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• For chemical potential:

(µ− µc) ∝ |ρ− ρc|
δ−1(ρ− ρc)

where δ = 4.80 ± 0.02.

• For heat capacity at constant volume:

cV (T ) ∝ |T − Tc|
−α

where α = 0.110 ± 0.003

• For the variation of density with chemical potential:

(

∂ρ

∂µ

)

T

= ρ2κT ∝ |T − Tc|
γ

where γ = 1.239 ± 0.002.
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• These relationships hold for all fluids at the critical point.

• The exponents are the same for all fluids.

• This is due to the short range interactions and the fact
that there are fluctuations.

• The mathematical properties are the same.

• This is an area that is explored by techniques of
statistical mechanics.

• There are no simple equations of state that will account
for this behaviour at the critical point and behaviour far
from the critical point.
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Phase Transitions Viewed as Responses to

Thermodynamic Instabilities

• Chemical potential of a pure substance depends on only
(p, T ).

• The functional forms are different for different phases.

• The stable phase is the phase with the lowest chemical
potential at some (p, T ).

• If more than one phase has the lowest chemical potential,
then those phases coexist in equilibrium at that (p, T ).

• The phases with the higher chemical potentials are
unstable.

• A system will spontaneously move to the stable phase
(or phases) at that (p, T ).

• Consider the development of a thermodynamic
instability. – p. 181/278



• This may be considered in the context of the equilibrium
properties of a one-component system in term of u(s, v).

• This may be represented as a surface in (u, s, v) space
(Figure 24.13)

• Each point of the surface represents an equilibrium state
of the system.

• Derivatives at each point on the surface may be defined:

(

∂u

∂s

)

v

= T

(

∂u

∂v

)

s

= −p

• These define tangents parallel to the s and v axes.
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• Consider some point Γ0 defined by (u0, s0, v0) on the
surface and the tangent plane that passes through it.

• The equation of that plane is:

u = u0 + T0(s− s0) − p0(v − v0)

• Consider the plane v = v0 which is parallel to the (u, s)
plane and passes through Γ0.

• This plane will intersect the tangent plane along the line:

u = u0 + T0(s− s0)

• This line will intersect the u axis at:

u = u0 − T0s0 ≡ a0
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• Similarly the s = s0 plane will intersect the tangent
plane along the line:

u = u0 − p0(v − v0)

which intersects the u axis at:

u = u0 + p0v0 ≡ h0

• The tangent plane intersects u axis at:

u = u0 − T0s0 + p0v0

• A one component system of fixed mass has definite
values of u(s, v) regardless of the number of phases
present.

• Each phase has a u(s, v) surface.
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• Consider such a system at the triple point.

• ΓS
3 represents u(s, v) of the solid at the triple point.

• Similarly ΓL
3 and ΓG

3 represents u(s, v) of the liquid and
gas phase respectively at the triple point.

• A tangent plane for each of the three surfaces can be
constructed through the triple point.

• These tangent planes intersect the u axis at gS
3 , gL

3 , gG
3 .

• But g can be identified with the Gibb’s free energy.

• Therefore g is the chemical potential.

• At the triple point, the chemical potential of all three
phases is the same and

gS
3 = gL

3 = gG
3
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• Also, at the triple point TS
3 = TL

3 = TG
3 and

pS
3 = pL

3 = pG
3 .

• This means that there is a common tangent plane for
ΓS

3 , Γ3
L, and ΓG

3 and that these three points form a
triangle on that plane.

• This region of the common tangent plane is referred to
as the derivative surface.

• A point representing three phases in equilibrium is
determined by:

u = xSuS + xLuL + xGug

s = xSsS + xLsL + xGsG

v = xSvS + xLvL + xGvG
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• Consider liquid and vapour coexistence for a one
component system with fixed mass.

• The derived surface consists of a set of lines that are
tangent to both ΓL

2 and ΓG
2 which represents coexisting

liquid and vapour.

• These point of tangency approach each other and meet
at the critical point.

• As the u(s, v) surface for each phase approaches ΓL
2 or

ΓG
2 , its curvature becomes negative.

• Negative curvature coincides with instability.

• The derived surface spans the region of instability (see
Figure 24.14).

• Consider a homogeneous pure substance isolated in
volume v with energy u and entropy s.
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• The necessary and sufficient conditions for stability are:

(

∂2u

∂s2

)

v

=
T

cV
> 0

(

∂2u

∂s2

)

v

(

∂2u

∂v2

)

s

−

(

∂2u

∂v∂s

)2

s,v

=
T

cV

(

cp
vκT cV

)

−
α2T 2

κ2

T c
2

V

> 0

• This means:
κT > α2Tv/cp > 0

• A one phase system is stable as long as the conditions
for stability are satisfied for small displacements from
equilbrium.

• But what about the other phase?

• The conditions for stability of the other phase must be
considered. – p. 190/278
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• Consider a constant s cut of Figure 24.14 that includes
the coexistence region.
• This is illustrated in Figure 24.15.

• The straight line segment joining ΓL
2 and ΓG

2 is tangent
to both points and lies on the derived surface.

• The slope of this line is:

(

∂u

∂v

)

s

= −p

• In one phase of a pure substance p is a monotonic
function of the volume since:

vκT = −

(

∂v

∂p

)

T

> 0
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• This condition can continue to be satisfied even though
u for that phase is above that of another phase.
• This is represented by the dotted lines in Figures

24.14 and 24.15.
• This metastable region continues until the inflection

point is reached.

• At the inflection point:

(

∂2u

∂s2

)

v

= 0

and the conditions for stability cannot be satisfied.

• Therefore the homogeneous phase is absolutely unstable
and a phase transition must occur.

• Metastable states may be observed.
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• Consider a pure substance in the gas phase.

• Clusters of molecules that convert a gas to liquid may be
formed very slowly so as to form a supersaturated
vapour.
• This means that the pressure of the system is in

excess of the equilibrium vapour pressure of the
liquid.

• This system can exist long enough to be observed.
• It must be prepared in the absence of any liquid

because this system can only exist with slight
perturbations that do not include the presence of the
other phase.

• Once the other phase occurs, the system has been
perturbed such that it cannot maintain the
metastable state.
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• The region of u(s.v) where
(

∂2u/∂s2
)

v
< 0 consistutes

a gap of absolute instability.

• This gap is spanned by the derived surface.

• Consider a hypothetical homogeneous system prepared
with volume v∗ with vL < v∗ < vG.
• This system can immediately decompose into liquid

and vapour with the amounts of each determined by
the lever rule.

• The energy of the system is lowest along the line:

v − xLvL + xGvG

• Consider Figure 24.16 which projects the u(s, v) surface
onto the (s, v) plane.
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• Consider the van der Waals equation of state:

p =
RT

v − b
−

a

v2

• Isotherms are shown in Figure 24.17.

• One condition for stability is (∂p/∂v)T < 0.
• Therefore (∂p/∂v)T > 0 represents an unstable

region where a homogeneous phase is unstable.

• Consider an isotherm along which coexistence of liquid
and gas is possible.

• The chemical potential is:

dµ = −sdT + vdp
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• Therefore:

µ(p2) − µ(p1) =
∫ p2

p1

v(p)dp

on the isotherm.

• In the unstable region of the van der Waals isotherm
v(p) is triple valued.
• Two values of p lie where (∂p/∂v)T < 0.
• The third value lies where (∂p/∂v)T > 0.
• There are two regions where a phase is metastable.

• In Figure 24.17, AE and E′D are the stable regions.

• BE and CE′ are the metastable regions.

• CD is the unstable region.

• EE′ is the coexistence region.
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• Consider stability conditions at the critical point.

• Recall that at the critical point:

(

∂p

∂v

)

T

= 0

(

∂2p

∂v2

)

T

= 0

• Therefore the stability condition (∂p/∂v)T < 0 cannot
be satisfied.

• Instead the derivation of stability conditions (see
Chapter 19) must be carried out to higher order.

• When (∂p/∂v)T = 0, a stability condition becomes
(

∂3p/∂v3
)

T
< 0.
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• Consider isothermal compressibility at the critical point.

• κT become infinitely large.

• This means that the fluid can be compressed or
expanded with negligible work being done on or by the
system.

• Consider the volume at the critical point as divided into
arbitrary subvolumes.

• These subvolumes can exchange energy and matter with
their surroundings.

• The fluctuations in these subvolumes are large.

• Because the average density of the system is fixed, these
fluctuations are not completely independent of each
other.

• The fluctuations in density cause fluctuations in the
refractive index of the fluid. – p. 201/278



• This results in critical opalescence in light scattering.

• It is noted that (∂p/∂v)T = 0 along the coexistence line
in (p, v) space.

• However, critical opalescence is not observed, since
although the system is not homogeneous, the liquid and
vapour phases have distinct densities and refractive
indices.

• In the coexistence region, the work done during a phase
change is −pσ∆v.

• As the critical point is approached:

lim
pσ→pc

pσ∆v → 0

• In the coexistence region, the transition between liquid
and vapour is a phase transition of the first kind.
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• As the critical point is approached, the phase transition
assumes characteristics of a transition of the second kind
in that:

∆s = 0 and ∆v = 0

• Recall that the Claperyron equation defines (∂p/∂T )v for
T < Tc.

• At T = Tc, ∆s/∆v is indeterminate.

• As T approaches Tc, L’Hospital’s rule may be used to
assess the behaviour of ∆s/∆v:

lim
T→Tc

∆s

∆v
= lim

T→Tc

(∂∆s/∂T )p
(∂∆v/∂T )p

=
1

Tv

(

cpG − cpL

αG − αL

)

• Both the numerator and the denominator tend to ∞.
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• Experimentally it has been shown that (∂p/∂T )v is finite.

• The critical point is a stable state of the system because
it lies on both the coexistence curve and the spinodal
curve.
• The spinodal curve is the limit of stability for free

energy.

• From this, relationships among the critical exponents
α, β, γ, δ.

• Consider the pV diagram in Figure 25.18.
• The critical isotherm is A′CA.
• A coexistence isotherm is B′DB
• Consider the cycle CABDC.

• Since ∆v = 0 along AB and CD no work is done.
• For the cycle ∆Ucycle = 0.
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• For an arbitrary amount of substance:

q + w = 0 = Tc(SA − SC) −
∫ A

C
pdV +

∫ T1

Tc

CV GdT

+T1(SD − SB) −
∫ D

B
pdV +

∫ Tc

T1

(CV )V =Vc
dT

• (CV )V =Vc
is the two phase heat capacity and is

evaluated along DC where V = Vc

• Consider the identity:

SA − SC = SA − SB + SB − SD + SD − SC

and

SB − SD = (VG − Vc)

(

∂p

∂T

)

T=T1
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• Therefore:

∫ Tc

T1

Tc − T

T
(CV )V =Vc

dT =
∫ Tc

T1

Tc − T

T
CV GdT

+
∫ A

C
(pc−p)dV+(Tc−T1)(VG−Vc)

[(

∂p

∂T

)

T=T1

−
pc − p(T1)

Tc − T1

]

for the cycle CABDC.

• Similarly for the cycle A′CDB′A′:

∫ Tc

T1

Tc − T

T
(CV )V =Vc

dT =
∫ Tc

T1

Tc − T

T
CV LdT

+
∫ A′

C
(pc−p)dV+(Tc−T1)(Vc−VL)

[(

∂p

∂T

)

T=T1

−
pc − p(T1)

Tc − T1

]
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• Multiplying the forgoing by VG − Vc and Vc − VL

respectively and adding:

(

1

VG − Vc
−

1

Vc − VL

) ∫ Tc

T1

Tc − T

T
(CV )V =Vc

dT

=
1

VG − Vc

∫ Tc

T1

Tc − T

T
CV GdT+

1

Vc − VL

∫ Tc

T1

Tc − T

T
CV LdT

+
1

VG − Vc

∫ VG

Vc

(pc − p)Tc
dV +

1

Vc − VL

∫ Vc

VL

(p− pc)Tc
dV

• Note that the left-hand side of the equation follows the
path DC along which:

xL =
VG − Vc

VG − VL
; xG =

Vc − VL

VG − VL
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• This can be used to rewrite the equation:

∫ Tc

T1

Tc − T

T
(CV )V =Vc

dT =
∫ Tc

T1

[xL(T1)CV L + xG(T1)CV G] dT

+xG(T1)
∫ VG

Vc

(pc − p)Tc
dV + xL(T1)

∫ Vc

VL

(p− pc)Tc
dV

where

xG(T1) =
Vc − VL(T1)

VG(T1) − VL(T1

xL(T1) =
VG(T1) − Vc

VG(T1) − VL(T1)

are fixed values.

• This means that the phase equilibrium is suppressed.
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• Note that:
Tc > T1

VG > Vc

Vc > VL

CV G > 0

CV L > 0

• This means

(

1

VG − Vc
−

1

Vc − VL

)
∫ Tc

T1

Tc − T

T
(CV )V =Vc

dT

>
1

VG − Vc

∫ VG

Vc

(pc − p)Tc
dV +

1

Vc − VL

∫ Vc

VL

(p− pc)Tc
dV
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• For T < Tc, the critical relationships may be assumed to
hold:

|V − Vc| = B(Tc − T )β

p− pc = −D|V − Vc|
δ−1(V − Vc

(CV )V =Vc
= A(TC − T )α

• When this is used with the previous inequality, the
Griffith’s inequality results: α + β(δ − 1) ≥ 2

• It is also possible to show:

α + 2β + γ ≥ 2

γ(δ + 1) ≥ (2 − α)(δ − 1)

γ ≥ β(δ − 1)
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Solutions of Nonelectrolytes

• Many chemical and physical phenomena are assoicated
with properties of solutions.

• Vapour pressure varies with composition of solution.

• Solubility depends on the nature of the solvent.

• The position of equilibrium depends on the solvent
system.

• Properties of solutions may be assessed on the basis of
equilibrium with other phases.

• The characteristics of the equilibrium state may be
determined by the dependence of the chemical potential
of all phases and all components on temperature,
pressure, and concentration.
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• Measurements of composition in the liquid and vapour
phase may be used to determine the chemical potentials
of components.

• The deviation of a chemical potential from ideal
behaviour can be considered in terms of molecular
interactions.

The Chemical Potential of a Component in an

Ideal Solution

• To study the thermodynamic properties of a solution, it
is desirable to know the function dependence of the
chemical potential of each species on composition,
temperature, and pressure.

• In the gas phase, the equation of state is used, but this
is not applicable to condensed phases.
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• Specific knowledge of the equation of state cannot be
required in a useful thermodynamic analysis of
condensed phases.

• Consider a mixture in which no chemical reactions are
occurring.

• When two liquids are mixed at constant temperature and
pressure, there may be a change in volume and there
may be heat evolved or absorbed.

• Occasionally, these changes in volume or enthalpy are
too small to be measured.

• The changes in volume and enthalpy are related to how
similar or dissimilar the molecules and their interactions
are.
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• In an ideal solutions, the interactions between molecules
of different types are the same as interactions between
molecules of the same type.

• An ideal solution is defined by the conditions:

(∆Hmixing)T,p = (HE)T,p = 0

(∆Vmixing)T,p = (V E)T,p = 0

• Consequently:

(∆Umixing)T,p = (UE)T,p = 0

(∆Gmixing)T,p = −T (∆Smixing)T,p

• This will permit the exploration of the dependence of
chemical potential on composition.
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• The superscript 0 refers to pure components.

• The chemical potential may be written by:

∆Gmixing ≡ G−G0 =
r
∑

i=1

ni(µi − µ0

i )

where ni is the number moles of component i.

• The excess volume may be written as:

V E ≡ V − V 0 =

(

∂∆Gmixing

∂p

)

T,n

= 0

The excess enthalpy may be written as:

HE ≡ H −H0 = −T 2

[

∂

∂T

(

∆Gmixing

T

)

]

p,n

= 0
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• Assuming the the condition apply to each of the i terms,
from the expression for V E:

[

∂(µi − µ0
i )

∂p

]

T,n

= 0

• From the expression for HE:

[

∂

∂T

(

(µi − µ0
i )

T

)]

p,n

= 0

• Together this means that the chemical potential of each
component may depend on the composition and
temperature:

µi − µ0

i = Twi(n1, · · · , nr)
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• wi is a function only of composition variables.

• µ0
i depends only on T and p.

• It has been shown previously for an ideal solution that:

wi(n1, · · · , nr) = R ln xi

• Therefore:
µi = µ0

i +RT ln xi

• This result depends on the assumption that the chemical
potential has the same form for all species.

• Other choices of composition variables may be used
instead of xi, such as the volume fraction ψi may be
more convenient for polymers.

• µ0
i (T, p) is analogous to µ∗i (T ) for gases.
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Chemical Potential of a Component in a Real

Solution

• Real solutions have nonzero excess volumes and
enthalpies.

• The nonideal behaviour needs to be addressed in terms
of the chemical potential.

• For example the nonideal behaviour may be accounted
for by an excess chemical potential:

µi = µ0

i +RT ln xi + µE
i

• It may then be shown:

V E =

(

∂∆Gmixing

∂p

)

T,n1,···,nr

=
r
∑

i=1

ni

(

∂µE
i

∂p

)

T,n1,···,nr
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• Similarly:

HE = −T 2

(

∂ (∆Gmixing/T )

∂T

)

p,n1,···,nr

= −T 2

r
∑

i=1

ni





∂
(

µE
i /T

)

∂T





p,n1,···,nr

• Note that only the excess chemical potential makes a
contribution to these.

• The entropy of mixing for a real solution has
contributions from ideal mixing plus the contribution of
the excess chemical potential:

∆Smixing = −

(

∂∆Gmixing

∂T

)

p,n1,···,nr
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• which gives:

∆Smixing = −R
r
∑

i=1

ni ln xi −
r
∑

i=1

ni

(

∂µE
i

∂T

)

p,n1,···,nr

• The excess entropy of mixing is:

−
r
∑

i=1

ni

(

∂µE
i

∂T

)

p,n1,···,nr

.

• Instead of excess functions it is convenient to consider a
mixture in terms of of deviations from mean molar
properties.

– p. 221/278



• The mean molar volume is:

vm ≡
V

∑

i ni

• Therefore the excess molar volume is:

vE =
V

∑

i ni
−

∑

i niv
0
i

∑

i ni
=

V
∑

i ni
−
∑

i

xiv
0

i

where v0
i is the molar volume of pure component i at

the temperature and pressure of the mixture.

• The mean and excess values of enthalpy, entropy, and
free energy may be defined similarly.

• For components in solution, activity may be used in a
similar way to fugacity.
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• The chemical potential of i is:

µi = µ0

i (T, p) + RT ln γixi

where ai = γixi, ai activity, and γi is the activity
coefficient.
• The activity may be thought of as an effective

concentration.
• The activity coefficient is dependent on temperature

and pressure.

• It may be shown that:

µE
i = RT ln γi

and that the activity coefficient contains all the
information about deviations from ideal behaviour.
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• These are only two ways of dealing with the nonideal
behaviour for solutions.
• Excess functions are convenient for solutions of

nonelectrolytes.
• Activity coefficients are useful for solutions of

electrolytes.

• Changes in the chemical potential of i are measured with
respect to the chemical potential of the standard state,
µ0

i (T, p).

• µ0
i (T, p) is independent of composition, therefore:

µ0

i (T, p) = µL
i (T, p)

or
µ0

i (T, p) = µL
i (T, p)
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• The reference potential is the chemical potential of the
pure substance (in solid or liquid phase) at the
temperature and pressure of interest.

• This is one widely used convention.

• Another convention is to denote one component of the
solution as the solvent and the remaining components as
solutes.
• Usually the component with the largest mole fraction

is labelled“1”and is the solvent.

• The standard state for the solvent is the pure solvent:

µ0

1(T, p) = µL
1 (T, p)

while a hypothetical standard state is chosen for all
other components (or solutes).
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• The hypothetical state for solutes assumes that the
properties are determined in the low concentration limit
(and that the activity coefficient is unity).

µ0

i (T, p) = µ−0i (T, p) = lim
xi→1

(µi − RT ln xi)

• This standard state depends on the temperature,
pressure, and the solvent.
• Consider a solution of i in 1 that is sufficiently dilute

so that each molecule of i is surrounded only by
molecules of solvent.

• The molecules of i are separated from each other so
far that they cannot interact with each other.

• If the solution is diluted further, the nature of the
interaction of i with the solvent does not change.
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• If the interaction of molecules of i with molecules of the
solvent is different from the interaction of molecules of i
with molecules of i then species i in the solvent will
behave differently from species i as pure i.

• A hypothetical liquid of pure i where species i interacts
with other molecules the same way that i interacts with
the solvent will be different from pure i.

• In dilute solution,

vi =

(

∂V

∂ni

)

T,p,n′
j

does not change with further dilution, but also is not
equivalent to the partial molar volume of pure i.

• In the hypothetical reference state, the low

concentration limit is v−0i not v0
i . – p. 227/278



• It is to be noted that this hypothetical reference state is
not a state of infinite dilution, but rather a state where
molecules of species i interacts with other molecules of i
in the same manner i interacts with the solvent.

• Enthalpy changes and volume changes are among the
more convenient properties to measure.

• Therefore it is desirable to consider these in terms of
their excess values:
[

∂(µE
i /T )

∂p

]

T,n1,···,nr

= R

(

∂ ln γi

∂p

)

T,n1,···,nr

=
vi − v0

i

T

[

∂(µE
i /T )

∂T

]

p,n1,···,nr

= R

(

∂ ln γi

∂T

)

p,n1,···,nr

=
hi − h0

i

T 2
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• These equations describe the behaviour of volume and
enthalpy in terms of the excess chemical potential.

• Recall the Gibbs-Duhem equation:

(

r
∑

i=1

nidµi

)

T,p

= 0

• From this it follows:
(

r
∑

i=1

ni dµ
E
i

)

T,p

= RT

(

r
∑

i=1

ni d ln γi

)

T,p

= 0

• This means that for a two-component system:

n1(d ln γ1)T,p + n2(d ln γ2)T,p = 0
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• Therefore:

(1 − x2)

(

∂ ln γ1

∂x2

)

T,p

+ x2

(

∂ ln γ2

∂x2

)

T,p

= 0

• This means that µE
2 can be determined from µE

1 .

µE
2 = RT ln γ2 = RT

∫

1

x2

1 − x′2
x′

2

∂ ln γ1

∂x2

dx′2

=
∫

1

x2

1 − x′2
x′

2

∂µE
1

∂x2

dx′2

• To evaluate the excess chemical potential of component
i, the dependence on the composition of the equation of
state, the heat capacity of the solution, and the activity
coefficient need to be known.
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• A model equation of state would be convenient.

• Such a model equation of state may be defined by the
following conditions:
• The entropy of mixing has ideal form:

−R
r
∑

i=1

ni ln xI

• The excess chemical potential for a binary mixture
has the form:

µE
1 = RT ln γ1 = wx2

2

µE
2 = RT ln γ2 = wx2

1 = w(1 − x2)
2

• It may be assumed that w is independent of
temperature and pressure.
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• This model mixture is a regular mixture.

• The heat of mixing takes the form:

∆Hmixing = −T 2



n1

(

∂

∂T

µE
1

T

)

p,n2

+ n2

(

∂

∂T

µE
2

T

)

p,n1





= n1wx
2

2 + n2wx
2

1

= n1wx2(1 − x1) + n2wx1(1 − x2)

= w(n1 + n2)x2(1 − x2)

which is symmetric in x1 and x2.

• If w/RT is sufficiently large, the mixture will separate
into two phases of distinct composition.

• It also allows the definition of a critical temperature
above which the two phases are miscible.

– p. 232/278



• Instead of the regular solution, there are other models
related to the virial expansion.

• For the mathematical description of activity in a two
component system, the general solution is:

ln γ1 =
∫

x2ϕ(x2)dx2

ln γ2 =
∫

(1 − x2)ϕ(x2)dx2

where ϕ(x2) is some function of x2.

• A virial-type form of ϕ(x2) is:

ϕ(x2) =
∑

j

∑

k

ajk(T, p)x
j
2
(1 − x2)

k

where ajk(T, p) do not depend on the composition.
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• For the zeroth order approximation:

ln γ1 =
∫

x2a00(T, p)dx2 =
1

2
a00x

2

2

ln γ2 =
∫

(1 − x2)a00dx2 =
1

2
a00(1 − x2)

2

the result is equivalent to the regular mixture.

Partial Molar Quantities

• For Z, an extensive thermodynamic property, the
corresponding partial molar quantity, zi, may be defined:

zi ≡

(

∂Z

∂n)i

)

T,p,nj 6=i
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• Because Z is extensive:

Z(ξn1, ξn2, · · · , T, p) = ξZ(n1, n2, · · · , T, p)

• Upon differentiation with respect to ξ and setting ξ = 1
this gives:

Z =
r
∑

i=1

nizi

• Thus partial molar quantities are intensive properties.

• Consider a binary solution with n1 moles of 1 and n2

moles of 2 in a total volume V .
• Incremental additions of 1 and 2 are made to the

solution such that:

δn1

δn2

=
n1

n2
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• The partial molar volumes v1 and v2 depend only on the
relative composition.

• Thus after the incremental additions:

V = n1v1 + n2v2

• A differential change in an extensive propery at constant
T and p is:

(dZ)T,p =

(

r
∑

i=1

nidzi

)

T,p

+

(

r
∑

i=1

zidni

)

T,p

• This leads to the constraint:
(

r
∑

i=1

nidzi

)

T,p

= 0
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• If zi = µi, this is equivalent to the Gibbs-Duhem
equation.

• Gibbs-Duhem type of constraints exists for changes to
any partial molar quantity.

• Partial molar quantities may be determined
experimentally.

• Define zm, the mean molar value, by:

zm ≡
Z

∑r
i=1 ni

=
r
∑

i=1

xizi

• Consider the case of a binary mixture:

(

∂zm
∂x1

)

T,p

=

(

∂

∂x1

[x1z1 + (1 − x1)z2]

)

T,p
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• This may be rearranged to:

(

∂zm
∂x1

)

T,p

= z1 − z2 + x1

(

∂z1
∂x1

)

T,p

+ x2

(

∂z2
∂x1

)

T,p

= z1 − z2

• This leads to:

z1 = zm − x2

(

∂zm
∂x2

)

T,p

z2 = zm − x1

(

∂zm
∂x1

)

T,p

• This is illustrated in Figure 25.1 where zm is the tangent
to the curve.
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Liquid-Vapour Equilibrium

• For each component of a mixture:

µi(liquid) = µi(vapour)

• With pure i as the reference state:

µ0

i +RT ln γixi = µ∗i (T ) +RT ln
fi

P

• This may be rearranged to give:

γixi =
fi

P
exp

[

1

RT
(µ∗i − µ0

i )
]

• For pure i, xi = 1, µi = µ0
i and γi = 1.
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• This means:

1 =
f0
i

P
exp

[

1

RT
(µ∗i − µ0

i )
]

and

γixi =
fi

f0
i

• For an ideal solution with an ideal vapour:

pi = xip
0

i

which is Raoult’s Law.

• This means that the activity coefficient of i in solution
may be obtained from measurement of fugacity of i in
the gas phase.
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• This also means that if γi is known the composition of
the vapour phase may be predicted.

• Consider the equilibrium between an ideal gas mixture
and an ideal condensed phase mixture.

• Dalton’s law for the gas phase is:

pi = yip

where yi is the mole fraction in the gas phase and p is
the total pressure of the gas mixture

• Combining with Raoult’s Law gives:

yip = xip
0

i

yi = xi
p0
i

p
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• This means that the compositions of the two phases can
be very different.

• Consider the liquid vapour equilibrium of an ideal binary
mixture (See Figure 25.2).
• The total vapour pressure is:

p = p1 + p2 = x1p
0

1 + x2p
0

2 = x1(p
0

1 − p0

2) + p0

2

which is the equation of a straight line.
• But p is not a linear function of y1.
• It may be shown that:

(y1/y2)

(x1/x2)
= α12 =

y1(1 − x1)

x1(1 − y1)
=
p0
1

p0
2

where α12 is independent of the composition.
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• Total pressure may be expressed as a function of y1, the
composition variable for the gas phase:

p =
p0
1

α12 − y1(α12 − 1)
=

p0
1p

0
2

p0
1
− y1(p0

1
− p0

2
)

• This equation describes a rectangular hyperbola which is
concave upward.

• At equilibrium vapour and liquid have the same pressure
and the composition of each phase may be determined
from the intersection of p′ with each of the curves at
x1(p

′) and y1(p′)

• The line p = x1p
0
1 + (1 − x1)p

0
2 is the bubble point

curve.
• The curve p = p0

1p
0
2/(p

0
1 − y1(p

0
1 − p0

2)) is the dew
point curve.
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• At pressures above the bubble point curve, the liquid
phase is stable.

• At pressures below the dew point curve, the gas phase is
stable.

• At pressures between the curves, liquid and vapour
coexist with the composition of each determined by the
total pressure.

• It is to be noted that p0
1 and p0

2 depend on temperature,
usually in different ways.
• This means that α12 is a function of temperature

and the boiling point is not a linear function of
composition.

y1(T ) =
x1α12(T )

1 + x1 [α12(T ) − 1]
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• A temperature composition diagram is shown in 25.2 (c).
• If T is above the dew point curve, then the gas

phase is stable.
• If T is below the bubble point curve, then the liquid

phase is stable.
• The region between the two curves is the

coexistence region, where the compositions of each
phase is determined by the intersection of T (p) with
each of the bubble point and dew point curves.

• As the composition of the liquid changes, its boiling
point changes resulting in the enrichment of the
vapour in one component.
• This is the basis of distillation.

• Now consider an nonideal mixture where the gas is only
slightly soluble in the liquid.
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• The gas does not react with the solvent.

• It is generally observed that the solubility of a gas is
proportional to its fugacity and increases as T decreases.

• Molecules of both solvent and solute may be transferred
across the gas-liquid interface.

• Because both components are in both phases at
equilibrium:

µ1(gas phase) = µ1(liquid phase)

µ2(gas phase) = µ2(liquid phase)

• The solvent is labelled 1 and the solute is labelled 2.

• Since the gas solute is only slightly soluble, x1 is near
unity.
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• Therefore:

µ1(liquid phase) = µ0

1 +RT ln x1

µ2(liquid phase) = µ−0
2

+RT ln x2

• This assumes that the liquid phase is an ideal solution.

• The standard state for component 1, the solvent, is that
of the pure liquid at the same temperature and pressure.

• The standard state for component 2, the solute, is the
hypothetical state with the same properties per mole as
an infinitely dilute solution.

• This gives:

µ∗2(T ) +RT ln
f2

P
= µ−0

2
(T, p, solvent) +RT ln x2
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• Upon rearrangement this gives:

f2

P
= x2 exp

(

µ−0
2
− µ∗2
RT

)

= x2k2(T, p, solvent)

which is Henry’s Law with k2 as the Henry’s Law
coefficient.

• In the low pressure limit, partial pressure may be used
instead of partial fugacity and Henry’s Law may be
written as:

p2 = x2Pk2(T, p, solvent)

• Thus the solubility of a gas is proportional to its partial
pressure.

• Note that k2 is specific to both the solute and solvent.
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• For the solvent, it may be written:

f1

P
= x1 exp

(

µ0
1 − µ∗1
RT

)

• If the vapour is assumed to be ideal, then:

p1

P
= x1 exp

(

µ0
1 − µ∗1
RT

)

• It is to be noted that the choice of standard state is
different for the solvent and the solute.

• Pure solvent liquid vapour equilibrium is described by:

µ∗1(T ) +RT ln
f0
1

P
= µ0

1(T )
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• This can be rearranged to:

f0
1

P
= exp

(

µ0
1 − µ∗1
RT

)

where the reference state for the solvent is that of the
pure liquid.

• Therefore:
f1 = x1f

0

1

• If the gas phase is ideal then:

p1 = x1p
0

1

where p0
1 is the vapour pressure of pure solvent.

• This is Raoult’s Law.
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• When this is compared to Henry’s Law, it is to be noted
that k2 is NOT the vapour pressure of the solute.

• Instead k2 defines the fugacity of the solute in the
hypothetical reference state.

• Raoult’s Law and Henry’s Law are compared in Figure
25.3,

• The fugacity of the solute, k2 differs from the vapour
pressure for the pure solute due to the difference in the
hypothetical reference state.
• The solute molecules are sufficiently far from each

other that the solute-solute interactions can be
assumed to be negligible.

• In the solution, the solute molecules have less
volume in which to move freely than is the case of
the same molecules in the ideal gas phase.
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• This means that they have lower entropy and that the
entropy of solution is negative.

• The effective volume per molecule of solute in solution is
usually different from the effective volume per molecule
of pure solute.

• This is because the forces of interaction between solute
molecules is different from the forces of interaction
between molecules of solute and solvent.

• As a result the enthalpy of solution is usually nonzero
and may be either positive or negative.

• The forces of interaction can lead to changes in local
ordering of solvent molecules about the solute which also
contributes to the entropy.

• All these factors contribute to the fugacity of the solute
differing from the vapour pressure of pure solute.
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• Consider a nonideal mixture of volative liquids that is
not dilute.

• Deviations of vapour pressure from ideality may be
positive or negative.

• This may be interpreted in terms of the interactions in
the condensed phase.
• If unlike molecules attract each other more than like

molecules, then the vapour pressure will be lower
than that predicted by Raoult’s Law.

• If unlike molecules repel each other more than like
molecules, then the vapour pressure will be higher
than that predicted by Raoult’s Law.

• Enthalpy contributions tend to be the most significant
but entropy contributions can be significant if the
molecules are very different in size.
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• As shown in Figure 25.5, excess enthalpy and entropy
are fucntions of concentrations.

• In principle, activity coefficients may be determined from
measurement of vapour pressure as a function of
concentration of solution, although in practice, such
measurements may be difficult.

• Recall:

γixi =
fi

f0
i

• If the total pressure and composition of the vapour can
be determined and the composition of the liquid and the
equation of state of the vapour are known, then γi may
be determined.

• Usually the second virial coefficient is sufficient since the
vapour pressure is low.
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• For a binary solution:

n1(d ln γ1)T,p + n2(d ln γ2)T,p = 0

and

(1 − x2)

(

∂ ln γ1

∂x2

)

T,p

+ x2

(

∂ ln γ2

∂x2

)

T,p

= 0

• If the vapour is ideal then:

p1 = γ1x1p
0

1

p2 = γ2x2p
0

2
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• Therefore:

(1 − x2)

(

∂ ln p1

∂x2

)

T

+ x2

(

∂ ln p2

∂x2

)

T

= 0

if it is assumed that p1 and p2 do not depend on the
total pressure.

• This is the Duhem-Margules equation and is valid if the
vapour behaves ideally and there is negligible
dependence of p1 and p2 on the total pressure.

• This may be rearranged to:

(

∂p1

∂x2

)

T

=
(1 − x1)p1

(p1 − x1p)

(

∂p

∂x2

)

T
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• Thus p1, p2, γ1, and γ2 may be determined from
measurements of total pressure as a function of
composition.

• The inverse problem is the calculation of bubble point
and dew point curves as a function of composition from
the dependence of the chemical potentials on
composition.

• The condition for phase equilibrium at T and p is:

µ∗i (T ) − µ0

i (T, p) +RT ln
fi/P

γixi

= µ∗i − µ0

i (T, p) +RT ln
p

P
+RT ln

fi

p
− RT ln γixi = 0

– p. 262/278



• For coexistence of vapour and liquid at T + dT and
p+ dp:

µV
i (T + dT, p+ dp) = µL

i (T + dT, p+ dp)

• Therefore:

−R ln
fi/P

γixi
=

[

∂

∂T

µ∗i (T ) − µ0
i (T, p)

T

]

p

dT

+

[

∂

∂p

(

µ∗i (T ) − µ0
i (T, p)

T

)

T

+R ln
p

P

]

dp

=
h0

i − h∗i
T 2

dT −
v0
i (T, p) − RT/p

T
dp
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• This can be integrated to yield the bubble-point and
dew-point curves.

• Consider the composition dependence ot isothermal
liquid-vapour equilibrium:

ln

(

γV
1 y1
γ1x1

)

= −
1

RT

∫ p

p0

1

∆v0

1dp

ln

(

γV
2 y2
γ2x2

)

= −
1

RT

∫ p

p0

2

∆v0

2dp

where γV
i ≡ fi/yip is the activity coefficient of i.

• Because the molar volume of liquid is negligible
compared to the molar volume of the gas phase, ∆v0

1

and ∆v0
2 are the molar volumes of the respective gas

phases.
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• If the vapour phase is ideal, then

γV
i ≡

fi

yip
=
yip

yip
= 1

and

∆v0

1 = ∆v0

2 =
RT

p

• Integration gives:

ln

(

y1
γ1x1

)

= ln

(

p0
1

p

)

ln

(

y2
γ2x2

)

= ln

(

p0
2

p

)
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• These can be solved to give equations for the
bubble-point curve:

x2 =
p0
1γ1 − p

p0
1
γ1 − p0

2
γ2

and the dew-point curve:

y2 =
p0
1p

0
2γ1γ2 − pp0

2γ2

pp0
1
γ1 − pp0

2
γ2

• The activity coefficients are also related to the heat of
vaporization:

ln

(

γV
1 y1
γ1x1

)

=
∫ T

T1b

h∗1 − h0
1

RT ′2
dT ′
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ln

(

γV
2 y2
γ2x2

)

=
∫ T

T2b

h∗2 − h0
2

RT ′2
dT ′

• Upon integration these yield:

Λ1b ≡
∫ T

T1b

h∗1 − h0
1

RT ′2
dT ′ =

h∗1 − h0
1

R

(

1

T1b
−

1

T

)

and

Λ2b ≡
∫ T

T2b

h∗2 − h0
2

RT ′2
dT ′ =

h∗2 − h0
2

R

(

1

T2b
−

1

T

)

• If it is assumed that the vapour is ideal, then:

γV
1 y1 → y1 and γV

2 y2 → y2
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• Thus:

y2 =
exp(Λ1b)γ2 − γ1γ2

exp(Λ1b)γ2 − exp(−Λ2b)γ2

x2 =
exp(Λ1b) − γ1

exp(Λ1b) exp(Λ2b)γ2 − γ1

Liquid-Solid Equilibrium

• Treatment parallels treatment of Gas-Condensed Phase
equilibria, but neither phase can be assumed to be an
ideal gas.

• It will not be covered in detail in class, but is included in
material for the exam.
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The Colligative Properties of Solutions:

Boiling-Point Elevation, Freezing-Point Depression,

and Osmotic Pressure

• Consider the case of a binary solution where the solute is
not volatile.
• This would be equivalent to assigning a vapour

pressure of zero to the pure solute.
• Our previous treatment would predict a lowering of

the vapour pressure of the solution when compared
to the vapour pressure of the pure solvent.

• The vapour pressure of the solution is proportional
to the mole fraction of the solvent.

• This means that the boiling point of the solution will
be elevated relative to the pure solvent.
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• The measurement of boiling point elevation is the basis
of some experimental techniques for determining molar
mass of a solute or the activity coefficient of the solvent.

• When the solution is in equilibrium with the vapour,
then:

µV
1 (T1b, p) = µL

1 (T1b, p)

• But
µV

1 (T, p) = µL
1 (T, p) +RT ln γ1x1

• Therefore:

µV
1 (T, p)

T
−
µV

1 (T1b, p)

T1b
=
µL

1 (T, p)

T
−
µL

1 (T1b, p)

T1b
+RT ln γ1x1
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• But

ln γ1x1 = −
∫ T

T1b

hV
1 − hL

1

RT ′2
dT ′ = −

∫ T

T1b

L1v

RT ′2
dT ′

where L1V ≡ hV
1 − hL

1 , the latent heat of vapourization.

• L1v will vary depending on the temperature due to the
difference in the heat capacities of liquid and solid:

L1v = ∆h1v +
[

cVp − cLp
]

(T − T1b)

• Thus:

ln γ1x1 = −
∫ T

T1b

∆h1v + ∆cp (T ′ − T1b)

RT ′2
dT ′
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• If θ = T − T1b this may be rearranged to:

ln γ1x1 = −
∫ θ

0

∆h1v + ∆cpθ
′

R(T1b + θ′)2
dθ′

• If θ, the difference in the boiling point, is small
compared to the boiling point, then:

1

(T1b + θ)2
=

1

T 2

1b

(

1 −
2θ

T1b
+ · · ·

)

which can be substituted into the integrand.

• Upon integration:

ln γ1x1 = −
∆h1vθ

RT 2

1b

+

(

∆cp
2R

+
∆h1v

RT1b

)(

θ

T1b

)2

+ O(θ3)
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• If θ is small, the second term can be ignored.

• It is also to be noted that everything on the right hand
side of the equation depends only on the solvent.
• This means that boiling point elevation depends only

on the mole fraction of solute and not the nature of
the non-volatile solute.

• If it can be assumed that solution is ideal and dilute then
γ1 = 1 and only the first order term needs to be retained:

ln x1 = −
∆h1vθ

RT 2

1b

• When the solution is dilute, x2 is small, and:

ln x1 = ln(1 − x2) = −x2

– p. 274/278



• Therefore:

x2 =
∆h1vθ

RT 2

1b

• This can provide the basis for determination of molar
mass.

• The mole fraction may be written as:

x2 =
w2/M2

w1/M1 + w2/M2

• If x2 << 1 then:

x2 =
w2/M2

w1/M1
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• Therefore:

M2 =
w2

w1/M1

RT 2

1b

∆h1vθ
= 1000

w2

w1

Kb

θ

• Kb is the ebulliscopic constant and is defined as:

Kb ≡
(

M1

1000

)

(

RT 2

1b

∆h1v

)

and has units of K kg mol−1.
• Note that:

M2 w1

1000 w2

is the molality, moles of solute per kg of solvent.
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• This is applicable to solutes which no vapour pressure.

• Analoguous to this is freezing-point depression.

• Consider a solute that is insoluble in the crystalline
phase of the solvent.

• It can be shown that:

ln γ1x1 = −
∆h1fθ

RT 2

1f

−

(

∆cp
2R

+
∆h1f

RT1f

)(

θ

T1f

)2

+ O(θ3)

where the subscript f refers to freezing and θ = T1f − T .

• As before θ depends only on the solvent properties and
not the solute.

• If the concentration of solute is low and (θ/T1f ) is small,
then:
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ln γ1x1 = −
∆h1fθ

RT 2

1f

= −
θ

Kf

M1

1000

where

Kf ≡
(

M1

1000

)





RT 2

1f

∆h1f





• Then
θ = Kfm2

where m2 is the molality of the solute.

• If the solution is ideal:

x2 =
∆h1fθ

RT 2

1f

– p. 278/278


