this chapter my objectives include determining: 1) the reliability of plot 

groupings based on species co-occurrence and forest structural characteristics of plots; 2) the 

correlation among species-based and structure-based plot groupings; and 3) whether forest 

structure can be used to predict group membership.  

Examining these objectives in a multi-scale framework will contribute to the fields of 

community ecology, landscape ecology, and conservation biology as well as the management 

goal of assessing a potential surrogate approach to monitoring species. By taking a multi-
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scale approach to predicting the occurrence of species and analysing the relations among 

species and structural elements of forests, my research will contribute to an improved 

understanding of the complexity and variation of species responses to the physical and 

biological environment. 

Chapters are presented as individual, stand-alone manuscripts intended for 

submission for peer-review publication; therefore, there is a certain amount of overlap among 

chapters, particularly in the methods sections. I conclude with a brief summary (Chapter 5) of 

the results from the preceding chapters. 
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Chapter 2.  Considerations for the validation of species-habitat models
1
 

Abstract 

The multitude of approaches to wildlife-habitat modeling reflect the broad objectives 

and goals of various research, management, and conservation programs. Validating models is 

an often overlooked component of using models effectively and confidently to achieve the 

desired objectives. Statistical models that attempt to predict the presence or absence of a 

species are often developed with logistic regression. In this paper, we review principles of 

validating logistic regression models, measures of prediction accuracy assessment, and 

potential sources of prediction errors in a forest-management context. Based on our work in 

central British Columbia, Canada, we use two species, Red Squirrel (Tamiasciurus 

hudsonicus) and Pileated Woodpecker (Dryocopus pileatus), to examine the prediction 

accuracy of logistic regression models.  Because different types of detections may increase 

spatial or temporal uncertainty in empirical models, we use either audio and visual 

observations or sign (e.g., forage, nests) as the response variable to compare model results. 

We also compare models using data from Vegetation Resource Inventory (VRI; the regional 

inventory used by the Province of British Columbia for timber quality and quantity 

developed from photo interpretation and ground measurements), local plot measurements 

collected as part of this study, and a combination of the two as explanatory variables in the 

statistical models. Using detections of sign as the dependent variable resulted in models with 

higher predictive accuracy for both species, but the difference was not as great for Red 

Squirrel, with small home-range sizes, as for Pileated Woodpeckers, that use landscapes at 

                                                 
1 This chapter is written in the first person plural to recognize the contribution of others to the work. It has been 
submitted for publication with the authorship Psyllakis, J.M and M.P Gillingham to the Proceedings for 
Monitoring the Effectiveness of Biological Conservation, Richmond, BC. 
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much larger scales. The final models selected, based on low Akaike’s Information Criterion 

(AIC) and predictive accuracy, included a combination of locally measured independent 

variables and VRI data as explanatory variables. Our results suggest that detection type may 

affect model outcomes and relatively small investments in data acquisition can improve 

predictive accuracy. We discuss considerations for the development and validation of 

statistical models intended for use in biodiversity monitoring.  

Introduction 

The worldwide rate of species decline has resulted in international agreements (e.g., 

Convention on Biological Diversity; United Nations Environment Programme, 1992), 

national strategies (e.g., Canadian Biodiversity Strategy; Minister of Supply and Services 

Canada, 1995), and provincial guidelines (e.g., Landscape Unit Planning Guide; Province of 

British Columbia, 1999a) aimed at preserving species diversity in reserves, as well as 

landscapes managed for industrial purposes. Forests provide habitat necessary for thousands 

of species, as well as considerable economic and social resources to humans. Activities 

driven by anthropogenic values have contributed to habitat loss and fragmentation resulting 

in a global decline of many species from forest environments (Hunter, 1990; Harper and 

Hawksworth, 1995). A strategy for conserving, or minimizing impacts on, biodiversity is also 

required as part of most sustainable forest certifications (e.g., Sustainable Forestry Initiative, 

2004; Forest Stewardship Council, 2005). 

Models that build on the relationships between species and their environments 

provide an important tool for biodiversity monitoring. To be effective, however, species-

habitat models need to be explicitly tested (Guisan and Zimmerman, 2000; Scott et al., 2002) 

and model validation is a vital component to confidently implement monitoring objectives 
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(Ottaviani et al., 2004). The process of validation can increase the understanding of species-

habitat relationships (Fleishman et al., 2002), the limitations of the statistical model 

application, and whether or not the model is appropriate for its intended use (Rykiel, 1996). 

Statistical approaches to species-habitat modeling vary with modeling objectives and 

available types of data (Guisan and Zimmermann, 2000).  Logistic regression is often the 

preferred method to model species presence or absence in relation to habitat variables (Manel 

et al., 1999; Pearce and Ferrier, 2000). The resulting logistic equation predicts the probability 

of species presence given independent variables and parameters (i.e., the intercept and β 

coefficients). Validation of logistic regression models usually focuses on the accuracy of 

predictions (Fielding and Bell, 1997; Johnson, 2001) and is judged on: 1) reliability – the 

accuracy of the predicted likelihood of occurrence; and 2) discrimination – the ability of the 

model to accurately distinguish between occupied and unoccupied sites (Pearce and Ferrier, 

2000).  

Calculating the area under the receiver-operating characteristic curve (ROC) is a 

favoured measure used to assess the predictive accuracy of logistic models, when presence 

and true absence data are available (Fielding and Bell, 1997; Pearce and Ferrier, 2000). The 

ROC value is calculated by plotting the number of sites where presence is correctly predicted 

divided by the total number of positive sites (sensitivity), against the fraction of incorrect 

cases where presence is predicted (1-specificity; Table 2.1) across available thresholds. The 

area under the resulting curve is an estimate of predictive accuracy not biased by threshold 

probabilities (i.e., p > 0.5 designated as presence; Fielding and Bell, 1997) or species 

prevalence (i.e., one outcome greatly outnumbers the other; Manel et al., 2001). A ROC 

value is interpreted as the percentage of time that a random selection from the positive class 
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Table 2.1. Matrix of prediction classifications describing the possible outcomes of presence 
or absence and the associated indices that can be used to describe predictive performance. 
 

 

 

                  Classification matrix 

 

 

Definitions of the four indices of performance 

     
 Recorded 

Present 
Recorded 
Absent 

Sensitivity = A / (A + C) 

Predicted 
Present A B 

Specificity = D / (B + D) 

Predicted 
Absent C D 

False positive fraction = B / (B + D) 

   False negative fraction 
 

= C / (A + C) 
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will have a higher predictive score than a randomly drawn case from the negative class 

(Deleo, 1993). ROC values of 0.5 indicate the explanatory variables do not improve 

discrimination beyond random assignment and 1.0 indicates perfect discrimination. A value 

below 0.5 indicates the model performs more poorly with the explanatory variables than 

without them. Values between 0.5-0.7 are considered to have low discrimination ability, 0.7-

0.9 are good, and >0.9 are considered excellent (Manel et al., 2001).  

Statistical models developed to monitor biodiversity are often applied to areas beyond 

the location where data were collected (Mac Nally, 2002). To have the highest confidence in 

the reliability and discrimination of the model, an external data set (independent from the 

data used to build the model) should be used in validation (Guisan and Zimmerman, 2000; 

Fleishman et al., 2002). Obtaining an independent data set, however, is often not feasible. 

Withholding data to test the model or using a resampling technique are alternatives to using 

an independent data set (Fielding and Bell, 1997; Boyce et al., 2002), but will still result in 

optimistic prediction accuracy (Verbyla and Litaitis, 1989; Fielding and Bell, 1997; Pearce 

and Ferrier, 2000).  

Further assessment of the sources of prediction error can lead to improved 

understanding of the ecological associations between the species and its habitat as well as the 

utility of the model. Prediction errors can occur because of errors in specifying the model, 

inappropriate statistical assumptions, measurement errors, and uncertainty related to natural 

variation (Elith and Burgman, 2002; Fielding, 2002). Two potential sources of error related 

to specification error come from bias in detection type and misappropriate inclusion or 

exclusion of explanatory variables.  
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Species presence can be established from a variety of detection types including visual 

detections, auditory detections, tracks, scat, and forage sign. Visual detections have little or 

no spatial or temporal uncertainty associated with them. In contrast, auditory detections are 

temporally certain, but potentially can have a high degree of spatial uncertainty given that, 

for some species, calls can travel several hundred meters. Mobile species may call while in 

flight adding additional uncertainty as they may be in transit between activity areas of their 

home ranges. Feces, tracks, dens, and nests are all exact in space, but vary in their temporal 

certainty. Some signs (e.g., cavity nests, dens) are very persistent on the landscape and 

habitat structure can change significantly around the sign. It may be unclear if the location is 

still useful to the species it is associated with, because individuals may not be present at the 

time of detection. Uncertainty in the response data potentially leads to unexplainable 

variation in the model and reduced reliability and discrimination (Pearce and Ferrier, 2000). 

Determining species absence is more ambiguous, and may require that an alternative 

modeling and validation approach is adopted for presence-only data (e.g., ecological niche 

factor analysis, see Hirzel et al., 2002; MacKenzie et al., 2002; Ottaviani et al., 2004).  

Misappropriate inclusion or exclusion of explanatory variables also leads to 

prediction error of species presence or absence. Factors that influence species distribution 

often include variables that are not typically measured in association with studies of species-

habitat relationships (e.g., intra- and inter-species interactions). In the context of forest 

management, habitat data for use as predictor variables may be obtained from data that are 

available for forest-harvest inventories. Vegetation Resource Inventory (VRI) is an inventory 

methodology adapted by the British Columbia (BC) Provincial government (Province of 

British Columbia, 2002); the primary objective of the inventory is to assess the quantity and 
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quality of timber. These data are available for much of the forested landbase of BC. The 

limits associated with the type of environmental data available or acquisition of appropriate 

data, both for statistical model construction and its use in monitoring activities may, however, 

influence the effectiveness of achieving the desired model objective(s).  

Statistical model assessment also includes an evaluation of the variation explained by 

the independent variables. In the logistic model, this cannot be calculated in the same way as 

for other regression models and there are several alternative measures. Pseudo-R2 is the 

recommended measure to describe variance explained for logistic regression (Menard, 2002) 

and is measure of proportional reduction in the absolute value of the log-likelihood when 

variables are included (Nagelkerke, 1991). What constitutes a “good” pseudo-R2 value is 

unclear, but it can be useful when comparing across models that do not have the same 

response data (e.g., comparing between detection types). A model with a low pseudo-R2 may 

still have high predictive accuracy. 

In this paper we investigate how two types of potential model error affect the 

predictive accuracy and evaluation of species-habitat models: 1) the type of detection used to 

determine species presence and, 2) different sources of data for explanatory variables. We 

use two species as examples of how differences in the response variable and habitat data 

source may affect model selection and discrimination, Red Squirrel (Tamiasciurus hudonicus) 

and Pileated Woodpecker (Dryocopus pileatus). We selected these species for examples 

because they are relatively common in our study area, their sign is distinctive (i.e., there is 

little uncertainty in species identification from sign), and the Red Squirrel uses the landscape 

at small-spatial scales and is not highly mobile in short-time periods, whereas the Pileated 
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Woodpecker uses the landscape at relatively large scales and is highly mobile in short-time 

periods. 

Methods 

Study area 

The data were collected from May 2001 through January 2004 near the northern 

extent of the Interior Douglas-Fir (IDF) Biogeoclimatic zone (Meidinger and Pojar, 1991). 

The study area was located approximately 30 km south of Williams Lake, British Columbia, 

hereafter the Williams Lake Study Area (Figure 2.1). Elevations within the study area ranged 

from 800-1200 m above sea level and was characterised by stands of closed- and open-

canopy Douglas-fir (Pseudotsuga menziesii). At high elevations, or where crown fires have 

occurred in the past, Lodgepole Pine (Pinus contorta) was common and at low elevations 

forest stands were intermixed with non-forested grassland and wetland communities.  There 

were localised stands of hybrid White Spruce (Picea engelmannii x glauca) and Trembling 

Aspen (Populus tremuloides) throughout the study area. Fire was an important disturbance 

process in our study area historically, but is now actively suppressed. Insect outbreaks 

continue to influence stand dynamics. Forest harvesting and cattle grazing are the 

predominant anthropogenic disturbances.  

Habitat data 

We established 243 plots to encompass a range of variation in structural 

characteristics over a breadth of spatial scales (Figure 2.1). Plots were connected by 150-m or 

300-m transects for a total of nearly 42 km of transects. Each transect was flagged to ensure 

that the same route was followed on successive visits. We collected extensive vegetation data 
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Figure 2.1. The location of the Williams Lake Study Area (▪) in central British Columbia, 
Canada. Williams Lake is mapped for reference (+). We established 243 plots (•) across a 
range of variation in structural characteristics and surveyed them for species presence from 
May 2001-January 2004.  
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for all plots using standardised methodologies modified from several sources (summarized in 

Gillingham and Parker, 2001). Modifications to the standard inventory were made so that 

data were relevant from both the perspectives of wildlife and forest inventory, as well as for 

the examination of spatial variation.  

We used surveyor tapes, laid out on perpendicular axes through plot centre, to 

measure shrub species and cover, canopy gaps, and coarse-woody debris along the intercept. 

For coarse-woody debris, we recorded the diameter of the piece perpendicular to where it 

crossed the axis, the tree species, decay class (Maser et al., 1979), and any sign of use by 

wildlife. At 5, 2-m radius plots located 11.28 m from plot centre on each axis and at plot 

centre, we measured coverage for litter, coarse-woody debris, herb species, moss and lichens, 

shrub species, sapling species, bare ground, and rock. Within a 5.64-m radius plot (0.01 ha) 

around plot centre, we tallied all trees and stumps. Within an 11.28-m radius (0.04 ha) we 

tallied all trees >30 cm diameter at breast height (dbh) and snags. For trees, we recorded dbh, 

height, species, health, evidence of wildlife use, and whether or not the tree was standing or 

not rooted. We recorded general information for each plot including canopy closure around 

plot centre (average of 4 measurements taken on each axis; Robert E. Lemman model C 

densiometer, Bartlesville, Oklahoma), aspect, slope, canopy stratification and complexity, 

disturbance history (evidence of fire, cattle grazing, logging), any wildlife species detected 

while taking vegetation measures or their sign, and the elevation above sea level. We were 

supplied Vegetation Resource Inventory (VRI) data by the forest company that operates in 

our study area (Tolko Ltd., Vernon, British Columbia).  
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Species detections 

Vocal and visual detections of Red Squirrels were recorded during point-count 

surveys and encounter-transects surveys. We also recorded foraging sign, middens, and nests 

during encounter transects and intensive-plot searches. Vocal and visual detections were 

recorded for Pileated Woodpeckers during playback surveys, point counts, and encounter 

transects. Foraging sign and nest cavities were recorded during encounter transects and 

intensive-plot searches.  

Red Squirrels frequently vocalise and are often recorded during point-count surveys 

(Mattson and Reinhart, 1996; Bayne and Hobson; 2000). Therefore, during point-count 

surveys, which began no earlier than 30 min before sunrise and were ceased no later than 4 h 

after sunrise (Ralph et al., 1993) from late-May until early-July, we recorded visual and vocal 

presence of Red Squirrels. Point counts lasted 6 min and began 1 min after arriving at the 

centre of a plot. Distance and direction to detection from plot centre were estimated and 

recorded as either <50 m, 50-75 m, or >75 m. One visit per plot was made over a 7- to 10-

day period by a different observer. Direction of travel along the transect was changed on 

successive visits to reduce bias associated time of day.  

We conducted playback surveys, broadcasting recordings of calls and drumming, for 

the 7 species of woodpeckers expected to occur in the study area, including Pileated 

Woodpecker. The call playback technique attempts to solicit woodpecker responses to 

broadcasted recordings (Johnson et al., 1981). Woodpecker surveys began no earlier than 30 

min before sunrise and ended by 1100 h from mid-May until mid-June at every other plot 

(minimum distance of 300 m between playback stations). When a woodpecker was detected, 

distance and direction to bird from plot centre were estimated and recorded as for point 
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counts. When point counts were conducted in conjunction with playbacks, playbacks were 

always conducted after the passive listening period of the point count. Poor weather, such as 

high winds, rain, and fog can inhibit both bird behaviour and observer ability; therefore, 

point-count and playback surveys were only conducted in appropriate weather conditions. 

Each plot was surveyed by point count and playback 3 times per year for a total of 9 visits. 

Along the transects connecting plots, we conducted encounter-transect surveys of 

unlimited width. If a species was detected along the transect, a Global Positioning System 

(GPS) waypoint was recorded with species ID, distance and bearing from waypoint, as well 

as a sign code (singing, call, visual, den/nest, track, remains, browse, or feces). In addition, 

extensive searches were made around all plots for animal sign. Each plot was searched 

intensively, to a 50-m radius, for all sign of vertebrates (i.e., visuals, calls/song, nests, dens, 

feeding, feces, remains). Detections from all methods were entered into a database and 

georeferenced.  

Model construction and predictive evaluation 

We used logistic regression (Hosmer and Lemshow, 2000) to examine the 

relationship of species occurrence to vegetation structure and composition.  Candidate 

variables were selected from potential variables measured and supplied (i.e., VRI data). We 

considered a variable a candidate if it was, or was related to, an aspect of the species’ habitat 

requirements (Table 2.2). If variables existed that were measures of the same characteristic, 

but from a different data source (e.g., plot percent gap and VRI sum of crown closure), the 

variable with the highest correlation coefficient with the species presence was included in a 

candidate model. Therefore, the final candidate model set included combinations of variables 

expected to influence the occurrence of Red Squirrel and Pileated Woodpecker. We only 



 23 

 

Table 2.2. List of candidate variables used to construct competing models for Red Squirrel 
(Tamiasciurus hudonicus; TAHU) and Pileated Woodpecker (Dryocopus pileatus; PIWO). A 
structural variable was considered a candidate if it related directly to known associations 
between the species and its habitat. 
 
 

Data Source 
 

Variable Species 

Plot Measures Main canopy height  
Percent gap    
Percent shrub cover  
Percent herb cover  
Coarse-woody debris volume (m3) 
Percent suspended CWD 
Live tree basal area  
Dead tree basal area   
Diameter breast height ≥30cm 
basal area 
Deciduous stems per ha  
Frequency Douglas-fir  
Frequency Spruce 
Coniferous stems ha-1  

 

TAHU, PIWO 
TAHU, PIWO 
TAHU 
TAHU 
TAHU, PIWO 
TAHU 
TAHU, PIWO 
TAHU, PIWO 
TAHU, PIWO 
 
TAHU, PIWO 
TAHU, PIWO 
TAHU, PIWO 
TAHU, PIWO 

 
Vegetation Resource Inventory Shrub crown closure  

Adjusted live basal area  
Herb cover percent   
Adjusted canopy closure  
Douglas-fir cover  
Aspen cover  
Spruce cover 
Adjusted leading species height  
Structure class (categorical) 

TAHU 
TAHU, PIWO 
TAHU 
TAHU, PIWO 
TAHU, PIWO 
TAHU, PIWO 
TAHU, PIWO 
TAHU, PIWO 
TAHU, PIWO 
 

 

 



 24 

considered plots in which structure was not altered (e.g., harvested) over the duration of the 

study (n = 228). 

To test for collinearity among independent variables, we calculated variance inflation 

factor values for all variables in the model after linear regression (Neter et al., 1985). 

Variation inflation increases with increasing collinearity among variables and results in 

overestimates of variance explained. Although there is no set rule for a variance inflation 

factor indicating a collinearity problem, we adopted a value of 5 or above, which corresponds 

with a tolerance score of 0.2, a recommended threshold (Menard, 2002). If collinearity was 

indicated, we reran our model using only one of the indicated problem variables and 

compared outcomes. We retained the variable that resulted in the highest pseudo-R2 and 

predictive accuracy. We calculated the pseudo-R2 (Nagelkerke, 1991) as our measure of 

variation explained and ROC values to estimate predictive accuracy. We classified ROC 

values between 0.5-0.7 as low, 0.7-0.9 as good and >0.9 as high model prediction accuracy 

(Manel el al., 2001). For comparing models with different response variables (i.e., audio or 

visual detections versus sign detection), we considered the highest pseudo-R2 and highest 

ROC value as the best model. 

Once we determined which detection type resulted in the best model (i.e., highest 

pseudo-R2 and highest ROC value), we then assessed competing models (i.e., different 

combinations of independent variables). Competing models were ranked using Akaike’s 

Information Criteria (AIC; Akaike, 1973; Burnham and Anderson, 2002). AIC model 

selection estimates the information loss between the probability distribution with the true and 

the probability distribution associated with the model that is to be evaluated. Choosing the 

model with the lowest expected information loss between the true model and the 
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approximating model is asymptotically equivalent to choosing a model that has the lowest 

AIC value (Burnham and Anderson, 2002). We applied a correction to the AIC value to 

account for small sample sizes (AICc) and determined the Akaike weight (wi), the likelihood 

of the model given the data (Burnham and Anderson, 2002). For those competing models, the 

lowest AICc value and highest Akaike weight defined the best model for each set of predictor 

variables. After the final models were selected, we reviewed cases for high leverage and 

studentised residual values to determine if any cases were disproportionately driving the 

model relationship (Menard, 2002). We used the program Stata (version 8.2; StataCorp, 2003) 

for all statistical analyses and employed the DESMAT procedure (Hendrickx, 2001) for 

design matrices involving categorical variables.  

Results 

Red squirrel 

We recorded audio and visual detections of Red Squirrel at 178 plots and detected 

sign at 205 plots (219 plots in total). Audio and visual detections were primarily made during 

point-count surveys. Sign detections included foraging sign, middens, remains, and nests. 

The best model was constructed with sign as the response variable (Table 2.3). This model 

explained approximately 16% more variation and the prediction accuracy improved by 8%, 

but both the sign and audio visual models had good predictive accuracy (sign ROC = 0.88, 

audio and visual ROC = 0.80; Table 2.3). Several of the same variables were included in both 

models, specifically, structure class, percent gap, and frequency Spruce. Comparing the 

results of competing models for only sign as the response variable, the best model was 

constructed with a combination of plot-level data and VRI data (AICc = 181.55; Table 2.4). 
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Table 2.3. Model results predicting the occurrence of Red Squirrel (Tamiasciurus hudonicus) 
in the Williams Lake Study Area using audio and visual detections or sign detections. Using 
sign as the response variable resulted in the highest pseudo-R2 and highest ROC value. 
 
 

Response variable Independent variables 
 

Pseudo-R2 ROC 

 
Audio Visual 

 
Structure Class 
Percent Gap 
Frequency Spruce 
 

 
0.20 

 
0.80 

Sign Structure Class 
Percent Gap 
Frequency Spruce 
Dead trees basal area 
Shrub crown closure 

0.36 0.88 
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Table 2.4. Models predicting occurrence of Red Squirrel (Tamiasciurus hudonicus) in the 
Williams Lake Study Area using different sources for independent data variables. The model 
using plot measures and Vegetative Resource Inventory (VRI) data resulted in the lowest 
AICc and highest ROC value.  
 
 

Data Source 
 

Independent variables  AICc ∆AIC wi ROC 

VRI and Plot Structure class 
Percent gap  
Spruce stems ha-1 
Dead tree basal area 
Shrub crown closure 

 

181.55 
 

0   0.93 0.88 

VRI Adjusted canopy 
closure  
Structure class 
Spruce cover 

 

187.31   5.28   0.067 0.86 

Plot Percent gap 
Spruce stem ha-1 

212.36 29.28 <0.01 0.76 
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The multi-source model was highly favoured as the best model with an Akaike weight of 

0.93, or a 93% likelihood of being the best model; however, prediction accuracy did not 

improve dramatically (VRI ROC = 0.86, multi-source ROC = 0.88; Table 2.4). 

Pileated woodpecker 

We recorded audio and visual detections for the Pileated Woodpecker at 63 plots and 

sign at 33 plots (85 plots in total). Sign detections included foraging and nest cavities. The 

best model was constructed using sign as the response variable (Table 2.5). There was little 

overlap among explanatory variables included in the two models. Sign detection as the 

response variable dramatically improved model performance over audio and visual measures. 

The variation explained improved by 14% and predictive accuracy improved from poor 

(ROC = 0.66) to good (ROC = 0.82; Table 2.5). Comparing the results of competing models 

using only sign as the response variable, the best model was constructed with a combination 

of plot and VRI data (AICc = 179.55; Table 2.6). The likelihood of the multi-source model 

being the best approximating model was 66% and predictive accuracy improved by 10% 

(Table 2.6).  

Discussion 

For both the Red Squirrel and Pileated Woodpecker, logistic models using sign 

detections outperformed those with audio and visual detections. Measurement uncertainty 

from several sources may explain this result. Firstly, it is sometimes difficult to associate 

vocalisations to specific locations because of the distance over which sound travels and 

measurement error assigning the detection to a spatial location. Secondly, vocalisations may 

be made while the individual is in transit between parts of its home range, as is the case for 
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Table 2.5. Model results predicting the occurrence of Pileated Woodpecker (Dryocopus 

pileatus) in the Williams Lake Study Area using audio and visual detections or sign 
detections. Using sign as the response variable resulted in the highest pseudo-R2 and highest 
ROC value. 
 
 
 

Response variable Independent variables Pseudo-R2 ROC 

 
Audio Visual 

 
CWD volume 
Percent gap 
Douglas-fir stems ha-1 
dbh ≥0cm basal area  
 

 
0.06 

 
0.66 

Sign Percent Gap  
Structure class 
Douglas-fir cover 
Main canopy height  
Adjusted live basal area 

0.21 0.82 
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Table 2.6. Models predicting occurrence of Pileated Woodpecker (Dryocopus pileatus) in 
the Williams Lake Study Area and different sources for independent data variables. The 
model using plot measures and Vegetative Resource Inventory (VRI) data resulted in the 
lowest AICc and highest ROC value. 
 
 

Data Source Independent variables AICc ∆AIC wi ROC 

 
Multi-Source 

 
Percent Gap 
Structure class 
Douglas-fir cover 
Main canopy height 
Adjusted live basal area 
 

 
179.55 

 
0 

 
0.66 

 
0.82 

VRI Adjusted canopy closure 
Douglas-fir cover 
Adjusted live basal area  
 

181.16 1.611 0.30 0.72 

Plot Main canopy height 
 

185.21 5.66 0.04 0.65 
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the Pileated Woodpecker. Finally, the observer must be at the location at a moment in time 

when the individual is near the same location. For species with large home ranges, the 

probability of an observer being in the same location, in space and time, is lower than that for 

a species with a smaller home range.  It is possible, therefore, that we may have not detected 

presence. Given our survey methods for sign, it was unlikely that we would not detect 

presence if it was there. 

Sign detections are often associated with a specific component of a species’ habitat 

requirements (e.g., foraging or nesting sites). Logistic models with sign data as the response 

variable likely had higher predictive efficiency because foraging and nesting substrates are 

often selected for at smaller scales, within the context of a home range. For example, Red 

Squirrels have home ranges of 1-3 ha (Obbard, 1987), easily within a single stand of similar 

habitat characteristics. Audio and visual detections are likely recorded within the same stand 

as foraging and other life history activities take place; therefore, it is not surprising that 

model results are similar for the different detection types for Red Squirrel. The additional 

variables included in the sign model for Red Squirrel, shrub cover and dead wood basal area, 

may be more related to the associated effects of middens on ground vegetation and the 

availability of cones. Potential temporal uncertainty associated with changes to vegetation 

structure and composition from disturbance (e.g., alteration because of harvesting practices) 

around sign detections may prove a greater issue in long-term monitoring studies. 

The Pileated Woodpecker has a large home range; pairs in the Pacific Northwest use 

between 300 and 600 ha, while unpaired birds used up to 1400 ha (Bull and Holthausen, 

1993). Pileated Woodpeckers select large snags and logs to forage on and large diameter 

trees for nesting (Bull and Holthausen, 1993; Carey et al., 1991). These structural 
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components may be localised or clustered within a highly variable home range, resulting in 

better predictive accuracy of models for sign. Further, because we employed a survey 

methodology that was designed to solicit responses from individuals if they were in the area 

(i.e., to minimise false absence detections) we may have inadvertently attracted an individual 

from its original location and the associated characteristics of that original location. It is 

unclear which is more detrimental to the predictive efficiency of logistic species-habitat 

models and their use in a biodiversity monitoring program, false absence or spatial 

uncertainty related to an individual’s movement.   

Overall, differences in logistic-model results, and the potential difference in a 

monitoring program designed around them, emphasize the importance of assessing sources of 

potential model error and the predictive efficiency. For a species that uses landscapes at 

relatively small scales (e.g., Red Squirrel), sign and visual or audio detections are likely to be 

within the same area and not have a large effect on a monitoring program. In contrast, there 

was little overlap among variables included in the different statistical models for Pileated 

Woodpecker and the predictive efficiency varied greatly. It may be more appropriate to use 

complementary models over a general model that has weak predictive accuracy and to give 

careful consideration to the biology of the species. Ultimately, the decision of which is the 

most appropriate approach will depend on what poses the highest risk to the species (e.g., 

loss of critical habitat features) and the goals and objectives the statistical model is intended 

to help achieve.  

In this paper we examined the effects of two kinds of potential model error: detection 

type and availability of structure data. We showed that: 1) different types of detection can 

potentially affect model results and assessment of accuracy; and, 2) that adding a small 
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amount of locally measured data can improve predictive efficiency dramatically. Measuring 

these data may have relatively low costs. We conducted our analyses using our original data 

set; using independent data to validate models is the preferred approach to address all aspects 

of validation. It is, therefore, likely that we have reported optimistic predictive accuracy 

(Chatfield, 1995). Additionally, although the area under the ROC curves is a robust measure 

of prediction accuracy, its use in the biological sciences is relatively recent. Some caution 

should be taken when using the method outside of its original development (Kraemer, 1988) 

although the approach is highly recommended for presence and absence data (Ottaviani et al., 

2004).  

Overall, assessing prediction accuracy is only one component of model validation. 

Validation needs to be an iterative process so that confidence is maintained in the model’s 

usefulness through continued monitoring (Johnson, 2001). Other factors, outside of those 

used in predictive-habitat models, may ultimately have greater impact on the presence of 

species (e.g., invasive species, climate change). A better understanding of the relations 

among species distribution and forest characteristics, both in the short- and long-term, will 

provide knowledge to help mitigate the loss of species from forest environments. Ultimately, 

assessing model performance will allow for informed trade-offs and lead to improved 

effectiveness of biodiversity monitoring. In conclusion, every monitoring program for 

biodiversity that uses species-habitat models should make effort to ensure that models are 

valid for their intended use. Clear articulation of model objectives and a thorough 

consideration of appropriate types of data collection, a standard of acceptable error, and 

independent data for evaluation of error will improve the effectiveness of biodiversity 

monitoring programs. 
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Chapter 3. Using forest structure to predict the occurrence of vertebrate species
1
 

Abstract 

In forested environments, mitigating negative impacts of forest-harvesting activities 

and monitoring biodiversity are common requirements of sustainable-use certification and of 

various laws and regulations. Managers require an understanding of how species respond and 

persist within the dynamics of changing forest environments so that management strategies 

can retain and recruit structural aspects necessary for the persistence of populations. We 

tested several structural models to predict the presence or absence of a range of vertebrate 

species (n = 55) and to determine the potential of using forest structure to monitor species 

distributions. We validated models with temporally and spatially independent data. Some of 

the models had good predictive accuracy that was retained when validated and thus have 

application in terms of implementation as management tools. Modelling success varied, 

however, depending on whether plot or stand data were used; many models included 

variables related to spatial relationships of structures. Few models were reliable when applied 

to the independent data; therefore, our results indicate that models cannot be assumed to be 

applicable in different years or applied outside the area where the model was developed, even 

with similar spatial and temporal contexts.  We did not find robust relationships necessary to 

guide management targets for retention and recruitment of specific forest structures.  

Therefore, using these structural models as surrogates for monitoring species occurrence is 

limited. Monitoring of structure should still be included as part of biodiversity monitoring 

programs because preservation of structures known to be negatively affected by harvesting 

(e.g., dead wood, large trees, closed canopies, continuous forests) contributes to local and 

                                                 
1 Throughout this chapter the first person plural is used to reflect the contributions of others to this research. The 
manuscript will be submitted with the authorship: Psyllakis, J.M. and M.P. Gillingham. 
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landscape heterogeneity and has been shown to affect species presence in this study and 

others.  

Introduction 

Industrial forest-management activities can contribute to the loss and fragmentation 

of habitat, change in tree-species composition, and the introduction of non-native species. 

These factors are linked to the decline of species from forest environments at local to global 

scales (Groombridge, 1992; Berg et al., 1994; Harper and Hawksworth, 1995; Noss, 1999; 

Hunter, 2001). Protecting biodiversity in reserves is not sufficient to mitigate the decline 

(Hunter, 1990). Therefore, efforts to mitigate loss of biodiversity are also included in plans 

for the sustainable use of natural resources (Rosenzweig, 2003). Through sustainable forest-

management policies and certification, protection of biodiversity and ecological integrity are 

mandated (e.g., United Nations Environment Programme, 1992; Province of British 

Columbia, 1995; Montreal Process Working Group, 1999; Canadian Council of Forest 

Ministers, 2003), thus forest-land managers require tools to assess biodiversity and to ensure 

that operational activities have minimal effects on biodiversity.  

Biodiversity is a broad concept that spans spatial, temporal, and organizational scales 

(see Chapter 1; Bunnell and Huggard, 1999; Purvis and Hector, 2000; Willis and Whittaker, 

2002; Magurran, 2003). Species diversity is a commonly measured component of 

biodiversity (Purvis and Hector, 2000; Magurran, 2003). Even the narrow focus on the 

measurement of species diversity is problematic as it is impossible to measure or monitor all 

species. To overcome the difficulty of measuring all species directly, surrogate measures are 

used with an assumption that whatever is being measured is representative of a larger aspect 

of diversity (Noss, 1990; Caro and O’Doherty, 1999; Margules and Pressey, 2000). 
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Approaches to surrogate measures may be habitat-based, species-based, or a 

combination of the two, and will vary depending on the spatial scale of the conservation 

goals (Poiani et al., 2000; Groves et al., 2002). To reflect the scale of the approach, both 

spatially and biologically, surrogate measures are often characterised as fine-, medium-, or 

coarse-filter (see Chapter 1; Hunter, 1990; Noss, 1996; Lindenmayer and Franklin, 2002; 

Hunter, 2005). In the context of forest management, fine-filter approaches are typically 

species-based and applied at local scales; medium- and coarse-filter approaches are typically 

habitat-based and applied at stand to landscape scales (Noss, 1996; Hunter, 2001; 

Lindenmayer and Franklin, 2002; Hunter, 2005).  

Examples of fine-filter approaches include monitoring or managing population trends 

or distribution of single species (Hansen et al., 1999; Hunter, 2001). Fine-filter species may 

be rare or endangered or be representative of other aspects of the ecosystem or community 

(e.g., indicator, flagship, keystone, or umbrella species; Hunter, 2001). Fine-filter approaches 

have been criticised because of a general lack of knowledge and understanding of the 

relationships among species and species diversity, the expense and time that is required to 

monitor or manage single species, and the questionable contribution that protecting the 

identified species has on the rest of the ecosystem (Simberloff, 1998; Ricketts et al., 2002; 

Caro et al., 2004).  

Medium-filter (also mesofilter sensu Hunter, 2005) surrogate approaches focus on 

specific elements of forest stands that represent critical habitat for the persistence of some 

species (Bunnell et al., 1999; Lindenmayer et al., 2000; Hunter 2005). For example, in 

forested environments several studies have identified the importance of dead and dying trees, 

coarse-woody debris, riparian areas, and deciduous species to forest-dwelling species (e.g., 
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Bunnell et al., 1999; Martin and Eadie, 1999; Bowman et al., 2000; Zabel and Anthony, 2003; 

Mazurek and Zielinski, 2004). The retention and enhancement of these structural elements 

may, therefore, contribute to reducing the risk of extirpation of species dependent on these 

structures for some aspect of their life history from managed forests (Lindenmayer and 

Franklin, 1997; Bunnell et al., 1999; Lindenmayer et al., 2000).  

Coarse-filter surrogate approaches centre on the preservation of representative 

habitats and ecosystems on the landscape through time. An underlying assumption is that 

complete representation of environmental variability, and the preservation or emulation of 

processes that contribute to this variability, will maintain species diversity and thus their 

processes and functions (Hunter, 1990; Noss and Cooperrider, 1994; Hunter, 2001). Coarse-

filter approaches are criticised because of a lack of congruence between environmental and 

species diversity (Reyers et al., 2000; Araújo et al., 2001) and a sensitivity to missing rare, 

endemic, and sensitive species (Margules and Pressey, 2000; Hunter, 2001; Noon et al., 

2003). The general disagreement of the success of fine- and coarse-filter approaches 

(Simberloff, 1998; Caro and O’Doherty, 1999) has resulted in the recommendation that a 

combination of approaches is necessary (Noss, 1990; Noss and Cooperrider, 1994; Poiani et 

al., 2000; Sarakinos et al., 2001; Lindenmayer and Franklin, 2002). 

The use of habitat-based surrogates at the coarse- and medium-filter level has been 

encouraged because complete knowledge of species’ biology is not required and it is usually 

less costly to assess characteristics of habitats than species and populations (Noss, 1996; 

Bunnell et al., 1999; Lindenmayer et al., 2000; Ricketts et al., 2002). Habitat-based 

approaches are particularly appealing to forest managers because measures such as forest 

cover, vegetation species composition, and stand age are intuitive and directly linked to 
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harvest-based forest inventories. Regardless of the approach, the surrogate measure should 

have a strong relationship with its intended non-measured counterpart.  

Linking species presence to forest structural elements for the purpose of biodiversity 

monitoring incorporates aspects of both species-based and habitat-based surrogate 

approaches and is a compromise between the expense of monitoring a single species and the 

possibility of missing species needs in coarse-filter approaches. Using forest structure as a 

predictor of species richness has received considerable recent attention (e.g., Lahde et al., 

1999; Díaz et al., 2005; Loehle et al., 2005; Oxbrough et al., 2005). Generally, however, 

forest structure remains relatively untested as a surrogate measure for biodiversity 

monitoring. The development of statistical models linking species occurrence to structural 

characteristics of forests may also provide clear targets for management that have direct 

impacts on structural aspects of forests. Further, predictions on how species will respond to 

changing structure need to be made if a better understanding of the causal effects of 

management on diversity, an important aspect of adaptive management (Walters, 1986), are 

to be incorporated into management. If linkages are strong and predictions of species 

presence are accurate, monitoring forest structure could contribute to assessing the effects of 

management on species diversity.  

Examining the linkages between species presence and forest structure can be 

approached with statistical modelling. Before implementing the use of statistical models as 

part of management programs, however, the models should be validated with spatially and 

temporally independent data (Rykiel, 1996; Guisan and Zimmerman, 2000; Ottaviani et al., 

2004; Guthery et al., 2005). Validation of logistic regression models, a common method of 

modeling species presence and absence data, usually involves assessment of two aspects of 
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prediction accuracy: 1) reliability – the accuracy of the predicted likelihood of occurrence; 

and, 2) discrimination – the ability of the model to accurately distinguish between occupied 

and unoccupied sites (Fielding and Bell, 1997; Pearce and Ferrier, 2000; Johnson, 2001). 

Statistical artefacts (e.g., sample prevalence; Manel et al., 2001; McPherson et al., 2004), as 

well as biological attributes of species (Karl et al., 2000; Scott et al., 2002; McPherson et al., 

2004; Seoane et al., 2005) are linked to prediction accuracy. An assessment of systematic 

biases in model predictions is, therefore, required if models are to be compared among 

different species.   

The overall goal of our study was to examine the possible use of structure-based 

measures as explanatory variables to predict the presence and absence of vertebrate species, 

as a surrogate approach to monitoring species diversity. Although vertebrates represent a 

relatively small portion of species diversity in most ecosystems (Redak, 2000; Spence, 2001), 

several standardized protocols exist for their measurement (Province of British Columbia, 

1991; Heyer et al. 1994; Wilson et al., 1996) and there is a wide range of studies linking the 

presence of vertebrate species to structural elements of habitat (e.g., snags, basal area, large 

trees, coarse-woody debris; Keisker, 2000; Bull, 2002). Specifically, our objectives were to 

determine: 1) the viability of using attributes of forest structure to predict the presence of 

vertebrate species; 2) the validity of model predictions using spatially and temporally 

independent data; and, 3) if statistical artefacts (e.g., sample prevalence, detection uncertainty) 

or biological traits of vertebrate species (e.g., mobility, territory size) consistently influence 

the prediction accuracy of these models.  
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Methods 

Study area 

Our study took place near the northern extent of the dry-warm subzone of the Interior 

Douglas-Fir (IDF) Biogeoclimatic zone (Meidinger and Pojar, 1991) approximately 30 km 

south of Williams Lake, British Columbia, Canada (Williams Lake Study Area; Figure 3.1). 

Data were collected from May 2001 through January 2004 for original model development 

(development sites). For spatial validation data, the study area was extended in the summer 

of 2004 within the IDF to the south-east extent of the moist-cool subzone of the Sub-Boreal 

Pine Spruce (SBPS) Biogeoclimatic zone (Figure 3.1).  

The IDF was characterised by stands of closed- and open-canopy Douglas-fir 

(Pseudotsuga menziesii). At higher elevations within the IDF (>1000 m above sea level) or 

where crown fires had occurred in the past, Lodgepole Pine (Pinus contorta) was common. 

At lower elevations (~850 m above sea level) grassland communities and wetland 

communities were dispersed throughout the forested landscape. There were localised stands 

of hybrid White Spruce (Picea engelmannii x glauca) and Trembling Aspen (Populus 

tremuloides) throughout the IDF. Even-aged lodgepole pine stands dominated the SBPS 

landscape, as large-scale fires historically occurred frequently. Moist sites were dominated 

by White Spruce (Picea glauca). Wetlands were also common throughout this zone. 

Livestock grazing, primarily in the IDF, but also the SBPS, and forest harvesting were 

predominant anthropogenic disturbances and insect outbreaks continued to influence stand 

dynamics of both biogeoclimatic zones. The mean annual temperature is 4.2oC (range = -1.3 

to 9.6 oC; Environment Canada, 2002).  
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Figure 3.1. The distribution of sites within the Williams Lake Study Area in central British 
Columbia, Canada (approximately 30km south of Williams Lake). Multiple plots were 
located within each site. Development sites (▲ and ■) included 243 plots used for 2001-2004 
model construction. In the summer of 2004, we established an additional 123 plots at spatial 
validation sites (●) and continued to monitor 91 plots at temporal validation sites (▲) to 
assess the prediction accuracy of these models with independent data. The shaded area of the 
map indicates the Sub-Boreal Pine-Spruce (SBPS) biogeoclimatic zone, the unshaded area is 
Interior Douglas-fir (IDF). 
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Initial plot layout and stratification were accomplished using a Geographic 

Information System (GIS) with forest cover and orthophoto layers. We established 243 plots 

within 107 stands across a range of structural variation within the IDF in 2001-2002 (Figure 

3.2). We excluded plots from our final analysis if industrial activity resulted in alteration of 

forest structure (e.g., complete removal of trees or thinning; n = 15). Therefore, the final 

sample included 228 plots within 97 stands. Stands were defined based on forest inventory 

polygons of homogeneous vegetation characteristics as delineated on forest inventory maps 

(Tolko Ltd., Vernon, BC).  

In 2004, we established an additional 123 plots within the IDF (n = 32) and SBPS    

(n = 91) for collection of spatial validation data.  Twenty-three of the plots in the SBPS were 

very close to the IDF boundary and had a large component of Douglas-fir; therefore, the new 

plots were distributed along a gradient of Douglas-fir dominance through the transition 

between IDF into SBPS zones. In 2004, we also continued visiting a subset of the plots 

established in 2001-2002 for temporal validation of models (n = 90). All plots were spaced at 

least 150 m apart, but occasionally 300 m separated plots where roads, landings, or water 

interrupted the transect. 

Habitat measurements 

We measured local habitat variables using a combination of methods. Shrub species 

and cover, canopy gaps, and coarse-woody debris were measured along the intercept of 2, 

48-m transects laid perpendicular through plot centre (Figure 3.3). For coarse-woody debris, 

we recorded the diameter of the piece perpendicular to where it crossed the axis, the tree 

species (if possible), decay class (Maser et al., 1979), and any signs of use by wildlife. At 5, 

2-m radius plots located at 11.28 m away from plot centre on each axis and at plot centre, 
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Figure 3.2.  Example of plot (∆) layout within the Williams Lake Study Area. Most plots 
were connected with a 150-m transect, although some were connected with a 300-m transect. 
The boundary for Vegetation Resource Inventory (VRI) polygons that were used to define 
forest stands are highlighted with white.  
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Figure 3.3. Schematic of the vegetation sampling scheme used to assess the vegetation and 
other structures present in each of the sampling plots.  

1 

11.28-m radius plot: live trees 
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2-m radius subplots: percent 
cover in layers from ground to 
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we measured the percent coverage for litter, coarse-woody debris, herb species, moss and 

lichens, shrub species, sapling species, bare ground, and rock. Within a 5.64-m radius plot 

around plot centre, we tallied all trees and stumps ≥7 cm diameter at breast height (dbh) and 

recorded tree species, dbh, and height. We tallied all trees ≥30-cm dbh and snags within an 

11.28-m radius. We recorded general information for each plot including canopy closure 

around plot centre, as an average of 4 measurements taken on each axis (Robert E. Lemmon 

model C densiometer; Bartlesville, Oklahoma), aspect, slope, canopy stratification and 

complexity, disturbance history (evidence of fire, grazing, logging), and the elevation (in m) 

above sea level. We averaged vegetation data collected at multiple plots measured within 

stands, as defined by forest inventory polygons, to create stand-level variables. 

Because the study area is currently undergoing a major mountain pine beetle 

(Dendroctous ponderosae) outbreak, we also included beetle presence as a potential predictor 

variable for woodpecker species, Black-capped Chickadee (Poecile atricapillus), and 

Townsend’s Warbler (Dendroica townsendi). These data were derived from our plot surveys 

as well as provincial aerial forest health surveys (Province of British Columbia, 2000). Using 

the ArcView GIS (version 3.2a; ESRI, 2000) extension Patch Analyst 3.1 (Rempel and Carr, 

2003), we created a 75-m buffer around plot centres and intersected this layer with the 

provincial data layer that contained the insect pest distribution data. In cases where provincial 

maps and our plot data disagreed, we reviewed transect data and helicopter survey data 

provided to us by the forest company tenured in the study area (Tolko, Ltd., Vernon, BC) to 

resolve this discrepancy. 

To obtain landscape-level attributes, we subsetted a Landsat 7 (30-m resolution) 

image of the study area (July 2002) and used PCI Works GIS software (version 7.0; PCI 
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Geomatics Corp., 2001) to complete a supervised maximum-likelihood classification. Six 

habitat classes were identified: water, nonforest, early seral, shrub and Aspen, moderate 

retention conifer, and conifer. We used colour airphotos, orthophotos, and the vegetation data 

collected at plots to seed areas for training and to assess the accuracy of the classification. 

We assessed accuracy of the classification by determining the number of correctly classified 

pixels from a randomly selected subset. Water, nonforest, and conifer classes had the highest 

accuracy (97%, 94%, and 88%, respectively). Early seral, shrub and Aspen, and moderate 

retention conifer were less often classified correctly (67%, 78%, 67%, respectively). Overall 

classification accuracy was 81%.  

We calculated landscape metrics using the Patch Analyst 3.1 (Grid) extension 

(Rempel and Carr, 2003) for ArcView GIS (version 3.2a; ESRI, 2000) to interface to the PC 

raster version of FRAGSTATS 2 (McGarigal and Marks, 1995). We intersected the 

classification layer with a buffer created around plot centres at 3 scales: 2 ha, 50 ha, and 300 

ha. We selected these extents based on available information of species home-range size 

(Gillingham, 2003). We determined centroids for each stand polygon and repeated this 

process with 50- and 300-ha buffers around each centroid. Distance from plot centres and 

polygon centroids to water, high-contrast edge (e.g., meadow – forest), and roads were 

estimated using the GIS. 

Vertebrate sampling 

For each vertebrate observation, we used a handheld Global Positioning System (GPS; 

Garmin eTrex GPS, Olathe, Kansas) to obtain coordinates or used known plot coordinates to 

import detections into a GIS (ESRI, 2000). If necessary, detections were corrected with an 

estimated bearing and distance to the individual. To ensure that observations were associated 
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with the correct plot- and stand-structural characteristics, we calculated distance to nearest 

plot and associated each detection to the nearest plot (<75 m) and to the stand polygon. We 

used a variety of techniques to determine the presence of vertebrate species. 

Point counts 

We conducted variable-radius point counts at each of the plots (Reynolds et al., 1980; 

Ralph et al., 1995) 3 times throughout the breeding season (mid-May – early July) in each 

year. Point counts began no earlier than 30 min before sunrise and were ceased no later than 

4 h after sunrise when there was little or no wind or rain and temperature was at least 3oC 

(Robbins, 1981; Province of British Columbia, 1999b). A minimum of 10 days passed 

between each successive visit. Observers were rotated between plots (1 visit per observer per 

plot per year) and direction of travel along the transect was changed between surveys to 

reduce bias associated with the observer and time of day. We recorded all birds detected 

during a 6-min recording period that began after a 1-min settling period. Distance and 

direction to bird from plot centre was estimated and recorded as either within 50 m, 50-75 m, 

or outside 75 m. Training was conducted prior to the onset of surveys and opportunistically 

throughout the field season to calibrate distance estimates among observers.  

Woodpecker surveys 

We conducted woodpecker playback surveys from mid-May until mid-June at plots a 

minimum of 300 m apart (usually every other plot), 3 times per year. We began surveys no 

earlier than 30 min before sunrise and ended no later than 1100 h, in appropriate weather 

conditions as for point counts. A pre-recorded cassette tape of the calls and drumming of the 

7 species expected to occur in the study area was broadcasted starting from the smallest 
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species and ending with the largest species (Downy Woodpecker, Picoides pubescens; Red-

naped Sapsucker, Sphyrapicus nuchalis; Hairy Woodpecker, Picoides villosus; Three-toed 

Woodpecker, Picoides tridactylus; Black-backed Woodpecker, Picoides arcticus; Northern 

Flicker, Colaptes auratus; Pileated Woodpecker, Dryocopus pileatus) in an attempt to invoke 

woodpecker responses (Johnson et al., 1981). Passive sampling was also conducted at each 

plot in conjunction with point-count surveys. When point counts were conducted in 

conjunction with playbacks, playbacks were always conducted after the passive listening 

period of the point count was finished.  

Encounter transects and time-constrained searches 

We conducted encounter-transect surveys with unlimited width along transects 

between plots throughout each field season and in 2 winters (see below). If a species was 

detected along the transect, a GPS waypoint was recorded with species ID, distance and 

bearing from waypoint, as well as a sign code (singing, call, visual, den/nest, track, remains, 

browse, or feces).  

In 2001, we conducted time-constrained searches for amphibians and reptiles at both 

plots and along transects. These searches involved lifting cover and replacing cover objects 

with a restriction on the amount of time spent searching (Scott, 1994). We also searched 

ponds and riparian areas for presence of amphibians (all life stages). These searches 

produced relatively few detections for the effort spent; therefore, in 2002 - 2004 we 

incorporated search methods (e.g., lifting cover objects) into encounter-transect surveys. 

Auditory detections for vocal amphibian species were also recorded opportunistically during 

owl playback and surveys near marshes at dusk. 
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Owl surveys 

We established several roadside-calling stations for owl-playback surveys at locations 

that maximised the coverage of stands where we had established our plots. Calls for each owl 

species expected to occur in the study area were broadcasted 3 times, progressing from 

smallest species to the largest species (Northern Pygmy Owl, Glaucidium gnoma; Northern 

Saw-whet Owl,  Aegolius acadicus; Boreal Owl, Aegolius funereus; Short-eared Owl, Asio 

flammeus; Long-eared Owl, Asio otus ; Barred Owl, Strix varia; Great-horned Owl, Bubo 

virginianus; and Great Grey Owl, Strix nebulosa), using a prerecorded CD and megaphone.  

As with woodpecker playbacks, the broadcasted call is intended to invoke a vocal response 

or attract an individual (Fuller and Mosher, 1981). Surveys were conducted from late April 

until late May, as well as on visits during winter-tracking surveys (see below). Passive owl 

detections were recorded throughout the season. These data were entered into the species 

database as were coordinates obtained during encounter-transect surveys.  

Remote cameras 

We used 7 TrailMaster TM1000 (Goodson & Associates, Inc. Lenexa, KS) active-

infrared monitoring systems and 3 TrailMaster TM550 passive-infrared systems to record the 

presence of medium and large vertebrates in our plots. The 2-piece active-infrared trail 

monitor used an infrared beam across the trail between the transmitter and receiver (30-m 

range). When the beam was broken for the specified length of time (0.25 s), a camera was 

triggered to photograph the area. All events were logged on the receiver and photographs 

were indexed to specific times. The passive-infrared trail monitor was a single unit that 

detected the combination of heat-and-motion in the area it was monitoring. The area of 

sensitivity formed a wedge radiating outward in front of the monitor. We constrained the 
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wedge, which was 20-m deep and spread 150° wide, with electrical tape so that it was 

restricted to the field of view of the camera. Endotherms, generally squirrel-sized or larger, 

that moved within this wedge registered as an event and a photograph was triggered.  

Cameras were placed along game trails and at game-trail intersections, latrine sites, 

across logs, and other positions where evidence of species presence existed, but specific 

species was not determined (e.g., mustelid or canid scat). At or near previously documented 

scat of these types, cameras were placed in locations for a minimum of 12 days, which is the 

recommended minimum based on the travel behaviour of weasels through their home ranges 

(Zielinski and Kucera, 1995). 

Small-mammal trapping 

We conducted live trapping for small terrestrial mammals in all years. Collapsible-

live traps (H. B. Sherman Traps, Inc. Tallahassee, FL) were placed at 25-m intervals along 

the primary and secondary axes of all plots (4 traps; Figure 3.3) in each year. In 2002, an 

additional 4 traps were placed 25 m from the plot centre in 45o increments between axes. 

Each trap location was pre-baited for a minimum of 24 h prior to deploying live traps. Traps 

contained a small piece of carrot to provide moisture, oats and sunflower seed for energy, 

and a small wad of cotton bedding for warmth (Jones et al., 1996; Province of British 

Columbia, 1998). 

We trapped over 3 nights, opening the traps at dusk and checking them beginning at 

dawn. In 2002, we marked all animals captured with ear tags; in other years we clipped hair 

on individuals to identify recaptures. In 2002, we also conducted day trapping at 

approximately 50% of the plots following the same routine, but traps were checked between 

4 and 7.5 h after opening. Traps were not opened in unseasonable cool overnight weather. 
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Bat detections 

In 2002-2004, we surveyed for bats at plot centres using Anabat™ broadband bat 

detectors coupled with Zcaim recording units (Titley Electronics, Ballina NSW, Australia), 

which record echolocation calls directly to a flash disk. We placed Anabat™ detectors 1.3 m 

off the ground, at an angle of 45o and directed north. At sites where transects between plots 

could be safely navigated at night, plots were surveyed for bat activity in a transect method. 

Bat activity was recorded for a minimum of 30 min at each plot before moving the detector 

to a new plot along the transect. Sampling was conducted between 2000 and 0200 h on 3 

consecutive nights, unless weather conditions precluded sampling (rain or strong wind). On 

each successive night we switched the direction traveled along the transect so that plots were 

visited at different times. During the 3-night period, 1 plot was sampled throughout the night 

for the entire survey period to obtain a reference of overall nightly bat activity and variation 

among nights (Hayes, 1997). Where terrain or vegetation made it difficult and dangerous to 

travel at night, detectors were placed at plot centres and programmed to record data from 

2000 to 0600 h for 4 consecutive nights. 

We mist-netted bats to obtain reference calls for the identification of echolocation 

calls recorded using discriminant function analyses (DFA; Statistica 6.0, StatSoft, Inc. 2003; 

O’Farrell and Gannon, 1999).  Because of similarity in echolocation calls for species 

belonging to the genus Myotis (Thomas et al., 1987; Corben and O'Farrell, 1999) and the 

variability by calls of big brown (Eptesicus fuscus) and silver-haired bats (Lasionycteris 

noctivigans; Fenton and Bell, 1981; Thomas et al., 1987), we grouped detections into 1 of 3 

groups (long-eared myotis, little brown or long-legged myotis, or big brown/silver-haired; 

Table 3.1).  
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Winter tracking 

We conducted snow-tracking surveys along all transect routes connecting plot centres 

twice in January and March of 2002 and once through January and February 2004 at 4 areas 

accessible by vehicle (plot n = 93). We considered conditions suitable for tracking after a 

significant snowfall (accumulation of >5 cm), with stable temperatures, and low winds 

(Beauvais and Buskirk, 1999). Poor snow conditions in 2002-2003 and 2003-2004 winters 

precluded additional surveys. We began our surveys no earlier than 24 h after snowfall and 

made our best attempts to cover as much of the transects in as short a time as possible. Each 

track observed was identified to species and its location on the transect was recorded and 

georeferenced as for detections from encounter-transects surveys. We also recorded all 

species detected visually or vocally.  

Intensive plot surveys and miscellaneous detections 

Each plot was intensively searched to a radius of 50 m for all animal sign (visuals, 

calls/songs, nests, denning, feeding, feces, prey remains); cover objects were lifted and 

replaced where appropriate (Crump and Scott, 1994). We searched plots once each year 

during the collection of vegetation data, which occurred primarily in the month August. As 

part of a concurrent study, we conducted encounter-transect surveys and intensive-searches 

around marshes and were provided with a number of detections from helicopter surveys 

conducted by Ducks Unlimited Ltd.  

Analysis 

We converted our data detections to presence and absence, given the use of several 

different methods to detect species presence (Magurran, 2003). We then used logistic 
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regression (Hosmer and Lemshow, 2000) to examine the relationship of species occurrence 

to vegetation structure and composition. We only considered species that were detected at a 

minimum of 10% of the plots or stands surveyed, but not more than 90% because of the 

effect sample prevalence can have on model assessment and prediction accuracy (Manel et 

al., 2001; Liu et al., 2005; Seoane et al., 2005). For each species, we selected a subset of 

structural variables based on habitat associations as determined by a review of the literature 

(Gillingham, 2003) and examined correlations among the variable subset and species 

occurrence. If variables existed that were measures of the same characteristic (e.g., percent 

Aspen cover and deciduous stems ha-1), the variable with the highest correlation coefficient 

with species presence was included in the candidate model. We constructed a set of candidate 

models using the final subset of structural variables for both plot presence and stand presence. 

We carefully considered variable combinations to minimize data mining (Guthery et al., 

2005); one model included all the uncorrelated candidate variables (i.e., global model). 

We tested a priori candidate models for multicollinearity among independent 

variables by calculated variance inflation factor scores after linear regression (Neter et al., 

1985; StataCorp, 2003). We adopted a variance inflation factor of 5 or above, which 

corresponds with a tolerance score of 0.2 as a cut-off for variable inclusion (Menard, 2002). 

If multicollinearity was indicated, we reran our model using only one of the indicated 

problem variables and compared outcomes using a log-ratio test (Menard, 2002; StataCorp, 

2003). We performed Box-Tidwell transformation of the variables to determine the 

relationship between the logit of predictor and response variables (Box and Tidwell, 1962; 

Menard, 2002). If a non-linear relationship was identified, we considered transforming the 

variable (arcsine or natural log) or removing the variable(s) from the candidate list. Variables 
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were removed if there was little contribution to the model or if no interpretable 

transformation rectified the problem. Therefore, for each of the 55 species for which we had 

sufficient data, we had a set of several candidate models including different combinations of 

relevant structural variables that were not correlated at both stand and plot scales (Table 3.2)1. 

We ranked competing a priori models using Akaike’s Information Criteria (AIC) 

with a correction to account for small sample sizes (AICc; Akaike, 1973; Burnham and 

Anderson, 2002). AIC-model selection estimates the information loss when the probability 

distribution with the true model is approximated by the probability distribution associated 

with the model that is to be evaluated. Choosing the model with the lowest expected 

information loss between the true model and the approximating model is asymptotically 

equivalent to choosing a model that has the lowest AIC value (Burnham and Anderson, 

2002). We determined the Akaike weight (wi), the likelihood of the model given the data 

(Burnham and Anderson, 2002), for all models within a competing set. Models were 

eliminated if the variables were complete subsets of the highest ranked model and there was 

little change in the maximized log-likelihood (Burnham and Anderson, 2002) or the area 

under the receiver-operating characteristic curve (ROC) value was <0.70 (i.e., poor; Manel et 

al., 2001; see below). We examined the model set with ∆AIC <2.0, as models within this 

range are considered to be equally plausible (Burnham and Anderson, 2002), to determine 

the best model for validation. Given our restricted criteria for use of variables in model 

development, we used this cut-off as a minimum limit because the AIC method ranks all 

models in the candidate list and will identify a “best model” even if all proposed models are 

                                                 
1 The literature review used to derive candidate models, variable lists, and full model results can be found in 
Appendix I (electronic).  
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Table 3.2. Example of the candidate model set to describe the occurrence of Red-naped 
Sapsucker (Sphyrapicus nuchali) within the Williams Lake Study Area at the plot level. Full 
lists of the candidate variables used for 55 vertebrate species are included in Appendix I 
(electronic). 
 

Model ID  Model 

 

1 Percent Gap, Distance to edge, Proportion shrub and Aspen (50 ha), 
Stumps ha-1 

 
2 Percent Gap, Distance to edge, Percent Aspen, Stumps ha-1 

3 Percent Gap, Distance to edge, Proportion shrub and Aspen (50 ha) 

4 Distance to edge, Proportion shrub and Aspen (50 ha) 

5 Distance to edge, Proportion shrub and Aspen (50 ha), Stumps ha-1 

6 Percent Gap, Percent Aspen, Distance to edge 

7 Percent Gap, Percent Aspen, Distance to edge, Stumps ha-1 

8 Percent Aspen, Distance to edge, Stumps ha-1 

9 Distance to edge, Stumps ha-1 

10 Percent Gap, Distance to edge 

11 Percent Gap, Distance to edge, Stumps ha-1 

12 Percent Aspen, Distance to edge 

13 Percent Gap, Proportion shrub and Aspen (50 ha) 

14 Percent Gap, Proportion shrub and Aspen (50 ha), Stumps ha-1 

15 Proportion shrub and Aspen (50 ha), Stumps ha-1 

16 Proportion shrub and Aspen (50 ha) 

17 Percent Gap, Percent Aspen, Stumps ha-1 

18 Percent Gap, Percent Aspen 

19 Percent Aspen, Stumps ha-1 

20 Percent Gap, Stumps ha-1 

21 Percent Aspen 
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“bad” (Guthery et al., 2005). If multiple models remained in the final model set, we 

considered them to be competing best models and validated each model. After the final 

model(s) were selected, we reviewed cases for high leverage and studentised residual values 

to determine if any cases were disproportionately driving the model relationship (Menard, 

2002).   

Model assessment  

We examined two aspects of prediction accuracy, discrimination and reliability, for 

spatial and temporal validation. Discrimination refers to a model’s capacity to correctly 

classify occupied and unoccupied sites, whereas reliability measures the agreement between 

predicted probabilities of occurrence and observed sites occupied (Pearce and Ferrier, 2000). 

When presence and absence data are available, calculating the area under the receiver-

operating characteristic curve (ROC) is a favoured measure used to assess the discrimination 

ability of a logistic model (Fielding and Bell, 1997; Pearce and Ferrier, 2000). The ROC 

value is calculated by plotting the number of sites where presence is correctly predicted 

divided by the total number of positive sites (sensitivity), against the fraction of incorrect 

cases where presence is predicted (1 – specificity) across available thresholds (Deleo, 1993). 

The area under the resulting curve is an estimate of predictive accuracy not based on 

threshold probabilities (i.e., p > 0.5 designated as presence; Deleo, 1993; Fielding and Bell, 

1997) or species prevalence (i.e., one outcome greatly outnumbers the other; Manel et al., 

2001). A ROC value is interpreted as the percentage of time that a random selection from the 

positive class will have a higher predictive score than a randomly drawn case from the 

negative class (Deleo, 1993). ROC values of 0.5 indicate the explanatory variables do not 

improve discrimination beyond random assignment and 1.0 indicates perfect discrimination. 
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A value below 0.5 indicates the model performs more poorly with the explanatory variables 

than without them. We classified ROC values between 0.5 – 0.7 as low, 0.7 – 0.9 as good and 

>0.9 as high model prediction accuracy (Manel et al., 2001).  

To determine model reliability (i.e., the agreement between predicted probabilities of 

occurrence and observed occurrence), we examined calibration plots (Cox, 1958; Miller et 

al., 1991; Pearce and Ferrier, 2000). Calibration plots are calculated by plotting the median 

probability for predictions, divided into 10 equal classes (x-axis), against the proportion of 

occupied sites within each class (y-axis; Pearce and Ferrier, 2000). The expected distribution 

is equivalent to a slope of 1 through the origin, where the proportion of occurrences equals 

the median for each class. In a reliable model, observed proportion of occupied sites equals 

the median predicted value and thus regression of the points results in a slope of 1 (Pearce 

and Ferrier, 2000) in the calibration plot. We considered models reliable, therefore, if 

regression slopes were not significantly different from 1.  

Prediction accuracy bias 

To determine whether sample prevalence, species traits, or detection uncertainty 

systematically affected prediction accuracy, we examined correlations between sample 

prevalence (%) and ROC values for all models and used ANOVA and t-tests to test for 

differences in ROC values among groups. We tested ROC values within groups for 

normality, as well as for homogeneity of variance. If a significant difference was indicated by 

ANOVA, we conducted post-hoc analysis using Tukey’s HSD test (Zar, 1999).  

We classified migration strategies as resident, short-distance migrants, and 

neotropical migrants; territory size as small (<10 ha), medium (10 – 50 ha), and large (>50 

ha); and mobility as limited (terrestrial, small-bodied), moderate (terrestrial, medium- or 
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large-bodied), and high (volant). Spatial uncertainty was classed as either <10 m from plot 

centre, between 10 m and 75 m, or >75 m from plot centre. This coincides with error 

associated with obtaining a GPS waypoint (approximately 10 m), our general vegetation 

measures at the plot level and stand level, as well as the largest distance category for point 

counts (>75 m). Species that typically call while in flight or have calls that travel long 

distances (e.g., Sandhill Crane, Grus canadensis) were given a rank of 3 (i.e.,  >75 m) and 

species primarily detected by visual detections or sign were assigned 1 (<10 m; e.g., southern 

Red-backed Vole, Clethrionomys gapperi). We classified most songbirds as a 2 because 

these species are primarily detected by song or calls, but do not have great audio range. 

Temporal uncertainty was classified as none (i.e., visual or vocal detections that are in real 

time) or possible (e.g., tracks or scat that can persist for extended periods). Likewise, 

identification uncertainty was classified as low, for species very unlikely to be misidentified, 

or possible, for species with tracks, calls, or appearances close to that of other species. We 

did not include detections of species where observers noted unconfirmed identification; 

therefore, identification uncertainty is a substitute for potential observer error. We used the 

program STATA (version 8.2; StataCorp, 2003) for all statistical analyses. 

Results 

Species detection 

 We recorded 38,389 observations for 191 species (Table 3.3) from May 2001 to the 

beginning of January 2004. During the summer of 2004, we recorded 9,419 observations for 

148 species at temporal and spatial validation plots. Two-hundred species were observed in 

all years (Appendix II; annual detections by species are located in the electronic Appendix I).  



 

60

 T
a
b

le
 3

.3
. 

N
um

be
r 

of
 v

er
te

br
at

e 
sp

ec
ie

s,
 s

um
m

ar
iz

ed
 b

y 
or

de
r,

 d
et

ec
te

d 
by

 d
if

fe
re

nt
 m

on
ito

ri
ng

 m
et

ho
ds

 d
ur

in
g 

m
od

el
 d

ev
el

op
m

en
t 

ph
as

e 
(2

00
1-

20
04

) 
in

 th
e 

W
ill

ia
m

s 
L

ak
e 

St
ud

y 
A

re
a.

 T
he

 to
ta

l n
um

be
r 

of
 d

et
ec

tio
ns

 a
re

 p
re

se
nt

ed
 in

 b
ra

ck
et

s 
be

lo
w

 th
e 

nu
m

be
r 

of
 

sp
ec

ie
s.

 D
et

ec
tio

ns
 b

y 
sp

ec
ie

s 
an

d 
by

 y
ea

r 
ar

e 
in

cl
ud

ed
 in

 A
pp

en
di

x 
I (

el
ec

tr
on

ic
).

 
 

 
R

ep
ti

li
a

 
A

m
p

h
ib

ia
 

A
v

es
 

M
a

m
m

a
li

a
 

T
o

ta
l 

S
p

ec
ie

s 

Sp
ec

ie
s 

In
cl

ud
ed

 in
 

L
ite

ra
tu

re
 R

ev
ie

w
 

 

6 
6 

20
4 

64
 

28
0 

T
ot

al
 S

pe
ci

es
 

D
et

ec
te

d 
 

2 
3 

15
5 

39
 

20
0 

Po
in

t C
ou

nt
 

  

0 
0 

11
2 

 
(2

1,
42

4)
 

7 
 

(4
92

) 
11

9 

R
em

ot
e 

C
am

er
a 

  

0 
0 

3 
 

(5
) 

10
  

(1
71

) 
13

 

H
el

ic
op

te
r 

  

0 
0 

21
  

(2
68

) 
2 

 
(3

) 
23

 

M
ar

sh
 S

ur
ve

y 
  

1 
 

(1
) 

3 
 

(6
6)

 
89

  
(1

,2
31

) 
13

  
(9

5)
 

10
6 

Pl
ot

 S
ur

ve
y 

  

0 
2 

 
(2

7)
 

87
  

(1
,9

74
) 

17
  

(8
28

) 
10

6 

M
is

t-
ne

tti
ng

 
  

0 
0 

0 
5 

 
(3

7)
 

5 

O
w

l P
la

yb
ac

k 
  

0 
0 

4 
 

(2
9)

 
0 

4 

 



 

61

 T
a
b

le
 3

.3
. D

et
ec

tio
ns

 b
y 

ta
xa

 a
nd

 m
et

ho
d 

(c
on

tin
ue

d)
. 

     
 

R
ep

ti
li

a
 

A
m

p
h

ib
ia

 
A

v
es

 
M

a
m

m
a
li

a
 

T
o

ta
l 

S
p

ec
ie

s 

W
oo

dp
ec

ke
r 

Pl
ay

ba
ck

 
  

0 
0 

31
  

(5
16

) 
1 

 
(5

) 
32

 

A
na

ba
t 

  

0 
0 

0 
31   

(5
63

) 
3 

T
ra

ck
 P

la
te

 
  

0 
1 

 
(4

) 
0 

32   
(3

24
) 

3 

E
nc

ou
nt

er
 T

ra
ns

ec
t 

  

2 
 

(4
) 

4 
 

(1
03

) 
91

  
(1

,1
34

) 
24

  
(5

,8
24

) 
12

1 

Sm
al

l-
m

am
m

al
 T

ra
p 

  

0 
1 

 
(1

) 
0 

12
  

(2
,6

68
) 

13
 

      
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

 
1  C

on
fi

rm
ed

 s
pe

ci
es

 id
en

tif
ic

at
io

n;
 o

th
er

 d
et

ec
tio

ns
 p

la
ce

d 
in

to
 e

ch
ol

oc
at

io
n 

fr
eq

ue
nc

y 
gr

ou
ps

. 
2  C

on
fi

rm
ed

 s
pe

ci
es

 id
en

tif
ic

at
io

n;
 o

th
er

s 
gr

ou
pe

d 
in

to
 S

o
re

x 
sp

p.
 o

r 
M

ic
ro

tu
s 

sp
p.

 



 62 

Point counts yielded the highest number of individual detections and encounter transects 

resulted in the highest number of species detected from a variety of taxa (Table 3.3). 

Intensive-plot surveys and marsh surveys also resulted in detections for a large number of 

species from a variety of taxa. In 2002, the capture rate at each trap for Southern Red-backed 

Vole was much greater than any other year (2001 = 53.4%, 2002 = 87.2%, 2003 = 44.7%), 

possibly indicating a population high (Cheveau et al., 2004). Further, this was the only year 

that we trapped in plots using 8 traps per plot and conducted a second round of day-time 

trapping. During population peaks, dispersal to lower quality habitats is more likely because 

of density-dependent processes such as competition (Holt, 1987). Because our use of 

presence and absence data could obscure relationships with preferred structures, we did not 

include capture data from 2002 to model the probability of Southern Red-back Vole 

occurrence. 

We had sufficient data to construct species-habitat models for 55 species at the plot 

and/or stand level, 27.5% of the species detected (Table 3.4). Ten species were not modelled 

because of high abundance (i.e., detected at greater than 90% of the plots; Table 3.5). 

Because some species could not be modelled at both the plot and stand level because of low 

(<10%) or high (>90%) prevalence (Liu et al., 2005; Vaughan and Ormerod, 2005), we 

examined 101 model sets in total. We detected 7 of 32 (21.9%) species listed as management 

concern (e.g., threatened status); only the Sandhill Crane was detected often enough to model. 

We present an example of how we interpreted model results and then provide a 

summary of all models. The Red-naped Sapsucker (Sphyrapicus nuchalis) is associated with 

deciduous forests, frequently adjacent to water and other edges. We were able to validate  
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Table 3.4. The 55 species detected in the Williams Lake Study Area that met sample 
prevalence criteria (>10% and <90%) from 2001-2004, with the exception of Southern Red-
backed Vole (see text for details, page 62).  Prevalence is reported as a percentage of all plots 
(n = 228) and stands (n = 97), which were not altered by harvesting through the course of 
data collection, where presence was detected. Latin names are available in Appendix II.  
 

  Plot  Stand 
Class Species Prevalence 

% 

 Prevalence 

% 

Amphibia Western Toad 13.2  37.1 
     
Aves Alder Flycatcher 20.6  35.1 
 American Crow 9.7  24.7 
 American Redstart 12.7  17.5 
 American Robin 82.9  95.9 
 Barred Owl 3.1  18.6 
 Black-backed Woodpecker 8.8  21.7 
 Black-capped Chickadee 78.5  89.7 
 Brown Creeper 49.6  67.0 
 Brown-headed Cowbird 32.5  47.4 
 Cassin’s Vireo 84.2  85.1 
 Clay-colored Sparrow 7.9  17.5 
 Cedar Waxwing 5.3  11.3 
 Common Raven 28.1  75.3 
 Common Yellowthroat 15.8  29.9 
 Downy Woodpecker 10.1  26.8 
 Dusky Flycatcher 27.6  51.6 
 Golden-crowned Kinglet 77.6  89.7 
 Gray Jay 48.3  75.3 
 Hammond’s Flycatcher 34.2  53.6 
 Hairy Woodpecker 34.2  58.8 
 Hermit Thrush 63.2  77.3 
 Least Flycatcher 21.9  36.1 
 Mountain Chickadee 88.6  93.4 
 Northern Flicker 50.9  81.4 
 Northern Waterthrush 16.7  24.7 
 Northern Saw-whet Owl 0.9  13.4 
 Olive-sided Flycatcher 42.5  69.1 
 Orange-crowned Warbler 63.2  79.3 
 Pileated Woodpecker 43.4  79.4 
 Red Crossbill 33.8  57.7 
 Red-naped Sapsucker 39.5  62.9 
 Ruffed Grouse 32.9  66.0 
 Sandhill Crane 16.2  57.7 
 Song Sparrow 12.7  25.8 
 Spruce Grouse 7.5  17.5 
 Townsend’s Solitaire 40.8  56.7 
 Townsend’s Warbler 18.9  29.9 
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Table 3.4. Species modelled and sample prevalence (continued). 

 

  Plot  Stand 
Class Species Prevalence 

% 

 Prevalence 

% 

 Tree Swallow 14.0  29.9 
 Three-toed Woodpecker 9.7  22.7 
 Warbling Vireo 52.6  70.1 
 Wilson’s Warbler 31.1  57.7 
 Winter Wren 14.5  26.8 
 Western Wood-Pewee 35.1  53.6 
 Yellow Warbler 26.3  48.5 
     
Mammalia Deer Mouse 50.9  70.1 
 Southern Red-backed Vole 70.2  83.3 
 Yellow-pine Chipmunk 32.0  43.3 
 Snowshoe Hare 68.0  77.3 
 Ermine 9.7  19.6 
 Long-tailed Weasel 13.6  23.7 
 Moose 76.8  85.6 
 Black Bear 55.3  78.3 
 Coyote 22.4  49.5 
 Lynx 10.1  20.6 
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Table 3.5. Ten species detected in the Williams Lake Study Area, from 2001-2004, that were 
not modelled to predict occurrence because of high prevalence at the plot and stand scale (i.e., 
presence was detected at >90% of plots). Latin names can be found in Appendix II.  
 

 

Taxa Species Total 

detections 

all years 

Aves Chipping Sparrow 1650 
 Dark-eyed Junco 2403 
 Evening Grosbeak 1209 
 Pine Siskin 863 
 Red-breasted Nuthatch 1868 
 Ruby-crowned Kinglet 2021 
 Swainson's Thrush 1959 
 Yellow-rumped Warbler 1863 
   

Mammalia Mule Deer 2255 
 Red Squirrel 2449 
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models to predict presence and absence of Red-naped Sapsucker for both plot and stand data. 

At the plot level, percent canopy gap (β = 1.251; Table 3.6), distance to forest edge (β = 

-0.007; Table 3.6), and proportion shrub and Aspen landscape class in the surrounding 50 ha 

(β = 3.413; Table 3.6) were included in the best model. The relationship of all variables was 

consistent across years with the exception of percent canopy gap in 2004 (β = -1.236; Table 

3.6). Predictive accuracy varied, but was good in 2002 and 2004 (ROC = 0.692 - 0.773; 

Table 3.6). Likewise, the predictive accuracy of this model with spatially independent data 

was good (ROC = 0.737; Table 3.6). The stand model for Red-naped Sapsuckers included 

percent Aspen (β = 0.041; Table 3.6) and edge density in the surrounding 50-ha area (β = 

0.012; Table 3.6). The relationship with edge density was consistently positive, but 

relationship with percent Aspen varied among years. Predictive accuracy was good for the 

spatial validation model (ROC = 0.752; Table 3.6) and in all years except 2001 (2001 ROC = 

0.659; Table 3.6). Calibration plots indicated 2001-2004 models were well calibrated, but the 

spatial validation models overestimated the predicted probability of occurrence (Figure 3.4).  

Fifty-seven of the 101 models (56.4%) had good or excellent predictive accuracy. 

Stand models performed best, with 60.4% having good or better predictive accuracy (i.e., 

ROC ≥ 0.70) compared to 52.1% of plot models (Table 3.7). Of the 38 variables used in all 

plot models, the most often included were: percent canopy gap (n = 19), distance to edge (n = 

19), distance to water (n = 14), edge density in the surrounding 50 ha (n = 10), deciduous 

stems ha-1 (n = 7), large tree basal area (n = 6), dead tree basal area (n = 5), and percent 

Douglas-fir (n = 5). Common variables within stand models included percent canopy gap (n 

= 25), distance to edge (n = 16), edge density in the surrounding 50 ha (n = 12), percent 

Aspen (n = 12), percent Douglas-fir (n = 11), and main canopy height (n = 10; Table 3.8).
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Table 3.6. Example of model results to predict the occurrence of Red-naped Sapsucker 
(Sphyrapicus nuchalis) in the Williams Lake Study Area. Variables, coefficients, and 
receiver-operating characteristic curve (ROC) values are presented for the best plot and stand 
models and their temporal and spatial validation counterparts. All model results for 55 
vertebrate species can be found in the electronic Appendix I.  
 
 

  β-coefficient Spatial ROC 
         

Model Variable 
2001-
2004 

2001 2002 2003 2004 
2001- 
2004 

2004 

Plot Percent canopy  
  gap 

1.251 2.096 0.456 0.558 -1.236 0.753 0.737 

 Distance to forest  
  edge 

-0.007 -0.005 -0.013 -0.007 -0.011   

 Proportion Aspen  
  and shrub (50 
ha) 

3.413 1.195 2.995 2.058 5.501   

 Constant -1.398 -3.441 -1.713 -1.325 -1.232 
 

  

 ROC 0.753 0.692 0.748 0.692 0.773   

         

Stand Percent Aspen 
 

0.041 -0.037 0.080 -0.006 -0.072 0.716 0.752 

 Edge density  
  (50 ha) 

0.012 0.007 0.014 0.014 0.006   

 Constant 
 

-2.371 -2.731 -4.421 -3.188 -1.574   

 ROC 
 

0.716 0.659 0.761 0.726 0.702   
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Figure 3.4. Example of a calibration plot for the Red-naped Sapsucker (Sphyrapicus nuchalis) 
plot-level model. The expected distribution of a well-calibrated model has a slope (β) of 1(---) 
to describe the relationship between observed proportion of occurrence and predicted 
probability of occurrence. The slope of the 2001-04 model was close to 1 (closed circles, ____, 
β = 0.915, p = 0.004). The 2004 spatial validation data had a slope of less than 1 (open 
circles, ……, β = 0.889, p = 0.146) indicating that the model is misspecified for the spatially 
independent data.  
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Table 3.7. Summary of area under the receiver-operating characteristic curve (ROC) values 
for each of the 55 species detected in the Williams Lake Study Area. Each species modelled 
met our detection prevalence criteria from 2001-2004 at the plot and / or stand scale. ROCs 
are only reported for the top model with the lowest AICc.Not all species could be modelled at 
both the plot and stand scale (-). 
 

  Plot  Stand 
Class Species ROC  ROC 

Amphibia Western Toad 0.749  0.733 
     
Aves Alder Flycatcher 0.629  0.683 
 American Crow 0.589  0.611 
 American Redstart 0.629  0.680 
 American Robin 0.710  - 
 Barred Owl -  0.780 
 Black-backed Woodpecker -  0.542 
 Black-capped Chickadee 0.850  0.681 
 Brown Creeper 0.752  0.757 
 Brown-headed Cowbird 0.749  0.704 
 Cassin’s Vireo 0.681  0.867 
 Clay-colored Sparrow -  0.637 
 Cedar Waxwing -  0.589 
 Common Raven 0.617  0.550 
 Common Yellowthroat 0.769  0.721 
 Downy Woodpecker 0.706  0.723 
 Dusky Flycatcher 0.637  0.574 
 Golden-crowned Kinglet 0.776  0.792 
 Gray Jay 0.674  0.804 
 Hammond’s Flycatcher 0.597  0.671 
 Hairy Woodpecker 0.671  0.703 
 Hermit Thrush 0.712  0.758 
 Least Flycatcher 0.782  0.719 
 Mountain Chickadee 0.712  - 
 Northern Flicker 0.660  0.755 
 Northern Waterthrush 0.797  0.803 
 Northern Saw-whet Owl -  0.629 
 Olive-sided Flycatcher 0.734  0.863 
 Orange-crowned Warbler 0.697  0.796 
 Pileated Woodpecker 0.624  0.707 
 Red Crossbill 0.573  0.633 
 Red-naped Sapsucker 0.753  0.716 
 Ruffed Grouse 0.619  0.627 
 Sandhill Crane 0.673  0.714 
 Song Sparrow 0.848  0.851 
 Spruce Grouse -  0.810 
 Townsend’s Solitaire 0.595  0.718 
 Townsend’s Warbler 0.786  0.759 
 Tree Swallow 0.619  0.682 
 Three-toed Woodpecker -  0.733 
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Table 3.7. Area under the receiver-operating characteristic curve (ROC) values for species 
modelled (continued). 
 

 

  Plot  Stand 
Class Species ROC  ROC 

 Warbling Vireo 0.753  0.698 
 Wilson’s Warbler 0.648  0.610 
 Winter Wren 0.714  0.787 
 Western Wood-Pewee 0.791  0.683 
 Yellow Warbler 0.587  0.656 
     
Mammalia Deer Mouse 0.660  0.686 
 Southern Red-backed Vole 0.635  0.789 
 Yellow-pine Chipmunk 0.733  0.701 
 Snowshoe Hare 0.884  0.839 
 Ermine -  0.780 
 Long-tailed Weasel 0.689  0.629 
 Moose 0.675  0.738 
 Black Bear 0.709  0.719 
 Coyote 0.769  0.668 
 Lynx 0.821  0.743 
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Table 3.8. Most common variables found in the top models used to predict occurrence of 
vertebrate species in the Williams Lake Study Area. The direction of the species’ association 
with the variable (selection with positive coefficient or avoidance with negative coefficient) 
is also reported. Structure data were derived from measures taken at each plot, as determined 
from a GIS, or as calculated using a classified landscape image and FRAGSTATS 
(McGarigal and Marks, 1995).  
 

 
Model 
level 

Variable 
Data Source # Selection 

associations 
# Avoidance 
associations 

Plot Percent canopy gap Plot measures 10 9 
 Distance to edge GIS 4 15 
 Distance to water GIS 2 12 
 Edge density 50 ha Landscape 5 5 
 Deciduous stems ha-1 Plot measures 6 1 
 Large tree basal area Plot measures 5 1 
 Dead tree basal area Plot measures 3 2 
 Percent Douglas-fir Plot measures 5 0 
     

Stand Percent canopy gap Plot measures 14 11 
 Distance to edge GIS 5 11 
 Edge density 50 ha Landscape 10 2 
 Percent Aspen Plot measures 10 2 
 Percent Douglas-fir Plot measures 11 0 
 Main canopy height Plot measures 7 3 

 



 72 

Model validation and accuracy  

We collected sufficient independent-presence data from spatial validation plots to 

validate 43 of the 101 models. Of these spatially validated models, predictive accuracy was 

good or excellent for 12 plot and 12 stand models (55.8% in total). We temporally validated 

44 models with independent data; predictive accuracy was good or excellent for 12 plot and 

13 stand models (56.8%). On average, predictive accuracy declined in temporally and 

spatially validated models compared to the accuracy of predictions for the years from which 

data were collected (Table 3.9). Generally, predictive accuracy was slightly better for 

temporal data. 

Our assessment of model reliability with data used to construct the model, indicated 

that 60% of plot and 84.6% of stand models were well calibrated (i.e., plotting the predicted 

probabilities and proportion of occurrence resulted in a slope close to 1). Model reliability 

was poor, however, when assessed with spatially and temporally independent data. Only 

21.1% of plot level and 3.4% of stand level models had slopes of 1 with spatial  

validation data (Table 3.10; e.g., Figure 3.4). Results were slightly better for temporal 

validation models where 21.1% of plot and 32.1% of stand models had slopes of 1 (Table 

3.10).  

Detection uncertainty and species traits 

Prevalence in 2001-2004 was not related to ROC values at the plot (n = 48, r = 0.088, 

p = 0.553) or stand (n = 53, r = 0.131, p = 0.117) level; however, there was a weak negative 

correlation between sample prevalence and spatial (n = 43, r = -0.319 p = 0.007) and 

temporal (n = 44, r = -0.385, p = 0.018) ROC values in 2004 models.  
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Prediction accuracy was not related to identification or temporal uncertainty for any 

model level; however, the spatial uncertainty of detections did significantly affect ROC 

values of plot models (F(2,45) = 3.75, p = 0.031), but not stand models (F(2,50) = 2.58, p = 

0.086). Post-hoc analysis using Tukey’s HSD test of significance indicated that the difference 

was between detections >75 m from plot centre ( x̄ = 0.655, SE = 0.017) and those between 

10 and <75 m (x̄  = 0.717, SE = 0.014, p = 0.043). There was no relationship between 

prediction accuracy of 2001-2004 models and migration strategy, territory size, or mobility 

(Table 3.11). 

Discussion 

Structure as a surrogate measure   

Use of habitat measures, such as forest structure, to model species occurrence, 

abundance, or population dynamics is a fundamental aspect of both theoretical and applied 

ecological science. It is well accepted that habitat heterogeneity (e.g., MacArthur and 

MacArthur, 1961) and certain forest elements (e.g., coarse-woody debris, snags, large trees) 

are associated with species diversity (Mazurek and Zielinski, 2004; Loehle et al., 2005). 

Measuring aspects of environmental diversity, such as structural complexity, has become 

preferred as a surrogate measure of diversity over species-based surrogates (Margules et al., 

2002; Faith et al., 2004), and is particularly appealing to forest-land managers because of the 

ease of incorporating measures into forest inventory databases (McElhinny et al., 2005) 

relative to separate monitoring programs for species. Structural diversity has been shown to 

correlate with diversity of several taxa (e.g., mammals, Mac Nally et al., 2001; amphibians 

and reptiles, Loehle et al., 2005; spiders, Oxbrough et al., 2005). To be effective as a  
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Table 3.11. Summary of ANOVA results to test if species’ traits affected the accuracy of 
predictions (ROC values) for the occurrence of vertebrate species. ROC values were used 
from models constructed with data collected in the Williams Lake Study Area from 2001-
2004.  

 
  Plot  Stand 

Grouping  n Mean 
(SE) 

F p  n Mean 
(SE) 

F p 

Migration Strategy           
    Resident  23 0.708 

(0.016) 
 

0.14 0.874  27 0.708 
(0.015) 

0.20  0.819 

    Short-distance  
    migrant 

 13 0.694 
(0.019) 

 

   13 0.724 
(0.020) 

  

    Neotropical  
    migrant 

 12 0.705 
(0.026) 

 

   13 0.711 
(0.019) 

  

           
Territory size           
    Small (<10 ha)  30 0.711 

(0.014) 
 

0.46     0.633  13 0.720   
(0.012) 

0.39 0.679 

    Medium (10 –  
   50 ha) 

 12 0.686 
(0.024) 

 

   16 0.703   
(0.021) 

  

    Large (>50 ha)  6 0.703 
(0.033) 

 

   7 0.701   
(0.028) 

  

           
Mobility           
    Limited  
    mobility 

 6 0.698    
(0.040) 

 

0.49 0.613  6 0.707   
(0.012) 

0.38 0.685 

    Moderately  
    mobile 

 5 0.733    
(0.027) 

 

   7 0.727   
(0.024) 

  

    Highly mobile  37 0.713    
(0.012) 

   40 0.729   
(0.031) 
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surrogate measure of species occurrence, however, models that use forest structural 

characteristics must have a strong relationship with the probability of species occurrence 

across the range of the model’s intended use (Rykiel, 1996; Lindenmayer, 1999). The 

discrimination accuracy and reliability of most of the models we developed were not 

satisfactory and, therefore, we conclude that forest structural characteristics, by themselves, 

are not effective as surrogate measures for predicting the occurrence of a broad range of 

vertebrate species or to guide management targets for structural retention or recruitment at 

the scales we tested.  

Of those species modelled (n = 55) only 52% of plot and 60% of stand models had 

acceptable prediction accuracy (i.e., ROC ≥0.70; Table 3.9). Because we were specifically 

looking for relationships with structural elements, misspecification of the models (Burnham 

and Anderson, 2002) may explain the overall poor performance. Because the goal of our 

study was to examine the possible use of structure as a surrogate measure, the selection of 

habitat variables was narrow by necessity. Most of the species we modelled, however, are 

found across broad ranges (e.g., continental) and thus likely have broad niche breadths 

indicating flexibility in habitat selection and less dependence on specific habitat elements.  

For several of the species that we modelled, however, discrimination (Table 3.4) and 

reliability were relatively high. For those species, structure may act as a useful surrogate, but 

as a part of a complementary program to ensure monitoring of a broad range of taxa 

(Lindenmayer and Franklin, 2002).  

Variables, scale and spatial context 

The complexity among species associations with structure, the scale and spatial 

relationship with structure, and the landscape context make generalisations of models and 
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structural variables difficult. The variables most often included in plot models (i.e., distance 

to water, large tree basal area, and dead tree basal area; Table 3.8) were included less often in 

stand models suggesting that the influence of these structures on species presence is localized. 

Forested areas near riparian zones offer a unique set of characteristics and these habitats are 

often diverse (Naiman and Décamps, 1997). Likewise, the influence of single large trees and 

dead trees can influence diversity at a relatively small scale (Mazurek and Zielinski, 2004). 

For example, nesting habitat for weak cavity excavators that require trees in specific stages 

of decay to excavate their nest site (e.g., Red-breasted Nuthatch, Sitta canadensis), or 

secondary cavity users that inhabit abandoned cavities may be quite flexible in the selection 

of foraging habitats. The availability of a single nest tree represents a requirement that is on a 

much smaller spatial scale than foraging; therefore, the availability of a single nest site may 

influence species presence at the plot level, but not the larger spatial scale of the stand where 

foraging may take place.  

As was the case in the example for the Red-naped Sapsucker, many of the plot and 

stand models included variables related to the spatial relationship of the plot or stand (e.g., 

distance to edge or water) or aspects of the surrounding landscape (e.g., edge density and 

percentage forest composition; Table 3.8) indicating that landscape structure and 

composition influenced species presence (e.g., Saab, 1999; Hagen and Meehan, 2002). 

Distance to edge and edge density, although related, are not exactly the same variable. 

Distance to edge was measured to the closest forest / non-forest boundary. Non-forest may 

have been a road, clearcut, meadow, or water body. Edge density was a measure of all 

contrasting landscape class boundaries within a defined area (usually 50 ha), and thus 

includes less distinct edges such as the contrast between unharvested-conifer forest and 
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partially-harvested forest. Because different species likely perceive edges and edge contrasts 

differently, it is difficult to make a generalized statement of how to treat these 2 variables; 

however, because harvesting practices contribute to fragmentation of habitats, species that 

avoid edges are most likely detected in areas with low edge density (i.e., continuous 

landscape classes). Therefore, species that are sensitive to (avoid) edge or edge density may 

require specific management planning to ensure continuous areas of forest. If structure is to 

be used as a surrogate, spatial context and scale should be included in forest-inventory 

databases, which is not typically done at present. 

We found that canopy closure and some measure of deciduous forest cover were 

commonly included in both plot and stand models (Table 3.8). There was a fairly even split 

among species associated with open-canopy forests and closed-canopy forests. Canopy 

closure is an easily obtained structural variable, from ground surveys and photo interpretation. 

Because harvesting activities consistently open canopies, identifying species with negative 

association with open canopies, and determining if there are thresholds to occupancy, could 

provide forest managers with a useful target for stands across the landscape. In landscapes 

dominated by coniferous-forest cover, deciduous stands and mixed-woods can be areas of 

high diversity (Stelfox, 1995). Other research has documented the importance of deciduous 

species to cavity nesting birds (Martin and Eadie, 1999) in the region and this research 

reinforces the importance of deciduous stands, specifically Aspen, to a host of species. 

Validation 

More problematic than the difficulty in drawing general recommendations linking 

specific structural characteristics to a broad array of species was that prediction accuracy 

remained good or better for only 58% of the models when temporally and spatially validated 
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(Table 3.9). If models that predicted species presence well (i.e., ROC ≥ 0.70) are used to 

meet diversity-monitoring objectives, the relationships to structure must be robust with good 

or better prediction accuracy across spatial and temporal scales (Rykiel, 1996). Stand-level 

models performed slightly better than plot models with the data used to develop models; 

however, for models that were externally validated, plot models were more likely to retain 

higher predictive accuracy. Overall, stand-level modelling is probably more appropriate for a 

broader range of species because of the confounding effects of small-scale variation in 

structure and spatial uncertainty for detections at the plot level.  

When model reliability was assessed with calibration plots, temporal validation 

models performed better than the spatial validation plots, emphasizing that caution is 

required if models are to be applied outside the geographic area in which they were 

developed. Declines in prediction accuracy for temporal validation may be a result of year-

to-year variance in prevalence and a higher probability of false negative detection during one 

year of data collection (Manel et al., 2001; Tyre et al., 2003; Gu and Swihart, 2004; 

McPherson et al., 2004). Further, a species’ relationship to habitat can fluctuate through time 

because of various aspects of population dynamics and density (Wiens, 1989; Haila et al., 

1996; Green and Stamps, 2001).  

Prediction errors may also arise from data collection error and other statistical 

artefacts, species interactions, regional variability in habitat, and intraspecific variability 

(Fielding and Haworth, 1995; Fielding and Bell, 1997; McPherson et al., 2004). Because we 

used the same sampling methodologies throughout the course of the study and assessed 

accuracy using area under the ROC curve, statistical artefacts were likely minimized 

(McPherson et al. 2004). Further, there was no correlation between ROC values and 
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prevalence within the set minimum (>10%) and maximum (<90%), with the exception of 

2004 ROC values, suggesting that this criteria was sufficient. The negative correlation 

between species prevalence and ROC values in 2004 was unexpected, because prevalence 

usually has a positive relationship with predictive accuracy (Manel et al., 2001; Seoane et al., 

2005). Species that were less common in the SBPS biogeoclimatic zone, however, may have 

been more selective for habitats similar to those sampled in the IDF (i.e., narrower habitat 

breadth) resulting in better ROC values. Conversely, species that were common in the SBPS 

may have broader niche breadths and thus did not respond to basic differences in structure 

between the 2 zones, reducing predictive accuracy. This result was also supported by the 

reduced reliability of spatially validated models (i.e., slope <1.0). Slope departed from the 

expected 45o pattern for most calibration plots when applied to independent data; therefore, it 

is likely that the species we modelled respond to different structural elements in the IDF and 

SBPS, or that structural characteristics of forests alone are not the best predictors of species 

presence across this range of conditions. Presence for some species may, therefore, be related 

more to other factors such as population legacies, stand history, or species interactions and 

not characteristics of the habitat structure (Fielding and Haworth, 1995; Tyre et al., 2001). 

Species traits, such as environmental specialization, regional distribution, 

detectability, and body size have been linked to prediction errors in other studies (Karl et al., 

2000; Scott et al., 2002; McPherson et al., 2004; Seoane et al., 2005); however, we did not 

find any differences among migratory strategy, territory size, or mobility and predictive 

accuracy. Our results may contradict other studies because of the spatial extent of our study 

area and the general characteristics of species modelled (Karl et al., 2000). Although we 

established our plots and sampled across a range of variation in structural features, on a 
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regional scale we sampled a narrow range of environmental conditions. The species that were 

modelled were those that met our prevalence criteria (>10% or <90%) and, therefore, 

inherently may not be representative of the full range of biological traits, especially those 

associated with rarity (Kunin and Gaston, 1993; Gaston and Blackburn, 1996; Davis et al., 

2000). Only spatial uncertainty at the plot level systematically affected ROC values, which 

likely reflects error associated with the measures of structural characteristics and the actual 

location of the individual.  

Van Horne (2002) argued against validation of species-habitat models because 

specific models can only make predictions for specific populations at specific times and, 

therefore, species presence cannot be tested with new data. Although results support Van 

Horne’s supposition, as most models had reduced discrimination and reliability when 

validated, this premise is also potentially dangerous. Non-validated species-structure models 

may be tenuously implemented at best, although structure performed poorly at predicting the 

occurrence of species, even with data used to develop models. Likewise, others have 

cautioned strongly against the dependence on species-habitat models in general because they 

can only be considered correlative and do not indicate causal mechanisms or processes 

(Morrison, 2001; Mitchell, 2005). Species-habitat models are implemented effectively as 

management tools, however, in a variety of ways including habitat suitability models and 

resource selection functions. The weakness of such approaches is that it is simply not 

possible to measure the life-history aspects or conduct intensive studies for all species. Forest 

structure may be a suitable surrogate if used only to make general guideline 

recommendations and not species-specific targets, more in line with a coarse-filter approach 
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(Simberloff, 1999; Lindenmayer and Franklin, 2002) and not as a monitoring tool of species 

occurrence.  

Multi-species inventory 

Conducting a multi-taxa inventory contributes to baseline occurrence data for future 

monitoring inventories, identifies species for which methodologies are not sufficient to detect 

presence, identifies species that may be of management concern and helps to form specific 

management goals as they relate to biodiversity objectives (Manley et al., 2004). By 

compiling detections for species from a variety of methods, species that may be under-

represented in samples of a single approach because of methodological biases may be 

reduced. Point counts, encounter transects, and intensive-plot searches all achieved high 

numbers of species detections. As expected, the greatest diversity of vertebrate species in our 

study area was represented by birds, and point counts resulted in a high proportion of species 

and observations. Encounter-transect surveys were effective in that we detected a breadth of 

species from a variety of taxa.  Overall, the multi-taxa inventory was successful in that we 

detected a high proportion of the species expected to occur (71.4%). 

Amphibians and reptiles had very low rates of detection (Table 3.3). We targeted 

amphibians and reptiles by lifting potential cover objects during time-constrained searches, 

encounter-transects surveys, and intensive-plot searches (Heyer et al., 1994). We opted not to 

place artificial cover boards or arrays of drift fences and pitfall traps because we did not want 

to alter the interpretation of structural aspects of stands artificially or potentially influence 

non-target species (e.g., attraction or avoidance). Given that our encounter rates were so low, 

however, we do not recommend our methods for successful monitoring of species from these 

taxa. Because most amphibians and reptiles have reasonably limited mobility, however, if the 
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objective was purely for monitoring purposes, using artificial structure would not affect 

interpretations regarding species presence of amphibians specifically.  

Our method of measuring bat activity was also not satisfactory because calls could 

only be categorized into species groups (Table 3.1) and, therefore, we could not construct 

single-species models. Bats are difficult species to monitor because they are volant, 

nocturnal, and echolocate (Kunz, 1988), but often represent a large portion of mammalian- 

species richness (up to 22% in our study area) and thus are an important component of 

vertebrate diversity. Activity levels and echolocation groups, however, could be monitored 

and modelled and whether or not that was sufficient would depend on the objectives of the 

study (e.g., Baxter et al. in press). Further research is needed to identify the habitat 

requirements for individual bat species using different methods (e.g., telemetry study) until 

methods to identify species by call are refined. 

Other than black bear (Ursus americanus), an omnivore, we detected few mammalian 

or avian predators. Although predatory species tend to have large home ranges with naturally 

lower densities and, therefore, are expected to be detected less frequently (Tyre et al., 2003; 

MacKenzie, 2005), there is growing evidence of the role that predators play in increasing 

diversity (Soulé and Terborgh, 1999; Shurin and Allen, 2001; Hebblewhite et al., 2005; 

Sergio et al., 2005). Our study area was a heavily managed, multi-use landscape (i.e., 

industrial forestry, cattle grazing, hunting and recreation uses) and has high road density, 

which affects the distribution of several predators that may have been more abundant 

historically (e.g., Grizzly Bear, Ursus arctos; Grey Wolf, Canis lupus). Overall, the species 

community present in the Williams Lake Study Area may not be representative of the full 

range of goals for a program with the objective of conserving biodiversity, and therefore, 
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restoration activities may need to be considered as part of a comprehensive biodiversity 

program.  

Species of management concern, either because of sensitivity to disturbance, limited 

distribution, or rarity, were not well represented in our sample. This result was not 

unexpected (Margules and Pressey, 2000; Noon et al., 2003), but it does highlight a weakness 

of the general approach of targeting a breadth of species (Manley et al., 2004). More 

intensive survey methodologies are required to determine the presence and absence of rare or 

cryptic species to assess predictive accuracy of structural models. Many of the rare species 

and species of concern should be included in fine-filter management approaches (Hansen et 

al., 1999; Hunter, 2001). Therefore, not detecting them in a broad survey should not 

necessarily be a criticism, but the approach cannot be assumed to encompass these species.  

Conclusion 

In an industrial forest landscape, where structural aspects are changing frequently, 

land managers require an understanding of how species will respond and persist within the 

dynamics of the changing forest environment so that strategies can be implemented to retain 

and recruit structural aspects necessary for the persistence of populations. Some of the 

models that we tested had good predictive accuracy that was retained when validated and 

thus have application in terms of implementation as management tools (e.g., Red-naped 

Sapsucker). However, because structure did not predict the presence of the majority of 

vertebrate species, there was not a single set of forest structure measures that predicted 

several species. Because we did not find robust relationships that are necessary to guide 

management targets for retention and recruitment of specific structures, using these models 

as surrogates for species occurrence is limited. Models based on stand structural 
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requirements meant to meet specific targets will need further examination and testing (e.g., 

volume, coarse-woody debris, snag density, etc.). Given the variability in species’ responses, 

it may be most efficient to study the response of species that appear most closely linked to 

structure and sensitive to the loss of specific attributes.  

In our results, modelling success varied depending on whether plot or stand data were 

used and many models included variables related to spatial relationships of structures 

suggesting that relationships with structure are complex across species and scales.  Other 

surrogate approaches have had varying success, but are generally poor predictors of diversity 

at stand scales (McElhinny et al., 2005). We did not examine the relationship between 

vertebrate richness and structure, but given the complexity of relationships with scale and the 

different scales that species use across landscapes, this will be an important research question 

to pursue before surrogate measures are adopted with confidence. In the interim, because the 

preservation of structures known to be negatively affected by harvesting (e.g., dead wood, 

large trees, closed canopies, continuous forests) contributes to local and landscape 

heterogeneity and has been shown to affect species presence in this study and others 

(Lindenmayer et al., 2000; Mazurek and Zielinski, 2004; Hunter, 2005), insuring that these 

structures are present on the landscape should still be a part of programs that have goals of 

maintaining biodiversity.  

There is an abundance of literature on recommendations for the validation of 

ecological models (e.g., Rykiel, 1996; Pearce and Ferrier, 2000; Boyce et al., 2002; Vaughan 

and Ormerod, 2005), and a pervasiveness of the use of predictive models to describe the 

relationships of species to their environments (see review Guisan and Zimmerman, 2000); 

however, models are frequently accepted without full validation of the predictive 
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performance (Guthery et al., 2005). Few models in our study were reliable when applied to 

the independent data; therefore, our results indicate that models cannot be assumed to be 

applicable in different years or applied outside the area where the model was developed, even 

when the spatial and temporal context is relatively close.  Until models provide confident 

predictions of multiple-species occurrence, as well as response to habitat alteration, land 

managers may find that monitoring species directly is a more beneficial contribution to 

biodiversity monitoring (e.g., Manley et al., 2004).  
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Chapter 4. Using forest structure to predict the occurrence of vertebrate assemblages
1 

Abstract 

Land-use practices can have significant impacts on biodiversity. In industrial forests, 

efficiently measuring, monitoring, and mitigating impacts on biodiversity are major 

challenges for forest managers. Several studies have reported on the relationship between 

characteristics of forest structure and the occurrence of single species or taxonomic groups 

such as birds.  Few studies, however, have examined the relationship between forest structure 

and species occurrence across taxonomic groups. If linkages between forest structure and 

multiple species can be made, forest structure may be used as a surrogate measure to monitor 

the potential effects of management on species occurrence. In this paper, we examined 

whether or not species, from different taxonomic groups, could reliably be grouped together 

based on their co-occurrence in space and time using non-metric multidimensional scaling 

and cluster analysis. We determined species presence and absence at 225 plots over a 3-year 

period (2001-2004). We used presence and absence records and structural characteristics of 

forests to group similar plots. Using groupings based on species co-occurrence, we used 

classification and regression tree analysis to determine if structural characteristics of forests 

could be used to predict occurrence of group members. Plots could be statistically defined 

using both characteristics of forest structure and species co-occurrence. There was high 

variation within groups, however, suggesting the ecological significance of groupings was 

weak. Although there were correlations among species groups and forest structure, prediction 

of group membership using structural characteristics was poor (45.8%). The structure 

                                                 
1 This chapter is written in the first person plural to recognize the contribution of others to the work. The 
manuscript will be submitted with the authorship Psyllakis, J.M. and M.P. Gillingham. 
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variables identified with correlation analyses were also included in models used to predict 

group memberships. These variables included distance to water and edges and characteristics 

of larger scale surroundings (e.g., edge density). Overall, our results suggest that forest 

structure by itself is a poor surrogate of species co-occurrence and that the spatial aspects of 

structure were important determinants of species occurrence.  

Introduction 

Scientists find it difficult to quantify and monitor the effects of various activities that 

alter habitat on biodiversity largely because of difficulties in measuring biodiversity (Purvis 

and Hector, 2000; Sarkar and Margules, 2002). Because it is not feasible to measure all 

aspects of biodiversity, or even some aspects (e.g., species richness), surrogate measures are 

often used as alternatives to describe and monitor biodiversity (Noss, 1990; Sarkar and 

Margules, 2002). The use of surrogate approaches is critical to biodiversity planning and 

conservation across spatial and temporal scales, because information for complete species 

inventories over all areas is not available (Margules and Pressey, 2000; Faith, 2003). For 

example, the occurrence of certain indicator species (e.g., Mac Nally and Fleishman, 2004) 

and areas with high environmental heterogeneity (e.g., Faith et al., 2004) are correlated with 

increased species richness. Using environmental heterogeneity is often less expensive to 

measure, monitor, and forecast change for than measuring species or a subset of species 

directly. Further, information regarding habitat types can be obtained over large areas with 

the aid of remote-sensing technology. Therefore, as a substitute for measuring species 

richness, using indicator species or environmental heterogeneity as a surrogate for species 

richness has frequently been applied to various management purposes, such as the 

designation of reserves (Myers et al., 2000; Fleishman et al., 2005).  
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Species-based surrogates have been criticised because robust relationships have not 

been identified consistently (Caro and O’Doherty, 1999; Margules et al., 2002). Surrogates of 

environmental heterogeneity have been criticised because of unclear relationships among 

species and habitat, as well as a lack of representation for species interactions (e.g., 

competition or prey availability). Testing of both species-based and habitat-based approaches 

remains to be done to confirm that relationships are stable through time (Lindenmayer and 

Franklin, 2002). The lack of reliable approaches, however, does not absolve land managers 

from minimising impacts to diversity and many levels of government have pledged to 

implement programs specifically to mitigate the effects of human activities on biodiversity 

loss (e.g., United Nations Environment Programme, 1992; Province of British Columbia, 

1995; Montreal Process Working Group, 1999; Canadian Council of Forest Ministers, 2003). 

Habitat-based approaches are appealing in an industrial forests context, where many 

stand-structure characteristics are already measured, monitored, and managed. There is 

considerable interest from forest managers to link structural characteristics to species 

occurrence and / or richness (Lindenmayer and Franklin, 2002; Kavanagh and Stanton, 2005; 

McElhinny et al., 2005). Because forest-management activities directly alter structural 

characteristics of forests, there are several advantages to developing surrogate monitoring 

programs around forest structure. Structure is an aspect of habitat that managers have some 

control over and various forms of vegetation databases are maintained for harvest forecasting, 

standardized techniques exist for the measurement of structural characteristics, and 

characteristics are described at the same spatial and temporal scales as management. 

Therefore, using forest structure as a surrogate for species richness or species occurrence 

may be a cost-effective and efficient alternative to species-monitoring programs (Lahde et al. 
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1999; Lindenmayer and Franklin, 2002; McElhinny et al., 2005). Overall, a successful 

monitoring program could contribute to sustainable management of forest resources by 

ensuring the conservation of species diversity through time. To accomplish this goal, 

however, requires strong relationships among structure and species occurrence and the 

testing of these relationships across spatial and temporal scales (Lindenmayer and Franklin, 

2002; Fleishman et al., 2005).  

  Using forest-structure variables to predict species richness has shown promise in 

different forest types (e.g., Eastern US, Loehle et al. 2005; South America, Diaz et al., 2005). 

Other studies report that models using a combination of forest management and physical 

properties of stands (e.g., elevation, aspect) and scale variables are better predictors of 

species richness than structure type measurements alone (e.g., du Bus de Warnaffe and 

Dufrêne, 2004). Regardless, species richness alone does not provide detailed information for 

species representation across taxa or different taxonomic groups (Magurran, 2003; Schulze et 

al., 2004), therefore grouping species based on some defined aspects may provide better 

inference to the effects of management activities. Species may be grouped based on: 

functional groups (e.g., Cummins, 1974); environmental responses or trophic criteria (Gaines 

et al., 1989); the shared use of specific resources (e.g., guilds, Root, 1967); or co-occurrence 

in space and time (e.g., species assemblages, Kavanagh and Stanton, 2005). These 

terminologies are often used interchangeably, although there are distinct differences and 

several authors have attempted to clearly define the terms (e.g., Fauth et al., 1996; Blondel, 

2003). Groups based on species assemblages may be a preferred approach because no 

assumptions are made regarding the role a species plays in the ecosystem or specific types of 

interactions with other species, which are often unknown. 
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Multiple-species approaches require multivariate techniques to first determine the 

relationship among species co-occurrence and then predictive models can be used to 

determine if there are variables that accurately predict the occurrence of groups or group 

members. Applying multivariate statistical techniques to relate species groups based on their 

co-occurrence have been widely used in community ecology (Jongman et al., 1995; McCune 

and Grace, 2002). There are several challenges to defining meaningful groups, including a 

lack of statistically objective ways to define group boundaries. There remains debate whether 

or not it is ecologically feasible to distinguish distinct groups versus continuums of 

occurrence with overlap (Blondel, 2003). Therefore, it is advisable to use complementary 

techniques to define groups and follow up with separate techniques to test the statistical 

significance of groupings (McCune and Grace, 2002). This approach still requires that 

ecological interpretations are made cautiously as statistical and biological significance are 

not always one and the same (McCune and Mefford, 1999). 

Linking variables directly affected by forest-management activities, specifically 

measures of forest structure, to the occurrence of species assemblages may provide forest 

managers with a useful tool to monitor, manage, and mitigate the effects of industrial harvest 

on species diversity. Determining relationships among species may account for some 

unexplained variation when examining structural variables and, therefore, account for 

biological influences on species distributions. In this paper, we used presence and absence 

data collected during intensive species inventories (Chapter 3) to determine if: 1) forest plots 

could be reliably grouped based on vertebrate-species assemblages (i.e., based on co-

occurrence in space and time) as well as on structural characteristics of the vegetation; 2) 

species-based and structure-based groupings were correlated with one another; and 3) forest-
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structure characteristics could be used to predict group membership based on vertebrate-

species assemblages. We specifically tested the hypothesis that forest structure can reliably 

predict the occurrence of vertebrate-species assemblages and, therefore, has the potential to 

be used as a surrogate measure to implement forest management targets and to monitor 

species distributions within an operational forest landscape.  

Methods 

Study area 

We collected data from May 2001 through January 2004. Our study area, in central 

British Columbia, Canada was located approximately 30 km south of the community of 

Williams Lake, hereafter the Williams Lake Study Area (Figure 4.1). Land uses included 

industrial forestry, free-range cattle ranching, and a broad diversity of all-season recreation 

(e.g., hunting, snowmobile touring). The Williams Lake Study Area, at the northern extent of 

the Interior Douglas-Fir (IDF) Biogeoclimatic zone (Meidinger and Pojar, 1991), was 

characterised by stands of closed- and open-canopy Douglas-fir (Pseudotsuga menziesii) and 

lodgepole pine (Pinus contorta) at higher elevations (e.g., >1000 m above sea level). At 

lower elevations (~ 850 m – 1000 m above sea level) forests were intermixed with grassland 

and wetland communities. There were localised stands of hybrid White Spruce (Picea 

engelmannii x glauca) and Trembling Aspen (Populus tremuloides) throughout the study 

area. Harvesting activities in stands dominated by Douglas-fir were characterized by 

multiple-pass selective harvests; where other species were dominant, clear-cuts were more 

frequent. A major insect outbreak (mountain pine beetle; Dendroctonus ponderosae) 

influenced stands across the study area. Mean annual temperature is 4.2oC (range = -1.3 to 

9.6 oC; Environment Canada, 2002). 
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Habitat measurements 

We established 243 plots spaced systematically 150 m or 300 m apart along transects 

and measured local habitat variables using a combination of methods. Shrub species and 

cover, canopy gaps, and coarse-woody debris were measured along the intercept of 2, 48-m 

transects laid perpendicular through plot centre. For coarse-woody debris, we recorded the 

diameter of the piece perpendicular to where it crossed the axis, the tree species (if possible), 

and decay class (Maser et al., 1979). At 5, 2-m radius plots located at 11.28 m away from 

plot centre on each axis and at plot centre, we measured the percent coverage for litter, 

coarse-woody debris, herb species, moss and lichens, shrub species, sapling species, bare 

ground, and rock. Within a 5.64-m radius around plot centre we tallied all trees and stumps 

≥7.5 cm diameter at breast height (dbh) and recorded tree species, dbh, and height; we 

recorded trees <7.5 cm dbh as live or dead saplings. We extended the radius to 11.28 m and 

tallied any additional trees ≥30 cm dbh and snags. We recorded general information for each 

plot including aspect, slope, canopy stratification and complexity, disturbance history 

(evidence of fire, grazing, logging), and the elevation (in m) above sea level. We averaged 

vegetation data collected at multiple plots measured within stands, as defined by forest 

inventory polygons, to create stand level variables. 

To obtain spatial measures (e.g., distance to water), proportion of cover, and 

landscape metrics, we subsetted a Landsat 7 (30-m resolution) image of the study area (July 

2002) and used PCI Works GIS software (version 7.0; PCI Geomatics Corp., 2001) to 

complete a supervised maximum-likelihood classification. Six habitat classes were identified: 

water, nonforest, early seral, shrub and Aspen, moderate retention conifer, and conifer. We 

used colour airphotos, orthophotos, and the vegetation data collected at plots to seed areas for 
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training and to assess the accuracy of the classification. We assessed accuracy of the 

classification by determining the number of correctly classified pixels from a randomly 

selected subset. Water, nonforest, and conifer classes had the highest accuracy (97%, 94%, 

and 88%, respectively). Early seral, shrub and Aspen, and moderate retention conifer were 

less often classified correctly (67%, 78%, 67%, respectively). Overall classification accuracy 

was 81%.  

We calculated landscape metrics using the Patch Analyst 3.1 (Grid) extension 

(Rempel and Carr, 2003) for ArcView GIS (version 3.2a; ESRI, 2000) to interface to the PC 

raster version of FRAGSTATS 2 (McGarigal and Marks, 1995). We intersected the 

classification layer with a buffer created around plot and stand centres and measured 

characteristics in the surrounding 50 ha and 300 ha. Distance from plot centres to water and 

high-contrast edge (e.g., meadow-forest), and roads were estimated using the GIS. For a full 

description of methods and plot layout, see Chapter 3. 

Vertebrate sampling 

We used a variety of techniques to determine the presence of vertebrate species 

(Table 4.1; see Chapter 3 for a full description of vertebrate sampling methods). We 

georeferenced all vertebrate observations and imported them into a GIS (ESRI, 2000). 

Observations >75 m from a plot centre were excluded to reduce possible effects of spatial 

uncertainty on structure association (see Chapter 3). 

Because of the variety of methods used to collect species-occurrence data, we 

converted species detections to presence and absence for each plot (Magurran, 2003). We 

deleted species detected at fewer than 5% of the plots, to maximize the detection of patterns 

of structure, if present (McCune and Grace, 2002). Species that had high spatial uncertainty 
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associated with their detection were also deleted (n = 5), either because of their frequent 

detection while in flight (e.g., Evening Grosbeak; Coccothraustes vespertinus; Red Crossbill, 

Loxia curvirostra; Tree Swallow, Tachycineta bicolor) or because their calls may have 

travelled long distances (e.g., Barred Owl, Strix varia; Sandhill Crane, Grus canadensis; 

Chapter 3). Therefore, we used 66 species in all subsequent analyses (Appendix III). Because 

of the high number of zeros in the resulting matrix of species occurrence by plot, we 

transformed the data using Beals smoothing (Beals, 1984). Beals smoothing replaces the 

matrix cells with a probability of occurrence for that species at that location based on its joint 

occurrence with the other species present at that plot. Likewise, for our structure-data matrix, 

we transformed data using general relativization by row and column totals (McCune and 

Grace, 2002). Relativization transforms matrix elements by a row or column standard (e.g., 

maximum, sum, mean, etc.) and is useful when different units of measure (e.g., basal area 

and percent cover) need to be standardized for comparison (McCune and Grace, 2002). We 

removed plots that had substantial change in structure because of industrial harvesting (n = 

15) and examined the species composition at other plots for outliers (defined as >3.0 standard 

deviations; Tabachnik and Fidell, 2001) and considered them for removal. We concluded that 

3 plots were notable anomalies because of increased numbers of non-forest vertebrate species. 

Two of these plots occurred in open, marshy meadows, and the third at the edge of a recent 

harvest. Thus, our final analysis consisted of 225 plots and 66 vertebrate species. 

Data analysis 

Community-level data often violate assumptions of parametric approaches, although 

some multivariate approaches are robust to violation of some assumptions (Jongman et al., 

1995). Because inference must be drawn from sets of correlative predictors, confidence in the 
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interpretation increases when results are consistent using different methods and data are 

compared to randomisations of the data (Jongman et al., 1995; McCune and Grace, 2002). To 

describe species assemblages and determine their relationship to structural variables, we used 

non-metric multidimensional scaling ordination (NMS; Shepard 1962a, b; Kruskal, 1964a, b), 

cluster analysis (Lance and Williams, 1967), multiple response permutation procedures 

(MRPP; Zimmerman et al., 1985) and classification and regression trees (CART; Breiman et 

al., 1984). We used the Sørenson distance measure in all analyses where a distance measure 

was necessary as it has repeatedly been shown to be an effective measure regardless of 

approach and consistency is recommended when using multiple approaches (Faith et al., 

1987; McCune and Grace, 2002). We completed most analyses with the software PC-Ord 

(version 4.37; McCune and Mefford, 1999); we used Statistica (version 6.1; StatSoft, Inc., 

2003) for CART analysis and correlation analyses of environmental and species ordination 

coordinates. 

Ordination techniques arrange entities along single or multiple axes summarizing the 

continuous trend within data; sites with similar species composition or environmental 

characteristics are depicted closer together in this ordination space. NMS differs from other 

ordination techniques in that it does not carry assumptions of linearity among variables, it 

preserves similarity distances in ranked order (i.e., nonparametric) and tends to linearise 

distances in species and environmental space, and is not constrained to any specific distance 

measure or relativization method (Clarke, 1993; McGune and Grace, 2002). NMS is, 

therefore, often a preferred method to use with community data (Clarke, 1993; McCune and 

Grace, 2002).  
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The final solution for NMS ordination is accepted after comparing several runs with 

real data to randomizations of data through Monte-Carlo simulations (McCune and Grace, 

2002). Two measures are used to evaluate the structure of the ordination results: stress and 

instability. Stress, analogous to a goodness-of-fit measure, is the deviation from monotonicity 

when distance is compared between the original species space and distance in the reduced 

ordination space (McCune and Grace, 2002). Stress is typically in the range of 10 - 20 for 

community data (McCune and Grace, 2002), but at the upper end of this scale cautious 

interpretation should be made as plots are relatively easy to misinterpret (Kruskal, 1964a; 

Clarke, 1993). Instability is a measure of change in stress at each iteration. Stable, low stress 

solutions indicate strong data structure.  

To derive ordination results, we conducted 40 runs with real data and 50 runs with 

presence and absence data randomized among plots. We repeated each run with 1 to 6 axes 

(i.e., dimensions in ordination space). Stress was compared for each ordination result with 

different number of axes. The starting configuration coordinates for the final run, used to 

determine stress and instability values for the final solution, were derived from the solution 

with the number of axes where stress did not decrease substantially when fewer axes were 

used. We repeated this procedure for ordinations of species detected at plots and structure 

measures at each plot to determine if plot structure driven by species assemblage was 

comparable to pattern derived from structural characteristics.  To evaluate the effectiveness 

of the ordination, we calculated the coefficient of determination (R2) between the distances of 

plots in ordination space relative to the distances in the original, unreduced space (McCune 

and Grace, 2002).  
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To elucidate discrete groupings of the plot sample units we used cluster analysis. 

There are several approaches for clustering and results vary with the approach (e.g., 

agglomerative or divisive; McCune and Grace, 2002), distance measure, and group linkage 

method used (McCune and Grace, 2002). We used an agglomerative-hierarchical approach 

(Breiman et al., 1984) where all sample units are grouped from the bottom up with Sørenson 

distance, as in the ordination, and a flexible beta linkage of -0.25. A flexible beta linkage of   

-0.25 has been shown to minimize increases in errors in the sum of squares of distances from 

each individual to the centroid of its group (Lance and Williams, 1967) and is recommended 

for ordinations that use Sørenson distance (McCune and Grace, 2002). We selected the 

number of groups based on a compromise between total information remaining (analogous to 

R
2 in multiple regression approaches) and ecological interpretation. We tested statistical 

difference among groups with MRPP. MRPP tests the hypothesis that there is no difference 

among groups and is also a non-parametric approach. It provides a statistic of how different 

groups are, analogous to effect size, given as the chance-corrected, within-group agreement 

(A) and a p-value. A is equal to 1 when all items are identical within groups and 0 when 

heterogeneity within groups equals expectation by chance. 

To infer relationships of vertebrate assemblage to structural variables measured at 

plots, we first examined the correlation of environmental variables with the plot coordinates 

on each ordination axis for species-based and structure-based ordinations (Pearson’s r). 

Second, we assessed correlations between the coordinates for the species-based and 

structure-based ordinations. To compare the visualization of the continuous plot structure 

derived from NMS ordination and the discrete groupings defined with cluster analysis, we 

overlaid cluster groupings on the ordination diagram, thus providing a hybrid explanation of 
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patterns observed within the data structure. We repeated the group definition for both 

species-based and structure-based clusters.  

To describe the structural characteristics that distinguished groups, we used 

classification and regression trees (CART) analysis (Breiman et al., 1984). CART analysis is 

similar to discriminant analysis, but is more flexible partially because it is a nonparametric 

approach and thus is not influenced by deviations from normal distributions, data 

transformations, or outliers (Breiman et al., 1984, De’ath and Fabricius, 2000). Comparative 

studies have concluded that it performs as well or better with predictive classifications as 

logistic regression, discriminant analysis, and artificial neural networks (Selker et al., 1995; 

Vayssières et al., 2000; Karels et al., 2004) and given the ease of interpretability of the results, 

CART analysis may be preferential in many instances (Olden and Jackson, 2002; Worth and 

Cronin, 2003). Other advantages result because CART analysis makes several individual 

selections of where to split the data. Therefore, the amount of available information is 

maximised because collinear variables can all be included and used as surrogates when data 

are missing and variables can be included at multiple locations in the tree elucidating 

complex relationships (Breiman et al., 1984, De’ath and Fabricius, 2000; Vayssières et al., 

2000). CART analysis, however, can overfit data (McCune and Grace, 2002). Therefore, it is 

important to carefully consider variables to be included in the analysis, and determine the 

method of determining the split decisions of the tree and as well as when to stop splitting 

(Breiman et al., 1984). We were specifically interested in the ability of forest-structure 

variables to predict species group membership; therefore, our variable list was selective 

(Table 4.2). Because we reduced our variable set to structural variables at the outset, we used 

an exhaustive search for all possible univariate splits. With this method, all possible splits for
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each predictor variable at each node are examined and the split producing the largest 

improvement in goodness-of-fit is used, for which we used the Gini goodness-of-fit measure 

(Breiman et al., 1984). To reduce the possibility of overfitting with large classification trees 

(i.e., several splits), we used the smallest tree (i.e., fewest splits) with classification errors 

nearest to the lowest number of classification errors for the largest tree (Breiman et al., 1984; 

De’ath and Fabricius, 2000). We used similar criteria for CART analysis as in our cluster 

analysis in that we compromised between variation explained and ecological interpretability. 

We set prior probabilities for group membership equally (n = 11; p = 0.91) because we did 

not assume higher risks for misclassifying plots belonging to different groups (Breiman et al., 

1984). Therefore, to determine the potential of using forest structure as a surrogate measure 

for the occurrence of species groups, our analyses were a complementary approach of several 

techniques.  

Results 

Plot groupings 

We accepted a 3-dimentional solution for NMS ordinations based on both species 

occurrence and structural characteristics. For the species-based ordination, correlation 

analysis with the structural variables and ordination axes indicated the most influential 

variables for species occurrence were edge density, distance to edge, and distance to water 

(Table 4.3; stress = 11.61; instability = 0.0001, iterations = 116; p = 0.020). Total variance 

explained by all axes was 92.6% indicating that the ordination represented similarity among 

plots well. Proportion of variance represented by each axis based on R2 between distance in 

the ordination space and distance in the original space indicated that the first axis captured  
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Table 4.3. Pearson correlation coefficients for ordination axes resulting from non-metric 
multidimensional scaling. Ordination was based on species co-occurrence at plots in the 
Williams Lake Study Area from 2001-2004. 
 
 
 

Variable Axis 1 Axis 2 Axis 3 

Distance to edge 
 

  -0.501**  0.290**   0.449** 

Distance to water 
 

 -0.313**  0.587** 0.216* 

Edge density 
 

  0.484**          -0.215* -0.555** 

  * p <0.05 
** p <0.001 
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most of the variance (49.3%); the second and third dimension contained 16.5% and 26.8%, 

respectively.  

For the structure-based ordination, tree-species composition dominated correlations 

with the 3 axes, either by basal area by species or counts of conifer or deciduous stems 

(Table 4.4; stress =13.47; instability = 0.0001; iterations = 96; p = 0.020). Variance captured 

by the first, second and third axis was 30.1%, 14.4%, and 42.1%, respectively, for a 

cumulative total of 86.6% variance captured. Plot coordinates in ordination space were 

highly correlated for all axes between the species-based and structure-based ordinations 

(Table 4.5), indicating that both ordinations resulted in plots within similar positions in 

ordination space. Based on the presence or absence of species within plots when overlaid in 

continuous ordination space, several species showed no relationship to any of the variables 

most strongly correlated with the ordination axis (n = 37). Some species, however, showed 

avoidance or selection for characteristics on one or more axes (n = 29; Table 4.6). For 

example, presence of Brown-headed Cowbird (Molothrus ater) was positively associated 

with edge density on both axis 1 and axis 3 and negatively associated with distance to water 

on axis 1 (i.e., found closer to water).  

Cluster analysis of plots based on species composition and structural characteristics 

resulted in the identification of 11 groups. Groups based on species composition had 27% 

unexplained variance (Figure 4.2; Appendix IV)1. Plots within the same groups had species 

occurrences more similar to one another than to plots in other groups. The cluster analysis 

based on structural characteristics had 30% unexplained variance (Figure 4.3; Appendix IV). 

MRPP analysis indicated that both groupings, species and structure, were statistically 

significant. The species grouping, however, had less within-group variance than structure-
                                                 
1 Species most associated with each group are presented in Appendix V. 
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Table 4.4. Pearson correlation coefficients for ordination axes resulting from non-metric 
multidimensional scaling. Ordination was based on structural characteristics measured at 
plots in the Williams Lake Study Area.  
 

 
 

Variable Axis 1 Axis 2 Axis 3 

Percent gap 
 

    0.494**   -0.500**  -0.259** 

Percent shrub cover 
 

0.051 0.108  -0.600** 

Saplings ha-1 

 
  -0.495**           -0.009   0.297** 

Deciduous stems ha-1 

 
          -0.247**   0.478**  -0.314** 

Coniferous stems ha-1 

 
 -0.624**            0.226**   0.397** 

Basal area Douglas-
fir 
 

        -0.204*            0.325**   0.668** 

Basal area Pine 
 

 -0.505**           -0.111           -0.143* 

Basal area Spruce 
 

         -0.321**            0.342**  -0.463** 

Distance to edge 
 

         -0.443**           -0.151*   0.479** 

Distance to water 
 

         -0.027  -0.509**   0.390** 

Edge density 
 

          0.472**            0.095  -0.369** 

  * p <0.05 
** p <0.001 
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Table 4.5. Pearson correlation coefficients for plot coordinates based on species and 
structure using non-metric multidimensional scaling ordinations. Species occurrence was 
determined from 2001-2004 in the Williams Lake Study Area.  
 
 

 Species-based 
Structure-based 

 
Axis 1 Axis 2 Axis 3 

Axis 1  -0.335** 0.101 
 

  -0.331** 
 

Axis 2 -0.299**  0.163* 
 

    0.300** 
 

Axis 3  0.503** 0.024 
 

-0.030 
 

  * p <0.05 
** p <0.001 



 109 

Table 4.6. Relationship between vertebrate species presence and absence with ordination 
axes as determined by non-metric multidimensional scaling. Axis one is defined by distance 
to edge (-) and edge density (+), axis 2 by distance to water (+), and axis 3 by distance to 
edge (+) and edge density (-). Variables are described in Table 4.2. Species with no clear 
relationship to any of the variables defining ordination space are not listed (n = 37). If species 
were not located in a particular quadrant of the 2-dimensional space, then the relationship 
was interpreted as avoidance. Latin names for all species are listed in Appendix II.  
 

Species Axis 1 Axis 2 Axis 3 

Moose - - ed_50ha (-) 
Alder Flycatcher d_water (+)  ed_50ha (+) 
Black-blacked Woodpecker - d_edge (+) d_edge (+) 
Brown-headed Cowbird ed_50ha (+) d_water (-) ed_50ha (+) 
Brown Creeper ed_50ha (-) - ed_50ha (-) 
Coyote ed_50ha (+) - ed_50ha (+) 
Clay-colored Sparrow ed_50ha (+) d_water (-) - 
Common Yellowthroat ed_50ha (+) d_water (-) - 
Downy Woodpecker ed_50ha (+) - - 
Dusky Flycatcher - d_water (-) - 
Gray Jay ed_50ha (-) - - 
Hairy Woodpecker ed_50ha (+) d_edge (-) 

d_water (-) 
- 

Snowshoe Hare ed_50ha (-) d_edge (+) 
d_water (+) 

 

Least Flycatcher - d_edge (-) 
d_water (-) 

- 

Lynx ed_50ha (-) d_edge (+) - 
McGillivary’s Warbler ed_50ha (-) - - 
Meadow Vole ed_50ha (+) - - 
Ermine ed_50ha (-) - - 
Long-tailed Weasel ed_50ha (+) d_edge (-) 

d_water (-) 
- 

Northern Flicker ed_50ha (+) - - 
Northern Waterthrush ed_50ha (+) d_water (+) - 
Olive-sided Flycatcher ed_50ha (+) d_edge (-) - 
Song Sparrow ed_50ha (+) d_water (-) - 
Yellow-pine Chipmunk ed_50ha (-) - ed_50ha (-) 
Townsend’s Warbler - d_edge (+) - 
Three-toed Woodpecker ed_50ha (-) d_edge (+)  
Red Fox ed_50ha (-) d_edge (-) 

d_water (-) 
- 

Winter Wren - d_edge (+) 
d_water (-) 

- 

Western Wood-peewee ed_50ha (+) d_edge (-) 
d_water (-) 

- 
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based groups (species groups: A = 0.292, p <0.01; structure groups: A = 0.090, p <0.01). 

Species groups were distinct when overlaid on the ordination plot (Figure 4.4A, B, C); 

groups defined by similarity in structural variables were not distinct on any of the ordination 

planes (Figure 4.5A, B, C). These results indicate that cluster analysis and ordinations based 

on species occurrence support each other, but the same can not be said of the structure cluster 

and ordination analyses. Overall, overlap between species-based and structure-based groups 

ranged from 16.7-50.0% (Appendix IV). 

Predictions using structure 

Using the groups defined by species co-occurrence, predicting group membership 

with CART analysis resulted in low classification success (45.8%) and ranged widely among 

groups (0% - 100%; Table 4.7). Seven structural variables were used to discriminate among 

plots; edge density and distance to edge were ranked as most important (i.e., explained more 

of the variation, appeared at the top of the tree, and occurred multiple times; Table 4.8). The 

CART dendrogram depicts which variable defines the split at each branch, the number of 

cases in the group, and classification success (Figure 4.6). Edge density defined the first split 

among groups, indicating it was the most important variable discriminating among groupings. 

Moving to the left branch of the tree, edge density and saplings ha-1 led to 2 terminal nodes 

that correctly predicted 8.5% of group 5 members and group 11 perfectly (Table 4.8); 

although there were misclassifications included within these splits. The dendrogram thus 

illustrates the variable splits that define the groups and how impure the groups are on each 

branch.  

Distance to water and edge density led to one terminal node and the correct prediction 

of 50% of group 8 plots, to the right outer branch of the dendrogram. Adding edge density  
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A     
 
 
 
 
 
 
 
 
 
 
 

     
 

Figure 4.4. Non-metric multidimensional scaling ordination (NMS) of plots based on 
presence and absence data for vertebrate species detected at plots in the Williams Lake Study 
Area from 2001-2004. Separate figures are presented for each pair of ordination axes (A, B, 
C). Cluster analysis groups are depicted by different symbols. Plots shown closer to one 
another are more similar in species composition. 
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Figure 4.4. NMS ordination plots for plots based on presence and absence data of species 
assemblages (continued). 
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Figure 4.4. NMS ordination plots for plots based on presence and absence data of species 
assemblages (continued). 
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A      

 
 
Figure 4.5. Non-metric multidimensional scaling ordination (NMS) of plots based on 
characteristics of forest structure at plots in the Williams Lake Study Area. Separate figures 
are presented for each pair of ordination axes (A, B, C). Cluster analysis groups are depicted 
by different symbols. Plots shown closer to one another are more similar in forest-structural 
characteristics. 
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Figure 4.5. NMS ordination for plots based on characteristics of forest structure (continued). 
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Figure 4.5. NMS ordination for plots based on characteristics of forest structure (continued). 
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Table 4.8. Ranking of importance for structural variables used in CART analysis to predict 
membership of plots grouped based on species co-occurrence from 2001-2004 in the 
Williams Lake Study Area; 100 = most important, 0 = least important. 
 
 
 
 

Variable 

 

Ranking 

Distance to edge 100 
Edge density 93 
Distance to water 76 
Saplings ha-1 59 
Percent gap 56 
Shrub cover Percent 45 
Forb cover percent 42 
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and percent canopy gap led to the correct prediction of 43.8% of group 2 and 56.3% of group 

4. In the centre branch, the addition of distance to edge led to the correct prediction of 92.3% 

of group 7; the addition of forb cover predicted 63.6% of group 6; and finally, shrub height 

distinguished 53.8% of group 10 and 35.7% of group 9. The presence of only 9 terminal 

nodes, instead of the 11 groups identified with cluster analysis, reflected the lack of 

successful predictions for any members of groups 1 and 3. The right and centre branch are 

distinctive from the left branch in that they each contained a spatial measure near the top of 

the branches (i.e., high variable importance). Overall, the results from the CART analysis 

indicate that although there was a correlative relationship between groups classified with 

species co-occurrence and structural characteristics, the relationships were not strong enough 

to accurately predict the groups.  

Given the results of the ordination and correlation analyses, plots could reliably be 

grouped based on both structure and the occurrence of species. Plot groupings from both 

approaches had similarities indicated by significant correlation among coordinates in 

ordination space. Three variables (edge density, distance to water, and distance to edge) 

consistently appeared in each analysis suggesting that both spatial context and larger scale 

aspects of structure were the best correlates of species occurrence. Overall, however, these 

relationships were not strong enough to reliably predict the membership of plots to groups 

based on species co-occurrence. Therefore, although species groups were distinctive, 

indicating that species co-occur with some degree of pattern, the structural characteristics we 

measured were not sufficient to describe the relationships. 
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Discussion 

Plots could be grouped into significant assemblage types as well as structural types. Both 

approaches resulted in groups that had considerable variation, more so for the structurally 

defined groups. Consequently, the biological significance of the groupings is suspect 

(McCune and Mefford, 1999). Further, poor predictive ability of forest structure and the 

overall weak relationships between species-based groupings of plots and structure-based 

groupings of plots suggest that these patterns are driven by factors other than those we 

measured (e.g., biological factors such as competition, prey availability, other environmental 

variables). Therefore, reliance on structure as a surrogate for predicting the occurrence of 

species cannot be recommended.  

To facilitate comparison among groupings, we selected the same number of groups for 

each set of groups based on explained variation and simplicity. Improved grouping for 

structure groups may have been achieved if fewer classes had been selected. Other 

researchers have used clustering techniques to define structure groups in our study area by 

cumulative distribution plots of basal area ha-1 and tree stems ha-1 (Moss, 2002). The 

clustering techniques were used to distinguish differences between narrow- and wide-ranging 

diameter distributions and were implemented for management purposes, although the 

classification had considerable variation within and among groupings (Farnden et al., 2003). 

The use of such groupings may carry lower risks when used to characterize structure alone, 

especially with supporting vegetation inventories, but not if being used as a surrogate 

approach to monitoring species presence.  

It has been debated whether or not it makes ecological sense to define community units 

or species assemblages into discrete entities because the groups may be too simplistic and do 
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not take into account ecological factors such as competition and stand history (Allen and 

Hoekstra, 1992; McIntosh, 1995; Heino et al., 2003). For vertebrate species, as opposed to 

vegetation structure composition differences, alternative techniques using individualist 

concepts relating species along continuums may be more ecologically meaningful. Data 

needed to develop predictive models for several species are lacking, however, and models are 

often limited by low predictive ability (Chapter 3).  These data are also difficult and 

expensive to obtain. For example, in our study area, where extensive inventories were 

conducted for species presence, several vertebrate species were not detected often enough to 

model and few species were modelled with good predictive accuracy (Chapter 3). Grouping 

species by co-occurrence should account for species interactions that play a significant role 

in species presence (Caswell, 1976; Gotelli and Graves, 1996) and if structure predicted 

groups well, management and monitoring objectives could be more efficiently implemented 

(Angermeirer and Schlosser, 1995). Because the single-species models had few overlapping 

variables, generalisations about structural characteristics for several species were not 

practical (Chapter 3). Further, taking an assemblage-level approach would be advantageous 

only if species were reliably grouped and structure measures predicted groupings well, which 

was not the case.  

We limited our selection of variables to these that would normally be measured in forest 

inventories and are affected by forest-management activities. Other variables may help to 

improve the unexplained variation in groups. Other studies have reported that non-structural 

variables (e.g., aspect, moisture, elevation; du Bus de Warnaffe and Dufrêne, 2004; stand 

history, Tyre et al., 2001), ecological interactions, and scale influenced the variation 

explained in predictive models (Heino et al., 2003; du Bus de Warnaffe and Dufrêne, 2004; 
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Oxbrough et al., 2005). Our study area is heavily managed by multiple users (e.g., harvesting, 

ranching, recreation). Therefore, disturbance history, types of disturbance, and disturbance 

intervals may help predict the occurrence of species. Although non-structural variables and 

stand-history variables may be relatively easy to obtain, the lack of overall relationships 

between species co-occurrence and structural variables alone suggest that forest structure is 

limited in terms of a surrogate approach for monitoring and that the biological influences 

override those of structure.   

Small-scale variation in plot structure may have further confounded group definition. 

Most species that we included in our analysis are highly mobile (i.e., capable of flight) or 

have large home ranges. Species groupings are thus less likely to be influenced by small-

scale variation. Further, species may not have grouped well because of a wide range of 

environmental tolerances and geographic distributions. Many of the species that were 

included in the assemblages are found across provincial or continental scales; therefore, we 

may not have sampled over a broad enough environmental range. Overall in our analyses, we 

found groups were statistically distinct, but ecological significance was difficult to interpret 

and without strong relationships to predictive variables, assemblage-level approaches are not 

feasible or more efficient than single-species approaches (Chapter 3).  

 There was significant correlation among plot coordinates in ordination space for 

species-based and structure-based groupings. The variables most strongly correlated to each 

ordination axis, however, differed (Table 4.3; Table 4.4). The variables most highly 

correlated with the species ordination were related to spatial aspects of plot location (i.e., 

distance to water, distance to edge) and aspects of the surrounding habitat (i.e., edge density). 

In contrast, the structure-based ordination variables related to tree species composition were 
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highly correlated to axes. Further, when we overlaid the cluster-analysis groups onto the 

plots in ordination space, the species ordination had much more distinct groupings than 

structure ordination (Figures 4.3, 4.4, respectively). This suggests that although the processes 

driving the correlations may be related, characteristics of forest structure are not good 

surrogates for those processes. Again, scale of measurement and landscape interactions 

confound the interpretation of results. It was important, however, to determine the 

relationship at the scales we measured because this scale is representative of management 

practices. Further, we needed to standardize our measures of species co-occurrence. Overall, 

these results suggest that species more likely responded to the co-occurrence of other species 

or conspecifics and spatial aspects of plots than to structural characteristics alone. Settling 

near conspecifics may provide benefits. For example, it may provide assessment of habitat 

suitability (Desrochers and Magrath, 1993; Doligez et al., 2002), reduced risk of predation 

(Stephens and Sutherland, 1999), and reduced territorial defence costs (Meadows, 1995).  

Increasing the geographic scope and management regimes may improve groupings and 

predictive models relative to structural characteristics, but it is not likely to improve aspects 

of monitoring diversity at the operational scale of forest harvesting. 

Defining species assemblages and predicting their occurrence for a single taxonomic 

group, particularly birds (e.g., Diaz et al., 2005) and invertebrates (e.g., Oxbrough et al., 

2005), have proven successful in other studies. Conservation assessment and diversity 

monitoring, however, should not be based on a single taxonomic group. In fact, even all 

vertebrate groups comprise a relatively small proportion of biodiversity. Spanning taxonomic 

groups may have confounded structural relationships because of differences in the scale that 

species use to respond to structure. For example, Coyote (Canis latrans) and Meadow Vole 
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(Microtus pennsylvanicus) were both positively associated with edge density (Table 4.6; 

Appendix 1), but perceive their habitat at very different spatial scales. Although many 

researchers advocate multiple taxonomic approaches as desirable for diversity monitoring 

programs (Fleishman et al., 2005; Heino et al., 2003), and the approaches have shown 

correspondence between indicator species of birds and invertebrate richness (Fleishman et al., 

2005), modelling for individual taxa may be required for the development of effective 

programs. Other approaches that use species richness as the response variable in predictive 

models (e.g., Loehle et al., 2005) require caution because it is difficult to distinguish loss of 

sensitive species and ensure the full representation of regional or local species when richness 

is used (Lindenmayer, 1999; Magurran, 2003).  

Habitat-based surrogates are appealing because they do not require the direct 

measurement of species occurrence and can usually be described cost effectively. Predicting 

the occurrence of species rapidly and cost effectively for landscapes that are changing 

frequently because of management practices, however, is a challenging issue. Successful 

approaches have been proposed and tested for some species, but these studies tend to more 

intensely measure habitat use or use abundance as a response variable (e.g., Florida Scrub 

Jay, Aphelocoma coerulescens; Carter et al., 2006). The cost of obtaining these data is often 

prohibitive. If similarities in structural association could be identified for groups of species, 

predicting occurrence and response to management practices could be made even more 

efficient. Although we found statistically distinct groups, we did not find that they were 

predicted well by structure.  

Other studies have analyzed prediction errors and questioned the underlying habitat-

relationship models used to predict occurrence (Boone and Krohn, 1999), or more broadly 
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the use of environmental diversity as a surrogate for species diversity (Araújo et al., 2001). In 

our study there were significant correlations among structure and species groups, but the 

relationships were weak. Given the lack of predictive success and variance within groups, 

using structure alone to monitor species assemblages is not a feasible management option in 

our study area. With the results of our study we agree with Kavanagh and Stanton (2005) and 

Manley et al. (2004) that it is better to monitor species directly than to rely on habitat 

surrogates that are not proven reliable.  

Ensuring that surrogate measures are thoroughly tested and robust through time in the 

dynamic environments of forests will also require long-term monitoring data. Continued 

species monitoring and research on the development of surrogate approaches in forested 

environments would benefit from adaptive management (i.e., experiments with controls and 

replicates; sensu Walters, 1986). Although recording presence and absence of different 

species does not necessarily provide insight as to how to improve management because 

causal mechanisms are not identified (Stone and Porter, 1998), these data collected over the 

long term through monitoring could potentially identify the responses of species to 

modification of structure and, therefore, go beyond correlative inference.  
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Chapter 5. General Conclusions 

Accurately predicting species occurrence is an important aspect in the studies of 

ecology and conservation management. Economic and social values often conflict with 

ecologic values on forested landscapes. With efficient biodiversity monitoring programs, 

forest managers may be able to better incorporate a balance of competing goals. Linking 

variables directly affected by forest management activities, specifically measures of forest 

structure, to the occurrence of species and assemblages may provide forest managers with a 

useful tool to monitor, manage, and help mitigate the effects of industrial harvest on species 

diversity. Through my research, I investigated using forest structure to predict the occurrence 

of single species and species groups, as well as how methods of detection may influence 

model outcomes. Unique aspects of the research I conducted include simultaneous collection 

of distribution data for multiple species, the use of external data to validate single-species 

models, and the extremely detailed structure data collected over multiple scales. Overall, the 

success of forest structure as a surrogate measure of vertebrate presence was poor. Therefore, 

the hypothesis that structure can be used in place of direct species monitoring can not be 

accepted.   

Structure as a surrogate measure 

I was able to model a small portion of the species detected (n = 55). Although this 

was a low percentage (<30%) of the overall species detected in the study area, it can be 

considered successful in that modelling this number of species by taking a species-by-species 

approach would have taken considerably more time, effort, and other resources. By 

conducting concurrent inventories, significant amounts of data were collected relatively 



 130 

efficiently. Further, the presence and absence data provide baseline distribution and habitat 

association information that can be used to improve future modelling efforts. Research 

designed for a single species, however, often has much better results in terms of model 

outcomes, likely because of more intensive measurement of habitat use, either through direct 

observation or radio-telemetry.  

In my research, I found that different types of detection (e.g., sign, audio, visual) led 

to inclusion of different habitat variables in models and different levels of model 

discrimination (i.e., ROC values; Chapter 2). I believe this result is a consequence of species 

being more selective of habitat for certain activities that may result in different types of 

detection. For example, the Pileated Woodpecker may be highly selective in using a tree for 

foraging or nesting, which results in sign detections, but not very selective in choosing 

habitat to commute through, which may result in visual or audio detections. Future inventory 

efforts may consider modifying methodologies to increase the detection of species use of 

specific forest structures deemed critical habitat elements and should always include the 

detection type for the potential of separate analysis.  

Relating species presence to habitat characteristics is not without its critics because of 

the correlative nature of relationships, interactions with others species, and various aspects of 

behaviour (see review Mitchell, 2005). Regardless, describing species-habitat relationships 

remains an extremely important research and management goal. Other researchers have 

found significant relationships between species richness and physical characteristics of the 

environments and forest structure in particular (e.g., birds; Diaz et al., 2005; herptofauna; 

Loehle et al., 2005; spiders; Oxbrough, et al., 2005). Using species richness as a response 

variable, however, may not reveal losses or population declines of specific species. For 
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example, areas subjected to intermediate disturbance (Connell, 1978) and ecotones (e.g., 

riparian areas; Naiman and Décamps, 1997) often have high diversity, but the species 

represented may not include species that are sensitive to disturbance or require large areas of 

contiguous forests. Using species richness, therefore, may miss sensitive species that are 

important components of the suite of species that occur in an area (Magurran, 2003). 

Ensuring that all species are represented across the landscape and that viable populations are 

maintained remains the overall goal of most management programs aimed at conserving 

biodiversity. More sensitive species could be included in a fine-filter approach and, therefore, 

complementary approaches should continue to be recommended (Lindenmayer and Franklin, 

2002). 

Neither single-species (Chapter 3) nor multiple-species (Chapter 4) models resulted in 

clear relationships with forest structure. There were several variables, however, that were 

repeatedly used, independent of the approach or statistical methodology. Specifically, 

distance to edge, distance to water, and edge density were common predictors of species or 

species-group occurrence. Further, several single-species models combined variables that 

described forest structure at multiple scales and the variables most often included in plot 

models (i.e., distance to water, large tree basal area, and dead tree basal area) were not as 

frequently included in stand models, suggesting that the influence of these structures on 

species presence was localized (Chapter 3). Overall, because the scale at which different 

species use habitat varies so widely, generalisations among presence and forest structure 

across species are difficult to infer (Chapter 3 and Chapter 4). The results of my research, and 

that of others, highlight the importance of spatial context and scale of habitat as factors 

related to habitat use (e.g., Scott et al., 2002). Spatial context, however, is not a routinely 
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described component of structure when used for forest management purposes. Further 

research on the influence of spatial configuration of elements of forest structure (e.g., large 

trees, dead trees) and the spatial context of habitats (i.e., distance to specific habitat features) 

should be a priority to improve the potential of management recommendations regarding 

harvest patterns, retention, and recruitment of important elements as the current emphasis on 

structure without context appears misguided.  

Uncertainty 

Examining potential sources of error is frequently overlooked, but is an important 

aspect of model validation (Barry and Elith, in press). My examination of potential sources 

of error indicated that spatial uncertainty was the most problematic. Models derived from 

detections that were spatially certain (e.g., sign) resulted in models with better discrimination 

(i.e., higher ROC values; Chapter 2) and models for species that were associated with high 

spatial uncertainty at the plot level (e.g., Sandhill Crane) had poorer discrimination (i.e., 

lower ROC values; Chapter 3). Because variation in forest structure was high within plots, 

accurately determining the location of a species seems particularly crucial to model 

performance. For species that are rarely detected with high levels of spatial certainty, plot-

level monitoring is not likely appropriate without high confidence in occurrence data. 

Methods that illicit responses from individuals that are highly mobile (e.g., owls and 

woodpeckers) may further confound determination of the relationship with habitat elements 

as individuals may move before they are detected (these occurrence points could be modelled 

at larger landscape scales). I did not find a relationship between temporal uncertainty and 

model discrimination, which is probably because of the short lifespan of most measures of 
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presence through sign (e.g., tracks and scat) relative to changes in forest characteristics from 

disturbance (e.g., harvest, fire, or windthrow).  

Validation 

With the presence and absence data collected, species-structure models were 

developed for 55 species, some at multiple scales. Discrimination and reliability of several of 

these models, however, were weak (Chapter 3). Further, when the models were validated 

with spatially and temporally independent data, most models failed to meet the criteria of a 

“good” model (i.e., had poor discrimination and / or reliability). Discrimination and 

reliability tended to be less when spatially validated compared to temporal validation, 

suggesting that site history may be an important factor influencing species presence (e.g., 

Tyre et al., 2001) and that models cannot be applied across an environmental gradient in my 

study area (Van Horne, 2002).  This also reinforces the association of spatial uncertainty and 

poor model performance. Habitat models have often been used for management purposes 

without adequate validation (Rykiel, 1996), and this research casts further doubt on that 

practice. Given the dynamic nature of forests and species populations, continued assessment 

of models through time should be a required aspect of any program that uses species-habitat 

models as a surrogate measure of presence.  

Summary 

The extensive presence and absence data across taxa, vegetation data collection at 

multiple scales, examination of relationships between structure and single species and species 

assemblages, and the comparative analysis among techniques allowed for a thorough 

examination of the potential of structure as a surrogate measure of species occurrence. One 
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outcome of this approach was the demonstration that multiple-species monitoring can be 

achieved efficiently and cost-effectively. The external validation of models allowed for 

confident conclusions to be drawn regarding the ability of the model to accurately predict the 

occurrence of species. Finally, using individual species presence and absence, as opposed to 

species richness, explicitly tested the potential of forest structure as a surrogate measure to 

monitor occurrence for a broad range of species. Few studies have examined such a breadth 

of species concurrently and several of the species modelled are not frequently studied. The 

model results highlight the complex relationship among species presence and spatial aspects 

of forest structure and overall, they provide a strong starting point for the continued 

development of biodiversity monitoring objectives. 

Species that show strong avoidance of edge and selection for continuous stands are 

likely to be negatively impacted by the current management practices in the study area and 

may be species of concern. Species with strong relationships with certain structural elements 

could be tested for their potential as indicator species. Within broader biodiversity 

management objectives, such as ecosystem management and representation and single-

species management, the models developed in my research can complement a comprehensive 

approach to biodiversity monitoring. 

As much as the above aspects are strengths of my research, they also identify 

important weaknesses of the approach. Presence and absence data are often criticised because 

they do not provide information on important demographic parameters such as fecundity and 

mortality (Magurran, 2003); however, these data are much more costly and time consuming 

to collect. Using several different methodologies to collect data made it difficult to quantify 

effort across methods for different taxa, and therefore, the potential of using another measure, 
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such as relative density was limited. Variables that described spatial context and models that 

included variables measured at multiple scales were frequently identified as best models for 

several species and groups of species (Chapter 3 and 4). This was not unexpected, but 

because of characteristics of species, such as mobility and territory size that result in the 

perception of landscapes at different scales (e.g., Vos et al., 2001), generalisations were 

difficult across single-species models (Chapter 3) and limit the utility of the surrogate 

approach. Finally, my focus on vertebrate species may be criticized because, overall, 

vertebrates represent a small portion of species diversity. Indeed, future studies may benefit 

from the examination of taxa that are more diverse, use structure at smaller scales, and are 

not as flexible in their habitat selection (e.g., Redak, 2000). However, the availability of 

standardized methodology, relatively easy identification, and potential “buy-in” of 

stakeholders are benefits of using vertebrates. Further, in other studies, vertebrates have been 

shown to be effective surrogates of species richness (e.g., Grelle, 2002).  

Future research should examine presence-only modelling methodologies (e.g., 

ecological-niche factor analysis; Hirzel et al., 2002) that may account for differences in 

methodologies and uncertainty in detections. An extension of the study area to include areas 

that are not impacted by management activities may also help to elucidate important 

relationships between species occurrence and structure, although in my study area this option 

is limited because of extensive impacts of multiple users. Finally, an analysis of single taxon 

or subset of a taxon (e.g., birds or neotropical migrants) may provide further insights into 

management recommendations as birds, in particular, are often associated with specific 

elements of forest structure (e.g., MacArthur and MacArthur, 1961; Hagen and Meehan, 

2002; Diaz et al., 2005). 
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Appendix I. Explanation for electronic files and data CD. 

 
This electronic appendix includes a menu structure that accesses a literature review 

for all vertebrate species expected to occur in the Williams Lake Study Area, detection 
summaries for each species by year and, for each species that had sufficient detections to 
model, candidate variables used in models to predict presence and absence, model results, 
and validation results. The literature review (Gillingham, 2003) was mostly complete at the 
outset of this study, although I added and contributed to several species. The goal of this 
literature review was to identify key structural and non-structural (biological) requirements 
of species expected to occur in the study area. The literature review was used in the 
development of a priori groupings of species based on structural associations, as part of a 
parallel study (Gillingham and Psyllakis, 2004; see original lifeform groupings file; Figure 
I.1). I used this literature review extensively to determine candidate models and ran all 
subsequent analyses. It is included here for completeness.  

 
To access the files, select the “index.html” file to load the menu structure. It may take 

a minute to completely load in your browser.  Once loaded, an expandable menu structure 
will appear (Figure I.1) that lists each species, in taxonomic order. The literature cited is also 
available at any time by clicking the appropriate location in the header. Selecting the folder 
for the species of interest expands the text of the heading and displays the available files 
(Figure I.2). Using the Red-naped Sapsucker (Sphyrapicus nuchalis) as an example, several 
additional tables are presented that explain each available file for species that were modelled 
in the order displayed in Figure I.2: Files included in the “General” folder are: Literature 
Review (Table I.1), Detection Summary (Table I.2), and Grouping (Table I.3). Files included 
in the “Models” folder include: Candidate Variables (Table I.4), Model Selection Results 
(Table I.5), Best Model(s) (Table I.6), and Validation (Table I.7).  

 
 
 

 

 

 

Figure I.1. Screen capture of the menu structure included in Appendix I accessed by 
selecting the index file on the attached data CD. Literature cited can be accessed from this 
location at any time by clicking the appropriate link in the header. 
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Figure I.2. Screen capture of a portion of the bird species expected to occur in the Williams 
Lake Study Area. Clicking on a species will display available files. In the “General” folder, 
files include the complete literature review, number of detections, and a priori grouping. 
Under the “Model” folder, files include the listing of the candidate variables used in the 
competing model sets, the results of model selection, the explanation of the coefficients for 
the top models, and the temporal and spatial validation results of those top models. Not all 
species will have model files as several species were not sufficiently detected to model.  
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Table I.1. Using Red-naped Sapsucker (Sphyrapicus nuchalis) as an example, information 
included with the literature review for each species expected to occur in the Williams Lake 
Study Area is included on the data CD.1 

Red-naped Sapsucker (Sphyrapicus nuchalis) 

 

 
SS 3-6: 6H Primary cavity nester often adj. to water in live/dead trees 
(esp. deciduous). PCN. 

Feeding Requirements Tree boles in deciduous/mixed woodlands near water. 
Habitats Upland and Riparian forests. 
Other Critical 
Requirements/Comments NA 
Provincial Status / ELP 
Inventory List Breeds in B.C. 
General Nonstructural 
Information 

(1) Clutch dates 6 May-16 June. Clutch size 2. Young dates 14 May-4 
Aug. 

Species Migratory 

(1) Arrives in the Interior in late Mar.; main spring movement occurs 
through Apr.; autumn migration begins late Aug. - mid Sept.; a few birds 
documented into Oct. 

Species Resident (1) No Interior winter records, but 3 coastal. 

Breeds in Area 

(1) Widespread breeder across central southern and southeastern BC 
north to Yoho National Park and through the Chilcotin-Cariboo basin; 
rarely further north. 

Regional/Local/Provincial 

(1) Widely distrib. across south. BC E of the Pacific and Cascade ranges, 
N through Chilcotin-Cariboo basin and Nechako plateau; rarely to Nulki 
L. in Nechako lowlands; wanders irreg. W of Pacific and Cascade ranges 
and has been reported from the Fraser l 

Specialist or Generalist Generalist. 
Principle 
Predators/Parasites (3) weasels on fledged young. 
Principle Prey/Food (5) insects 
Principle Competitors NA 

Links to other species 
(1) may nest in trees inhabited by Pileated woodpecker, Northern flicker, 
European starling. 

Territorial Size 
(Exclusive/Overlapping) NA 

General Requirements 
(1) sea- 1300m elevation; (4) trees infected with disease that have been 
weakened inside and out: weak excavators. 

Vegetation Type 
(1)(4) deciduous and mixed woodlands where poplar and birch are 
common (McGillivray & Semenchuck 1998 in (4)). 

Vegetation Species 
Preferred 

(1)(4) aspen groves in open P. pine forests/aspen fir parkland/logged 
forests where decid. groves remain/ aspen groves in open 
rangeland/birch groves/subalpine forest edges/residential gardens; nests 
in decid. trees; T. aspen/birches/poplar/B. cottonwood/ 

Cover Type / Level 
Needed NA 

Food 
(5) cambium, fruit, berries, pine pitch often used instead of deciduous 
sap. 

 

                                                 
1 Literature cited included in the literature review can be found on the CD. 
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Table I.1. Literature review for the Red-naped Sapsucker (continued). 
 

Tree Diameter Class 
(DBH) (1) 15-64cm nesting tree dbh; (6) >/= 38 cm roosting tree. 
Course Woody Debris NA 
Decay Class NA 
Stem Density NA 
Stand Age/Tree Age NA 
Basal Area NA 
Understory NA 
Deadfalls Stumps 
Snags etc (6) snag dbh for both nesting and roosting >/= 38 cm. 
Water (Lakes, Streams, 
Riparian) NA 
Habitats Avoided NA 
Type, size/depth or 
other characters 
needed NA 
Water Requirement for breeding. 
Year-round (Y/N) NA 

Nest Type 

(1) cavity nester; nest heights .5-22.9m; cavity entrance hole 
diameters 10-17cm (3) first cavity in unexcavated trees at low height; 
in subsequent years new nests are excavated above the last on the 
same tree. 

Habitat Requirements 

(1) edge of woodlands adjacent to water bodies such as streams, 
ponds, sloughs, lakes, road edges, logging slashes, transmission line 
rights-of-way, mountain meadows (3) trees susceptible to heart rot 
(Keisker 1987 in (3)); preference for trees that show  

Snags/Cavities 
required NA 
Forest Cover type NA 
Other Breeding Needs NA 
Winter Food NA 
Winter Cover NA 
Other Winter 
Requirements NA 

Management Issues 

(1) In BC the geographical and biological relationships between 
nuchalis and ruber are complex; many areas where they meet, nest 
side by side, and interbreed. 

References Used 
(Number) 

(1) Campbell et al. 1990 (18); (2) Keisker 1987 (1012); (3) Daily 
1993 (1034); (4) McClelland & McClelland 2000 (1035); (5) Ehrlich 
et al. 1998 (2037); (6) BC Ministry of Forests 2001 (3719) 
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Table I.2. Example of the Detection Summary file for the Red-nap Sapsucker. This file 
exists for all species detected in the Williams Lake Study Area from 2001-2004.  

Detection summary for Red-naped Sapsucker (Sphyrapicus nuchalis) 

Year Total 

Detections 

Plot/Transect 

Detections 

2001 41  24  
2002 99  45  
2003 137  64  
2004 84  35  
All Years All 

 
 
 

 

 

 

Table I.3. Example of the lifeform assignment table for the Red-naped Sapsucker found on 
the data CD. Lifeform groupings were part of a concurrent study and not discussed in this 
dissertation. The information is included for completeness. 

Lifeform assignment for Red-naped Sapsucker (Sphyrapicus nuchalis) 

This species was assigned to 1 Lifeform grouping(s) 

Lifeform 8.0: Standing dead, dying trees and forages in trees, forest openings or edges; 

Requires dead or dying trees for nesting, denning, perching, or foraging' 'Includes 
species that excavate their own cavities as well as those that use secondary cavities and 
natural cavities' 

A full description of each lifeform grouping and their member species can be found by 
clicking on the ‘Original Lifeform Grouping’ at the bottom of the folder list. 
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Table I.4. Example of Candidate Variables for the Red-naped Sapsucker included on the 
data CD. Candidate variables were selected and used to construct competing models for all 
species that were detected in the Williams Lake Study Area and met prevalence criteria 
(>10% and <90% occurrence). 
 

Candidate Variables for examining presence/absence of Red-naped Sapsucker 

(Sphyrapicus nuchalis) 

Plot-Level Variables percent gap, percent at cover, deciduous stems per ha, 
live basal area, dead basal area, large basal area, 
distance from forest edge 

Vegetation Resource 

Inventory (VRI) Variables 
aspen cover, stand structure class, crown closure, 
leading species height, live basal area 

Stand-Level Variables percent gap, percent at cover, deciduous tree stems per 
ha, dead basal area, live basal area, large tree basal 
area, stand distance from forest edge 

Landscape-Level Variables interspersion juxtaposition index 50 ha, mean patch 
size 50 ha, edge density 50 ha, mean core area 50 ha, 
proportion conifer 50 ha, proportion aspen shrub 50 ha 
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Table I. 5. Example of the Model Selection Result file included on the data CD for the Red-
naped Sapsucker. Models with  AIC < 2.0 are reported. Tables I.5A, I.5B, I.5C include the 
results for models using plot, Vegetation Resource Inventory (VRI), and stand structural data 
models, respectively. 
  
Table I.5A. Results from plot models for the Red-naped Sapsucker. 
  

Model K N ROC LL AICc ∆AIC wi Evidence 
Ratio 

Percent canopy gap 
Distance to forest edge 
Proportion aspen and 
shrub (50 ha)* 
 

4 228 0.753 -133.015 274.139 0.000 0.359 1.000 

Percent canopy gap 
Distance to forest edge 
Proportion aspen and 
shrub (50 ha)* 
Natural stump / ha  
 

5 228 0.750 -132.761 275.703 1.564 0.164 2.186 

Distance to forest edge 
Proportion aspen and 
shrub (50 ha)* 
 

3 228 0.745 -134.827 275.707 1.568 0.164 2.190 

Distance to forest edge 
Proportion aspen and 
shrub (50 ha)* 
Natural stump / ha 
  

4 228 0.743 -133.903 275.913 1.774 0.148 2.428 

  
* arcsine transformation 
  
  



 162 

Table I.5B. Results from Vegetation Resource Inventory  (VRI) models for the Red-naped 
Sapsucker. 
 
Note: stand structure classes 6, 8, 13 not used due to complete separation 
  
  

Model K N ROC LL AICc ∆AIC wi Evidence 
Ratio 

Sum of crown closure  
  

2 83 0.603 -55.706 115.463 0.000 0.175 1.000 

Aspen cover 
  

2 83 0.599 -56.052 116.153 0.691 0.124 1.413 

Aspen cover  
Sum of crown closure 
  

3 83 0.687 -55.188 116.529 1.066 0.103 1.704 

Aspen cover  
Leading species height  
  

3 83 0.655 -55.227 116.606 1.143 0.099 1.771 

Live basal area 
  

2 83 0.538 -56.389 116.827 1.365 0.089 1.979 

Sum of crown closure 
Leading species height  
  

3 83 0.621 -55.521 117.195 1.732 0.074 2.378 

 
 
 
 
  
Table I.5C. Results from stand-structure data models for the Red-naped Sapsucker. 
  
  

Model K N ROC LL AICc ∆AIC wi Evidence 
Ratio 

Percent Aspen 
Edge density (50 ha) 
  

3 97 0.716 -56.393 118.914 0.000 0.313 1.000 

Edge density (50 ha) 
  

2 97 0.704 -57.487 119.017 0.102 0.297 1.052 
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Table I.6. Example of the Best Model file for the Red-naped Sapsucker. The β-coefficeints 
and odds ratios are reported for each variable included in the top model (i.e., lowest AICc) for 
plot (Table I.6A), Vegetation Resource Inventory (Table I.6B), and stand models(Table I.6C). 
 
Table I.6A. Top logistic regression model that best discriminated between presence and not 
detected at the plot sceale for the Red-naped Sapsucker. 
             

      95% C.I. 

Variable β S.E. Z p-value 
Odds 
Ratio Lower Upper 

Percent canopy gap 
 

 1.251 0.637  1.960 0.050   3.494 0.949   12.862 

Distance to forest edge 
 

-0.007 0.003 -2.700 0.007   0.993 0.988     0.997 

Proportion aspen and 
shrub (50 ha)* 
 

 3.413 1.296  2.630 0.008 30.363 2.232 413.075 

Constant -1.398 0.648 -2.160 0.031       
  
* arcsine transformed 
 
 
 
 

 

 

Table I.6B. Top logistic regression model that best discriminated between presence and not 
detected at the stand scale using Vegetation Resource Inventory data for the Red-naped 
Sapsucker. 
  
 
             

      95% C.I. 

Variable β S.E. z p-value 
Odds 
Ratio Lower Upper 

Sum of crown 
closure  
 

-0.019 0.015 -1.238 0.216 0.981 0.956 1.008 

Constant 
 1.430 0.986 1.450 0.147       

 



 164 

 
Table I.6C. Top logistic regression model that best discriminated between present and not 
detected at the stand scale using stand level data for the Red-naped Sapsucker. 
  

      95% C.I. 

Variable β S.E. z 
p-

value 
Odds 
Ratio Lower Upper 

Percent Aspen  0.041 0.030  1.369   0.171 1.042 0.981 1.106 
Edge density (50 
ha) 

 0.012 0.003  3.571 <0.000 1.012 1.005 1.019 

Constant -2.371 0.783 -3.030   0.002       
  
 
 
  
Table I.7. Example of Validation Files included on the data CD for the Red-naped Sapsucker. 
Files are included for those species that had sufficient detections in 2004 at the spatial or 
temporal validation plots to test models at either, or both, the plot and stand scale. For spatial 
validation models, β -coefficients, p-value, and odds ratio are reported for each variable 
included in the model, as well as the ROC values for the model constructed with 
development data and its spatially validated counterpart. For temporal validation tables the β-
coefficient for each variable is reported using a single year’s data for all years, including 
2004, as well as ROC values for those models. 
  
Table I.7A. Spatial validation of the best plot-level model for the Red-naped Sapsucker.  
             

 2001-2003 2004 

Variable β 
p-

value 
Odds 
Ratio 

ROC 
β 

p-
value 

Odds 
Ratio 

ROC 

Percent 
canopy gap 
 

 1.251 0.050 3.494 0.753 -1.496 0.418 0.224 0.737 

Distance to 
forest edge 
 

-0.007 0.007 0.993   -0.011 0.014 0.989   

Proportion 
aspen and 
shrub (50 ha)* 
 

 3.413 0.008 30.363    1.131 0.482 3.100   

Constant -1.398 0.031     -0.345 0.731     
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Table I.7B. Temporal validation of the best plot-level model for the Red-naped Sapsucker. 
  
  
  
 β 
Variable 2001-03 2001 2002 2003 2004 
Percent canopy gap 
 

1.251 2.096 0.456 0.558 -1.236 

Distance to forest 
edge 
 

-0.007 -0.005 -0.013 -0.007 -0.011 

Proportion aspen and 
shrub (50 ha)* 
 

3.413 1.195 2.995 2.058 5.501 

Constant -1.398 -3.441 -1.713 -1.325 -1.232 
       
 ROC 0.753 0.692 0.748 0.692 0.773 

  
  
Table I.7C. Spatial validation of the best stand-level model for the Red-naped Sapsucker. 
  
             

 2001-2003 2004 

Variable β 
p-

value 
Odds 
Ratio 

ROC 
β 

p-
value 

Odds 
Ratio 

ROC 

Percent 
Aspen 
 

  0.041   0.171 1.042 0.716 2.203 0.542 9.052 0.752 

Edge density 
(50 ha) 
 

  0.012 <0.000 1.012   0.011 0.072 1.011   

Constant -2.371   0.002     -3.332 0.005     
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Table I.7D. Temporal validation of the best stand-level model for the Red-naped Sapsucker. 
 
  

  Β 
Variable 2001-03 2001 2002 2003 2004 
Percent Aspen 0.041 -

0.037 
0.080 -0.006 -0.072 

Edge density (50 ha) 0.012 0.007 0.014 0.014 0.006 

Constant 
-2.371 -

2.731 
-4.421 -3.188 -1.574 

            
ROC 0.716 0.659 0.761 0.726 0.702 
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Appendix II. List of vertebrate species (200 species), with associated number of detections, 
detected in the Williams Lake Study Area from 2001-2004. Species modelled are in bold text.  
 

 Species Scientific Name Detections 
all years 

Reptiles Common Garter Snake Thamnophis sirtalis 2 
 Western Terrestrial Garter 

Snake 
Thamnophis elegans 3 

    
Amphibians Columbia Spotted Frog Rana luteiventris 8 

 Long-toed Salamander Ambystoma 

macrodactylum 

7 

 Western Toad Bufo boreas 151 
 Wood Frog Rana sylvatica 47 
    

Birds Alder Flycatcher Empidonax alnorum 86 
 American Avocet Recurvirostra americana 1 
 American Bittern Botaurus lentiginosus 2 
 American Coot Fulica americana 203 
 American Crow Corvus brachyrhynchos 39 
 American Kestrel Falco sparverius 3 
 American Pipit Anthus rubescens 1 
 American Redstart Setophaga ruticilla 53 
 American Robin Turdus migratorius 1133 
 American Widgeon Anas americana 65 
 Bald Eagle Haliaeetus leucocephalus 5 
 Barred Owl Strix varia 48 
 Barrow's Goldeneye Bucephala islandica 38 
 Belted Kingfisher Ceryle alcyon 1 
 Black Tern Chlidonias niger 113 
 Black-backed 

Woodpecker 

Picoides arcticus 54 

 Black-capped Chickadee Poecile atricapillus 805 
 Blackpoll Warbler Dendroica striata 4 
 Blue Grouse Dendragapus obscurus 2 
 Blue-winged Teal Anas discors 52 
 Bohemian Waxwing Bombycilla garrulus 6 
 Bonaparte's Gull Larus philadelphia 1 
 Boreal Chickadee Poecile hudsonicus 11 
 Boreal Owl Aegolius funereus 2 
 Brewer's Blackbird Euphagus cyanocephalus 3 
 Brown Creeper Certhia americana 366 
 Brown-headed Cowbird Molothrus ater 220 
 Bufflehead Bucephala albeola 238 
 Calliope Hummingbird Stellula calliope 4 
 Canada Goose Branta canadensis 305 
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 Species Scientific Name Detections 
all years 

 Canvasback Aythya valisineria 1 
 Cassin's Vireo Vireo cassinii 1190 
 Cedar Waxwing Bombycilla cedrorum 31 
 Chipping Sparrow* Spizella passerina 1650 
 Cinnamon Teal Anas cyanoptera 26 
 Clay-colored Sparrow Spizella pallida 28 
 Common Goldeneye Bucephala clangula 6 
 Common Loon Gavia immer 174 
 Common Merganser Mergus merganser 2 
 Common Nighthawk Chordeiles minor 13 
 Common Raven Corvus corax 358 
 Common Redpoll Carduelis flammea 17 
 Common Snipe Gallinago gallinago 109 
 Common Yellowthroat Geothlypis trichas 178 
 Cooper's Hawk Accipiter cooperii 2 
 Dark-eyed Junco* Junco hyemalis 2403 
 Downy Woodpecker Picoides pubescens 69 
 Dusky Flycatcher Empidonax oberholseri 172 
 Eastern Kingbird Tyrannus tyrannus 11 
 European Starling Sturnus vulgaris 2 
 Evening Grosbeak* Coccothraustes vespertinus 1209 
 Gadwall Anas strepera 16 
 Golden Eagle Aquila chrysaetos 1 
 Golden-crowned Kinglet Regulus satrapa 734 
 Golden-crowned Sparrow Zonotrichia atricapilla 2 
 Gray Catbird Dumetella carolinensis 3 
 Gray Jay Perisoreus canadensis 329 
 Great Blue Heron Ardea herodias 1 
 Great Gray Owl Strix nebulosa 9 
 Great Horned Owl Bubo virginianus 30 
 Greater Scaup Aythya marila 4 
 Greater Yellowlegs Tringa melanoleuca 46 
 Green-winged Teal Anas crecca 75 
 Hairy Woodpecker Picoides villosus 239 
 Hammond's Flycatcher Empidonax hammondii 147 
 Hermit Thrush Catharus guttatus 1009 
 Herring Gull Larus argentatus 2 
 Hooded Merganser Lophodytes cucullatus 13 
 Horned Grebe Podiceps auritus 2 
 Killdeer Charadrius vociferus 82 
 Least Flycatcher Empidonax minimus 213 
 Least Sandpiper Calidris minutilla 1 
 Lesser Scaup Aythya affinis 195 
 Lesser Yellowlegs Tringia flavipes 7 
 Lincoln's Sparrow Melospiza lincolnii 20 
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 Species Scientific Name Detections 
all years 

 Long-eared Owl Asio otus 2 
 MacGillivray's Warbler Oporornis tolmiei 92 
 Magnolia Warbler Dendroica magnolia 17 
 Mallard Anas platyrhynchos 312 
 Marsh Wren Cistothorus palustris 308 
 Merlin Falco columbarius 4 
 Mountain Bluebird Sialia currucoides 8 
 Mountain Chickadee Poecile gambeli 1267 
 Nashville Warbler Vermivora ruficapilla 10 
 Northern Flicker Colaptes auratus 553 
 Northern Goshawk Accipiter gentilis 12 
 Northern Harrier Circus cyaneus 5 
 Northern Pintail Anas acuta 3 
 Northern Pygmy Owl Glaucidium gnoma 20 
 Northern Rough-winged 

Swallow 
Stelgidopteryx serripennis 4 

 Northern Saw-whet Owl Aegolius acadicus 29 
 Northern Shoveler Anas clypeata 7 
 Northern Waterthrush  Seiurus noveboracensis 145 
 Olive-sided Flycatcher Contopus borealis 488 
 Orange-crowned Warbler Vermivora celata 689 
 Osprey Pandion haliaetus 1 
 Pacific Slope Flycatcher Empidonax difficilis 2 
 Pied-billed Grebe Podilymbus podiceps 106 
 Pileated Woodpecker Dryocopus pileatus 384 
 Pine Grosbeak Pinicola enucleator 18 
 Pine Siskin* Carduelis pinus 863 
 Purple Finch Carpodacus purpureus 4 
 Red Crossbill Loxia curvirostra 262 
 Red-breasted Merganser Mergus serrator 5 
 Red-breasted Nuthatch* Sitta canadensis 1868 
 Red-eyed Vireo Vireo olivaceus 51 
 Redhead Aythya americana 14 
 Red-naped Sapsucker Sphyrapicus nuchalis 361 
 Red-necked Grebe Podiceps grisegena 2 
 Red-tailed Hawk Buteo jamaicensis 88 
 Red-winged Blackbird Agelaius phoeniceus 286 
 Ring-billed Gull Larus delawarensis 1 
 Ring-necked Duck Aythya collaris 132 
 Ruby-crowned Kinglet* Regulus calendula 2021 
 Ruddy Duck Oxyura jamaicensis 145 
 Ruffed Grouse Bonasa umbellus 350 
 Rufous Hummingbird Selasphorus rufus 9 
 Rusty Blackbird Euphagus carolinus 1 
 Sandhill Crane Grus canadensis 279 
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 Species Scientific Name Detections 
all years 

 Savannah Sparrow Passerculus sandwichensis 55 
 Say's Phoebe Sayornis saya 6 
 Semipalmated Plover Charadrius semipalmatus 1 
 Semipalmated Sandpiper Calidris pusilla 5 
 Sharp-shinned Hawk Accipiter striatus 3 
 Sharp-tailed Grouse Tympanuchus phasianellus 3 
 Short-billed Dowitcher Limnodromus griseus 3 
 Solitary Sandpiper Tringa solitaria 58 
 Song Sparrow Melospiza melodia 113 
 Sora Porzana carolina 109 
 Spotted Sandpiper Actitis macularia 27 
 Spruce Grouse Dendragapus canadensis 35 
 Swainson's Thrush* Catharus ustulatus 1959 
 Tennessee Warbler Vermivora peregrina 3 
 Three-toed Woodpecker Picoides tridactylus 102 
 Townsend's Solitaire Myadestes townsendi 248 
 Townsend's Warbler Dendroica townsendi 135 
 Tree Swallow Tachycineta bicolor 157 
 Varied Thrush Ixoreus naevius 19 
 Veery Catharus fuscescens 26 
 Vesper Sparrow Pooecetes gramineus 9 
 Violet-green Swallow Tachycineta thalassina 16 
 Warbling Vireo Vireo gilvus 655 
 Western Kingbird Tyrannus verticalis 2 
 Western Tanager Piranga ludoviciana 1111 
 Western Wood-Pewee Contopus sordidulus 504 
 White-crowned Sparrow Zonotrichia leucophrys 19 
 White-winged Crossbill Loxia leucoptera 12 
 Willow Flycatcher Empidonax traillii 204 
 Wilson's Phalarope Phalaropus tricolor 26 
 Wilson's Warbler Wilsonia pusilla 150 
 Winter Wren Troglodytes troglodytes 103 
 Wood Duck Aix sponsa 2 
 Yellow Warbler Dendroica petechia 98 
 Yellow-headed Blackbird Xanthocephalus 

xanthocephalus 

168 

 Yellow-rumped Warbler* Dendroica coronata 1863 
    

Mammals Beaver Castor canadensis 6 
 Big Brown Bat Eptesicus fuscus 6 
 Black Bear Ursus americanus 451 
 Bushy-tailed Woodrat Neotoma cinerea 3 
 Columbian Ground Squirrel Spermophilus columbianus 4 
 Common Shrew Sorex cinereus 4 
 Cougar Puma concolor 10 



 171 

 Species Scientific Name Detections 
all years 

 Coyote Canis latrans 160 
 Deer Mouse Peromyscus maniculatus 455 
 Dusky Shrew Sorex monticolus 1 
 Ermine Mustela erminea 29 
 Fisher Martes pennanti 7 
 Grey Wolf Canis lupus 10 
 Grizzly Bear Ursus arctos 1 
 Heather Vole Phenacomys intermedius 2 
 Hoary Bat Lasiurus cinereus 11 
 Little Brown Myotis Myotis lucifugus 21 
 Long Legged Myotis Myotis volans 3 
 Long-tailed Weasel Mustela frenata 78 
 Lynx Lynx canadensis 42 
 Marten Martes americana 10 
 Meadow Jumping Mouse Zapus hudsonius 2 
 Meadow Vole Microtus pennsylvanicus 97 
 Moose Alces alces 876 
 Mule Deer* Odocoileus hemionus 2255 
 Muskrat Ondatra zibethicus 46 
 Northern Bog Lemming Synaptomys borealis 3 
 Northern Flying Squirrel Glaucomys sabrinus 24 
 Porcupine Erethizon dorsatum 8 
 Red Fox Vulpes vulpes 27 
 Red Squirrel* Tamiasciurus hudsonicus 2449 
 Silver-haired Bat Lasionycteris noctivagans 2 
 Snowshoe Hare Lepus americanus 2218 
 Southern Red-backed 

Vole 

Clethrionomys gapperi 2602 

 Striped Skunk Mephitis mephitis 8 
 Western Jumping Mouse Zapus princeps 2 
 Western Long-eared 

Myotis 
Myotis evotis 163 

 Yellow-bellied Marmot Marmota flaviventris 1 
 Yellow-pine Chipmunk Tamias amoenus 317 

* species not modelled because of commonness 
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Appendix III. List of vertebrate species used in non-metric multidimensional scaling 
ordination analysis (n = 66). Species were detected in the Williams Lake Study Area from 
2001-2004 and ordination analysis was used in conjunction with cluster analysis to determine 
plots with similar species co-occurrence. Species detected at less than 5% of plots were 
omitted as were species that had high levels of spatial uncertainty associated with their 
detection (e.g., rarely detected not in flight, calls that travel long distances).  
 
 

 Species Scientific Name Total 
detections all 

years 
Amphibians Western Toad  Bufo boreas 151 

    
Birds Alder Flycatcher Empidonax alnorum 86 

 American Crow Corvus brachyrhynchos 39 
 American Redstart Setophaga ruticilla 53 
 American Robin Turdus migratorius 1133 
 Black-backed Woodpecker Picoides arcticus 54 
 Black-capped Chickadee Poecile atricapillus 805 
 Brown Creeper Certhia americana 366 
 Brown-headed Cowbird Molothrus ater 220 
 Cassin's Vireo Vireo cassinii 1190 
 Chipping Sparrow Spizella passerine 1650 
 Clay-colored Sparrow Spizella pallida 28 
 Common Raven Corvus corax 358 
 Common Yellowthroat Geothlypis trichas 178 
 Dark-eyed Junco Junco hyemalis 2403 
 Downy Woodpecker Picoides pubescens 69 
 Dusky Flycatcher Empidonax oberholseri 172 
 Golden-crowned Kinglet Regulus satrapa 734 
 Gray Jay Perisoreus canadensis 329 
 Hairy Woodpecker Picoides villosus 239 
 Hammond's Flycatcher Empidonax hammondii 147 
 Hermit Thrush Catharus guttatus 1009 
 Least Flycatcher Empidonax minimus 213 
 MacGillivray's Warbler Oporornis tolmiei 92 
 Mountain Chickadee Poecile gambeli 1267 
 Northern Flicker Colaptes auratus 553 
 Northern Waterthrush  Seiurus noveboracensis 145 
 Olive-sided Flycatcher Contopus borealis 488 
 Orange-crowned Warbler Vermivora celata 689 
 Pileated Woodpecker Dryocopus pileatus 384 
 Pine Siskin Carduelis pinus 863 
 Red-breasted Nuthatch Sitta canadensis 1868 
 Red-eyed Vireo Vireo olivaceus 51 
 Red-naped Sapsucker Sphyrapicus nuchalis 361 
 Red-tailed Hawk Buteo jamaicensis 88 
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 Species Scientific Name Total 
detections all 

years 
 Ruby-crowned Kinglet Regulus calendula 2021 
 Ruffed Grouse Bonasa umbellus 350 
 Song Sparrow Melospiza melodia 113 
 Spruce Grouse Dendragapus canadensis 35 
 Swainson's Thrush Catharus ustulatus 1959 
 Three-toed Woodpecker Picoides tridactylus 102 
 Townsend's Solitaire Myadestes townsendi 248 
 Townsend's Warbler Dendroica townsendi 135 
 Veery Catharus fuscescens 26 
 Warbling Vireo Vireo gilvus 655 
 Western Tanager Piranga ludoviciana 1111 
 Western Wood-Pewee Contopus sordidulus 504 
 Willow Flycatcher Empidonax traillii 204 
 Wilson's Warbler Wilsonia pusilla 150 
 Winter Wren Troglodytes troglodytes 103 
 Yellow Warbler Dendroica petechia 98 
 Yellow-rumped Warbler Dendroica coronata 1863 
    

Mammals Black Bear Ursus americanus 451 
 Coyote Canis latrans 160 
 Deer Mouse Peromyscus maniculatus 455 
 Ermine Mustela erminea 29 
 Long-tailed Weasel Mustela frenata 78 
 Lynx Lynx canadensis 42 
 Meadow Vole Microtus pennsylvanicus 97 
 Moose Alces alces 876 
 Mule Deer Odocoileus hemionus 2255 
 Red Fox Vulpes vulpes 27 
 Red Squirrel Tamiasciurus hudsonicus 2449 
 Snowshoe Hare Lepus americanus 2218 
 Southern Red-backed Vole Clethrionomys gapperi 2602 
 Yellow-pine Chipmunk Tamias amoenus 317 
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 Appendix IV. Comparison of cluster analysis results for groupings of plots based on 
vertebrate-species co-occurrence (X, lettered groups) and structural characteristics (Y, 
numbered groups). Structure groups with the highest number of plots overlapping with 
species groups are in bold text (Y). Overlap for groups based on each method was minimal 
(range = 16.7% - 50.0%).  
 
 Cluster Groups 
Plot  A 1 B 2 C 3 D 4 E 5 F 6 G 7 H 8 I 9 J 10 K 11 
P1    X Y                     
P17   X         Y             
P18   X             Y         
P19   X             Y         
P22   X             Y         
P38   X         Y             
P39   X         Y             
P40   X               Y       
P41   X       Y               
P44   X Y                     
P45   X     Y                 
P47   X       Y               
P48   X               Y       
P62   X         Y             
P74   X       Y               
P77   X       Y               
P78   X       Y               
P106  X         Y             
P107  X   Y                   
P120  X       Y               
P121  X       Y               
P124  X       Y               
P125  X               Y       
P127  X       Y               
P135  X                 Y     
P136  X       Y               
P137  X                 Y     
P139  X       Y               
P140  X       Y               
P169  X                   Y   
P170  X                 Y     
P179  X Y                     
P127A X       Y               
P127B X       Y               
P2      X Y                   
P3      X   Y                 
P4     Y X                    
P5     Y X                    
P70     X           Y         
P71     X     Y               
P112    X       Y             
P113    X       Y             
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 Cluster Groups 
Plot  A 1 B 2 C 3 D 4 E 5 F 6 G 7 H 8 I 9 J 10 K 11 
P117    X         Y           
P153    X         Y           
P156    X         Y           
P157    X         Y           
P158    X         Y           
P187    X   Y                 
P192    X   Y                 
P209    X     Y               
P178A  Y X                    
P57A    X         Y           
P6     Y   X                  
P7        X   Y               
P9        X     Y             
P11       X Y                 
P13      Y X                  
P16       X         Y         
P30       X   Y               
P31    Y   X                  
P43    Y   X                  
P46    Y   X                  
P58       X           Y       
P59       X           Y       
P76       X         Y         
P104      X     Y             
P108   Y   X                  
P109      X     Y             
P110   Y   X                  
P118      X       Y           
P119      X           Y       
P122      X         Y         
P128      X   Y               
P129      X   Y               
P130      X                 Y 
P131     Y X                  
P138      X           Y       
P150      X         Y         
P151      X         Y         
P155      X         Y         
P159      X       Y           
P190   Y   X                  
P210     Y X                  
P110A     X     Y             
P114A     X   Y               
P118A     X           Y       
P8       Y   X                
P42    Y     X                
P72      Y   X                
P86        Y X                
P97        Y X                
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 Cluster Groups 
Plot  A 1 B 2 C 3 D 4 E 5 F 6 G 7 H 8 I 9 J 10 K 11 
P126        X         Y       
P188     Y   X                
P193     Y   X                
P10          Y X              
P12        Y   X              
P14        Y   X              
P25        Y   X              
P53        Y   X              
P80           X Y             
P82        Y   X              
P96        Y   X              
P114          X Y             
P134         Y X              
P141       Y   X              
P142          X         Y     
P145          X           Y   
P149          X         Y     
P171       Y   X              
P172   Y       X              
P173          X Y             
P178         Y X              
P184       Y   X              
P191   Y       X              
P199       Y   X              
P223          X   Y           
P224          X   Y           
P236          X           Y   
P243          X           Y   
P141A         X         Y     
P15             X Y           
P54             X Y           
P55             X Y           
P56             X Y           
P57             X Y           
P67        Y     X            
P68        Y     X            
P87        Y     X            
P90        Y     X            
P92        Y     X            
P174   Y         X            
P176       Y     X            
P177       Y     X            
P181            X         Y   
P183            X Y           
P202       Y     X            
P203            X         Y   
P206            X         Y   
P208            X         Y   
P222            X Y           
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 Cluster Groups 
Plot  A 1 B 2 C 3 D 4 E 5 F 6 G 7 H 8 I 9 J 10 K 11 
P237            X       Y     
P238         Y   X            
P240            X       Y     
P241            X         Y   
P152A           X Y           
P56B            X Y           
P20      Y         X          
P21      Y         X          
P32               X   Y       
P33            Y   X          
P34    Y           X          
P35    Y           X          
P36               X   Y       
P37            Y   X          
P166         Y     X          
P23                Y X        
P24                Y X        
P27                 X Y       
P28                 X   Y     
P49          Y       X        
P50                Y X        
P60          Y       X        
P61                 X Y       
P63                 X Y       
P64                 X Y       
P65      Y           X        
P79        Y         X        
P81        Y         X        
P101                X Y       
P102           Y     X        
P103           Y     X        
P105     Y           X        
P146                X Y       
P147                X   Y     
P148                X   Y     
P160                X   Y     
P161                X   Y     
P180       Y         X        
P195       Y         X        
P207                X Y       
P180A               X   Y     
P180B          Y     X        
P26                Y   X      
P88                   X   Y   
P89                   X   Y   
P91        Y           X      
P93                   X   Y   
P94                   X   Y   
P95              Y     X      
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 Cluster Groups 
Plot  A 1 B 2 C 3 D 4 E 5 F 6 G 7 H 8 I 9 J 10 K 11 
P143                  X Y     
P144                  X   Y   
P185             Y     X      
P196                  X   Y   
P201       Y           X      
P204                  X   Y   
P205                  X   Y   
P212       Y           X      
P230             Y     X      
P231         Y         X      
P232             Y     X      
P233                 Y X      
P239         Y         X      
P242                  X   Y   
P50A               Y   X      
P90A                  X   Y   
P29                     X Y   
P51              Y       X    
P52              Y       X    
P69            Y         X    
P132                    X   Y 
P133         Y           X    
P152             Y       X    
P154             Y       X    
P186       Y             X    
P198             Y       X    
P211       Y             X    
P220         Y           X    
P221         Y           X    
P234         Y           X    
P235                   Y X    
P56A             Y       X    
P83            Y           X  
P84            Y           X  
P85                Y       X  
P111               Y       X  
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Appendix V. Indicator species analysis to identify vertebrate species most closely associated 
with the 11 groups identified with cluster analysis of plots based on species co-occurrence in 
the Williams Lake Study Area from 2001-2004.  
 

We used indicator species analysis (Dufrêne and Legendre, 1997) to determine 
species most associated with each of the 11 plot groups identified with cluster analysis (Table 
V.1). Indicator species analysis describes how well each species separates among groups by 
comparing the occurrence of each species within each group (McCune and Grace, 2002). A 
perfect match occurs when the species only occurs in one group, never others. The p-value is 
calculated based on the proportion of randomized trials with indicator values equal to or 
exceeding the observed value (McCune and Grace, 2002) and tests the hypothesis of no 
differences among groups. The table is provided only as supplemental information as we 
made no attempt to interpret relationships.  
 
 
Table V.1. Species included in each group as determined by indicator species analysis. 
Groups were defined by cluster analysis of species co-occurrence for plots in the Williams 
Lake Study Area from 2001-2004. 
 

Species Latin group p-value 
Coyote Canis latrans 1 0.03 
Cassin's Vireo Vireo cassinii 1 0.01 
Hermit Thrush Catharus guttatus 1 0.02 
Snowshoe Hare Lepus americanus 1 0.02 
Lynx Lynx canadensis 1 0.01 
Red Squirrel Tamiasciurus 

hudsonicus 1 0.02 
Black Bear Ursus americanus 1 0.02 
    
American Crow Corvus brachyrhynchos 2 0.23 
    
Gray Jay Perisoreus canadensis 3 0.01 
Spruce Grouse Dendragapus canadensis 3 0.05 
Western Tanager Piranga ludoviciana 3 0.08 
Willow Flycatcher Empidonax traillii 3 0.04 
    
Chipping Sparrow Spizella passerine 4 0.01 
    
Common Raven Corvus corax 5 0.06 
Mountain Chickadee Poecile gambeli 5 0.05 
Pileated Woodpecker Dryocopus pileatus 5 0.09 
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Table V.1. Species included in each group as determined by indicator species analysis 
(continued). 
 

Species Latin group p-value 
Alder Flycatcher Empidonax alnorum 6 0.03 
American Robin Turdus migratorius 6 0.01 
Black-capped Chickadee Poecile atricapillus 6 0.01 
Brown-headed Cowbird Molothrus ater 6 0.02 
Western Toad Bufo boreas 6 0.05 
Downy Woodpecker Picoides pubescens 6 0.01 
Dusky Flycatcher Empidonax oberholseri 6 0.03 
Hairy Woodpecker Picoides villosus 6 0.02 
Least Flycatcher Empidonax minimus 6 0.01 
Meadow Vole Microtus pennsylvanicus 6 0.05 
Long-tailed Weasel Mustela frenata 6 0.04 
Northern Flicker Colaptes auratus 6 0.01 
Orange-crowned Warbler Vermivora celata 6 0.08 
Olive-sided Flycatcher Contopus borealis 6 0.01 
Red-naped Sapsucker Sphyrapicus nuchalis 6 0.02 
Red-tailed Hawk Buteo jamaicensis 6 0.03 
Ruffed Grouse Bonasa umbellus 6 0.03 
Veery Catharus fuscescens 6 0.08 
Western Wood-Pewee Contopus sordidulus 6 0.01 
    
Pine Siskin Carduelis pinus 7 0.01 
Red-breasted Nuthatch Sitta canadensis 7 0.16 
Ruby-crowned Kinglet Regulus calendula 7 0.02 
Warbling Vireo Vireo gilvus 7 0.02 
    
Clay-colored Sparrow Spizella pallida 8 0.29 
Dark-eyed Junco Junco hyemalis 8 0.01 
MacGillivray's Warbler Oporornis tolmiei 8 0.42 
Yellow-pine Chipmunk Tamias amoenus 8 0.01 
Townsend's Solitaire Myadestes townsendi 8 0.03 
Yellow-rumped Warbler Dendroica coronata 8 0.08 
    
Hammond's Flycatcher Empidonax hammondii 9 0.22 
Northern Waterthrush  Seiurus noveboracensis 9 0.02 
Red-eyed Vireo Vireo olivaceus 9 0.02 
Wilson's Warbler Wilsonia pusilla 9 0.04 
Yellow Warbler Dendroica petechia 9 0.11 
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Table V.1. Species included in each group as determined by indicator species analysis 
(continued). 
 

Species Latin group p-value 
Moose Alces alces 10 0.12 
American Redstart Setophaga ruticilla 10 0.01 
Common Yellowthroat Geothlypis trichas 10 0.03 
Deer Mouse Peromyscus maniculatus 10 0.03 
Song Sparrow Melospiza melodia 10 0.04 
Townsend's Warbler Dendroica townsendi 10 0.01 
    
Black-backed Woodpecker Picoides arcticus 11 0.02 
Brown Creeper Certhia americana 11 0.01 
Southern Red-backed Vole Clethrionomys gapperi 11 0.01 
Golden-crowned Kinglet Regulus satrapa 11 0.01 
Ermine Mustela erminea 11 0.01 
Mule Deer Odocoileus hemionus 11 0.01 
Swainson's Thrush Catharus ustulatus 11 0.01 
Three-toed Woodpecker Picoides tridactylus 11 0.01 
Red Fox Vulpes vulpes 11 0.01 
Winter Wren Troglodytes troglodytes 11 0.01 
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