Thermodynamic Description of a Gas Mixture

* To describe the properties of a mixture, it is necessary to
specify the temperature, pressure, total volume, and the

composition.

* Any unit may be used, but mole fraction is often

convenient.
T,

ny—+mng+ -+ Ny

* Mole fraction is related to partial pressure:

X; =

. Di
lim — = 24
p—0 p
or:
. RT
limp=—(Mm1+ns+---+n,) = (p1 +p2+

p—0 V
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* The composition variables are not completely
independent of each other.

* Mole fractions must add up to unity.
* Partial pressures must add up to the total pressure.

* Equilibria will impose additional constraints on
composition.

* (Consider the reaction:
Hys + Io = 2HI

* Only two of the three concentrations are
independent.

* The third is determined by the equilibrium.

* Consider Figure 21.9 in which a container is separated
into two compartments by a semipermeable membrane.
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Figure 21.9 Schematic diagram of a box with semipermeable
membrane separating pure component i from a mixture of gases
containing component i, Only i can pass through the membrane.
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Compartment | contains pure 7 in equilibrium with with
component ¢ in the gas mixture in compartment Il.

The semipermeable membrane is also diathermal and
rigid and heat but not work can be transferred from one
compartment to the other.

The system is in equilibrium, so:

uf = nt! = g
T =T =T

For gas mixtures at nonzero pressure:

1 * pI p'.T
py = pi (T, P) + RTIHE T 0T
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* For the system in Figure 21.9, p! = p!I.
* In the low pressure limit, p{ = pl = wznpll.

* Therefore the chemical potential of 2 in compartment |l
IS:

11
oHpll  ep' T
_|_

P 0,7

RT

i (p')

pi' = pi(T, P)+RT In

where:

U-—<3“i> 0 (ac;) 0 (aa)
! op Tn,; Op \ On; T on; \ Op T

B (av )
(?7%‘ T,p,”i;ﬁj
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* Chemical potential may be determined from the
equation of state for the substance.

* The average molar volume for the mixture may be
considered in terms of the virial equation of state:

V RT
U = = = 4 B(a1, 22, 21, T)
i=1 Tl p

where B is an extension of the virial equation to account
for interaction of molecules and is proportional to the
frequency of occurence of all possible pairs.

e Thus:

r r
B(:L“l, LYy ,LIZf,a_l,T) = Z Z :IJZ'ZCJ'BZ']'(T)
i=1 j=1
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By symmetry, B;; = Bj;.

For a binary mixture:

Vi RT N n%Bn + 2n1noB1o + n%BQQ
ni+ns P (n1 + ng)?
But:
3 ((’W)
U1 = | =—
anl T7p7n2
Therefore:
_ RT N n$Bi1 + 2n1neB11 + 2n3B1a — n3Bas
V] = —
D (n1 + ng)?
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* This may be rewritten as:

RT
=5t 1(2B11 — B11) + 2122(2B11 — B1a)

+2921(2B19 — Bo1) + 25(2B12 — Bao)

* Generally:

Vj = —— —I— Z Z :EJ:Ek Bjk)

1=1k=1

® Therefore:

* p:l?
pi = i (T) + RT In — + Z Z v;2,(2Bi; — Bjr)p
1=1 k=1
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For a pure gas:
1 = i (T) + RT m% + Byip

In a mixture of real gases, interactions between
molecules of 1 and 2 are not expected to be the same as

Interactions between molecules of 1 with 1 or molecules
of 2 with 2.

Yet it is desirable to make predictions about properties
of gas mixtures and relate these properties to the
properties of the pure components.

Fugacity of component 7 in a mixture has been defined
by Lewis and Randall as:

/ /p _ RT\ &y
;. — gpex U; —
pEEp 0 p | RT
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* This gives a partial fugacity:

fZ(Tapa xZ) — xzsz(Ta p)

where f7 is the fugacity of pure component i.

e If this is valid for a mixture, then that mixture is an
Ideal solution.

* The chemical potential in terms of fugacity is:
0

) = i (T,P) + BT 2L

for a pure gas and

i zu?(T7P)+RT1n%

for a gas mixture.
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e Substituting the pure gas expression into the expression
for gas mixtures yields:

p; = p + RT In 2%

® Thus for an ideal solution:
i = ,ug + RT In x;

* For an equation of state that follows the virial form, it
may be shown that:

Bp
0 _ It
Ji = Dpexp ( RT)
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For a virial equation of state that has been extended to
account for attractions between like and unlike
molecules:

0~ g ox i=1 k=1 TjT(2Bij — Bjg)p
i iPi €XP o7

Asp— 0, f) — p and f; — p;.

When considering a mixture of gases, entropy of mixing
must be taken into account.

The partial molar entropy of a gas is:

(%
o1 D,
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This gives:

5, = g Zﬂ_ 0vi
— s}(T,P) — RIn /0 <8T>,m

Y

For a system of pure gases that are separated:

.
SV = > n; sy
i=1

For the same gases mixed:

r
- Y
1=1

The difference is due to the entropy of mixing.
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* The entropy of mixing is:

ASpmiz = S™ — 8% =3 (5 — 89
1=1

r r p L | Qv 0v;
= —R i In x; z/ — | - = dp’
;n n +i;n 0.1 <8T>p, <0T>p, . 1%

* In the limit of low pressure for an ideal solution:

(o), = (o1)
or), \or ),

and for perfect gases:

ASmizr = —R Z n; In x;
i1
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Consider a container with two compartments in contact
with a thermal reservoir (Figure 21.10).

Pressure and temperature are the same on both sides:

_Zﬁ n_pvll
T RT' " RT

Na
When the partition is removed, the gases mix.
* After mixing:

RT
VI i

P = (na T nb)

Since molecules of a perfect gas in an ideal gas solution
behave as if individually present, the gas in each
compartment may be considered as expanding into the
other.
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Figure 21.10 Schematic representation of a box separated into

two compartments | and 11, both at the same temperature and pres-
sure, but containing n1, mol of a and n, mol of b, respectively.
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* The entropy change for a perfect gas undergoing
iIsothermal expansion is:

* For each gas expanding into the other compartment:

vig vt vig vt
ASpiz = AS1+ASy = n,Rln V1 +np R 1n VIl
— —ngRIn —"% _ _ p,Rln —
Ng + Ny Ng + Ny

= —n,RInzx, — nyRInxy

and the spontaneous process has maximized entropy.
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Consider now the inverse process.

This requires the use of a semipermeable membrane,
through which species a can pass, but not species b.

This membrane is inserted at one end of the container
holding the mixture.

It is then moved and used to compress the gas to an
arbitrarily small volume.

* Species a moves through the barrier, while species b
Is compressed to the arbritrarily small volume.

* Recall that for compression:

V2

= —nRT']
S n nv1

* The membrane does work only on species b, not
species a.
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At the end of the compression « is in volume V! + V{1
while b is in the arbitrarily small volume.

Next the membrane is replaced with an impermeable
piston, which is then moved to the original position of
the barrier.

* The system has been restored to its original state.

The total work done is:

1 VI VII

w = —npRT In VT VH—naRTln VT LT

= — (neRT Inxq + npRT In )

But for an isothermal expansion or compression in a
perfect gas, AU = 0.
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* From the first law of thermodynamics, it follows:

T/dS = /pdV — —Wsep'n

and the entropy change due to separation is:
ASsepn = ngR1Inxzg +npR1n xy,

ASsep’n — _Asmzx

* Only molecules with some distinquishing feature may be
separated.

* |f the molecules were all the same, they would stay
on the same side of the semipermeable membrane
and no separation would occur.

* Dalton’s law of partial pressures contains information
on the distinquishability of molecules.
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* Changes due to mixing are also associated with V', U,
H, G, and A.

* The value of the quantity in a mixture is different
that that due to corresponding pure amounts.

* The difference is the excess value.

e Consider volume:

E r
_ 4 2 : 0
Zi:l T i=1

* Similarly for enthalpy:
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* We have already established that excess entropy is
associated with mixing:

L ZBUE;nqiaj
SE — o
i—=1 T4

e There are two factors that contribute to an excess
function.

e The first factor is the difference in intermolecular
forces between molecules in the mixture and in the
pure components.

* This is what is addressed by the term:

A pA | [ Ov; 0,
; N I dp'
;n /O,T (c‘?T)p, <8T>p,nj P
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This term is zero for a perfect gas and non-zero for
gases with intermolecular forces.

In a perfect gas mixture, the contribution of this term is
Zero.

The second factor is due to the distinquishability of
different molecular species.

In entropy, this is addressed by the term:
T
—R Z x; In x;
i=1

For any gas mixture, it may be shown:

p ovE
HE — / vE <—> dyf
0 0T o,

— . 110/175



* For a perfect gas mixture:

v =0
AGmix 4
g = = RT Y x;Inz;
AA,.; il
ap = e e :RTZLEiIHLEZ
=11 i=1
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* For an ideal solution, it may be shown that:

A oY Ol4; r
miz = > _ N =l - = —R) n;lnz;
AS 1:in <8T>P <8T>p,nj R» n;lnx

1=1

Thermodynamic Description of Gaseous Reactions

* For mixture of gases that reaches equilibrium, it is
necessary that:

.
> Vit =0
i=1

e Recall that:

* Lip p L
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Therefore, at equilibrium:

p, T

L _ RT\ dp
it; (T, P) = —RT — i — i
;y,uz P) Z[n + o (v p’)RT]V

Since the left-hand side of this equation is a function
only of temperature, this means that specifying the
temperature will fix the composition.

The equilibrium coefficient K(T') is defined by:

—RTWmK(T) =) vju; (T, P)
1=1

This becomes:
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In the perfect gas limit, f; — px;, therefore the
equilibrium coefficient in terms of partial pressures is:

T V;
rip\ Y
i1\ P
In the limit of low pressure:

lim K, = K(T)

It can be shown:

ZVW@ AG*(T,P)

Therefore: —RT'In K(T) = AG*(T, P)
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* AG™ is the difference in molar free energy of reactants
and products and depends only on temperature.

* This is in constrast to K, which does depend on
pressure.

* The temperature dependence of K(71') may be
elucidated as follows:

dmK d (AG*) _AGY | 1dAGT

—h AT — dT \ T 2 T T ar

* Since G* Is a state function:

AAG* dG*
— — —AS*
T ( dT ) >
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® Therefore:

In K 1 [AG* AH*
din K <G+AS>:—

—h drr ~ T\ T T2

* |t may also be shown that:

d AH* — AG*
* p— e K p—
AS RdT (T'In K) 7

* As K(T) increases, AS* increases.

* The extent that a reaction proceeds when it reaches
equilibrium is determined by thermodynamics
through the balance of the enthalpy change required
and T times the entropy change associated with the
reaction.
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* |[f AS™ is the same, an exothermic reaction will go more
to completion than an endothermic reaction.

* If AH* is the same, then the equilibrium position favours
the side of the reaction that has the most molecules.

* |f a reaction has more molecules of products than

molecules of reactants, production of products will
be thermodynamically favoured.

* |f 2 reaction has more molecules of reactants than
molecules of products, then the production of
products is thermodynamically unfavoured.

* AH* and AS™ are defined with respect to the reactants
and products in their hypothetically perfect gas in a
reference state.

* The reference state what is most widely used is 1
atm pressure and a temperature of 25°C.
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* This has been superseded by a standard pressure of 1
bar.

* In a nonideal mixture, the equilibrium coefficient K (T, p)
has a slight dependence on pressure since there Is a
nonzero excess volume.

* When the reference state is the hypothetical perfect
gas, the equilibrium coefficient is independent of
pressure.

* This means that it is possible to calculate
equilibrium coefficient and its temperature
dependence from tabulated standard thermodynamic
enthalpies, entropies, and Gibbs free energies.

* |f the reaction of interest is not tabulated, then

Hess's law may be used to construct it from known
reactions.
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* |In most cases, corrections for the fact that gases are not
perfect are not necessary.

* There are a number of approximations that correct
equilibrium coefficients for the effect of interactions

among molecules.
* For example, Lewis and Randall introduced an
approximation based on:

1
Bji, = 5(33‘3' + Byy)
* Note that this contradicts molecular theory which
shows that molecular interactions among different

possible pairs of molecules are all different, ie.
Bjj, Bik, and Bjy are all different.
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From this it may be shown that:

K, AB
= —D—=
K(T) RT

In

where AB =37, v;By(T).

Although this does not have a solid physical basis, it
does reasonably well at high pressures.

It is convenient because it does not require knowledge of
the thermodynamic properties of the mixture, but just
properties of the pure components.

If AB < 0, this predicts that K,/K(T) is greater than
unity and increases as p increases, resulting in a higher
yield of products than is predicted by assuming perfect
gases.
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Thermodynamic Properties of Solids

* There are a number of important differences between
gas and liquid phases.

* In condensed phases N/V, the number density of
molecules, is comparable to the closest packing
density of the molecules.

* This means that interactions between molecules are
significant and that there are more than pairwise
interactions involved.

* The translational energy of the molecules is, on
average, less than or approximately equal to the
height of the potential energy barriers separating the
equilibrium positions.

* This potential energy of interaction has a significant
effect on the structure of a condensed phase.
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Thermodynamic Properties of Liquids

* Liquids exist over a limited range of temperatures and
pressures.

* Consider pressure exerted by a liquid at temperature T.
* [f this liquid is in equilibrium with its vapour, then
the pressure of the vapour and of the liquid must be
equal.

* The boundary separating a liquid and a gas may be
considered a deformable boundary that permits the
transfer of energy and matter.

* When a liquid and vapour are in equilibrium, the
pressure is denoted by p,, which is a function of
temperature.

* |f an inert gas that is insoluble in the liquid is
present, the vapour phase will have two components
and p, is a function of temperature and the applied
pressure.
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* At equilibrium, the chemical potential of the vapour and
liquid are equal:

pur = p(T) + RT]H%

* The derivative of chemical potential with pressure is:
((M) _
Ip )1

T ((ﬂnp(,) -
dp )1

and the rate of change of vapour pressure with applied
pressure may be determined.

® Therefore:

— p. 123/175



This equation is the Poynting equation.

A typical molar volume is of the order of 100 cm?.
* At room temperature, (0lnp,/dp)r is about 4
x1073 atm~1.

The temperature dependence of vapour pressure is
determined by differences in entropy and molar volume
of vapour and liquid.

Consider the pressure temperature curve for coexistence
of liquid and vapour.

* Since the chemical potentials of liquid and vapour
are equal on this curve,

d,uG _ d,uL

—sCdT + depg = —sldT + depg
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This can be rearranged to:

@ _SG—SL
OT O_?}G—UL

which is the Clausius-Clapeyron equation.

If the system is far from the critical point, s& > sl and

G
op\ _s°
8TGNUG

vY > vl and
Consider the thermal pressure coefficient for a liquid:

_ (o
w=\ar),
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* This is related to the dependence of the internal energy

on volume.
ou Op
il IR o et _
(av>T <8T>V P

* The temperature dependence of ~, is shown in Figure
23.2 (a).

* For gas in equilibrium with liquid, v, = (Op/dT),
increases smoothly with temperature.

* The dark solid lines are -, for liquid on the
coexistence curve.

* The lines on the right hand side are ~, for various
values of v and have slight temperature dependence.

* The deviation from zero slope for temperature
dependence indicates deviation of the fluid from

ideality.
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Figure 23.2 (a) The variation of the thermal pressure coefficient
with temperature for the saturated gas and liquid, and for the
homogeneous fluid at temperatures above saturation. (b) Thermal

pressure coefficient

of argon. From J.S. Rowlinson, Liquids

and Liquid Mixtures, 2nd ed. (Butterworths, London, 1969).
(¢) (Fuld V)r as a function of molar volume. From J. H. Hildebrand
and R.L. Scott, Regular Solutions (Prentice-Hall, Englewood

Cliffs, N.J., 1962).
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* The sign of ~, is determined by the sign of «, the
coefficient of thermal expansion.

* |t may be shown:

(ap> _ (/oT),  a
|4

oT (Ov/Op)r K
* x Is always positive.
°* « may be negative or positive.
* Therefore o and ~y have the same sign.
* Determination of (0p/dT)y from p,v,T properties of
liquids lead to some generalizations.

* k7 decreases with increasing pressure, with rate of
decrease decreasing as pressure increases.

* x7 increases with temperature, with the effect most
pronounced at low pressure.
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®* (v Increases as temperature Increases.

* From this conclusions about 1 may be reached.

* |f o Is positive and since T is positive, vy Is positive.

* If pis low, then u will decrease as v decreases.

* There will exist a pressure where [T'(0p/0T )y — p|
becomes zero.

* At pressures above this pressure, (Ou/0v)r is
negative and repulsive forces will dominate over
attractive forces.

* In this case, energy flows out of the liquid during
compression.

* There are no simple equations of state for a liquid, but
there are some empirical ones.

* The virial equation.
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The Tait equation is:

Vo — U A

Vop B+p

The Huddleston equation is:

2/3
ln( o >A+B(vé/3—vl/3)

1/3
Uo/ _ pl/3

In the latter two, vy Is the molar volume at zero pressure

and A and B are positive empirical constants.

If the virial equation is used, then several terms may be
necessary, particularly in high density regions above the
critical temperature.
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For the virial equation, the order of the term may be
connected to the number of molecules interacting.

There is no physical interpretation for either the Tait or
Huddleston equation.

For liquids, ¢, has a much stronger temperature
dependence than c¢,.

As in the case of gases, it is possible to calculate
thermodynamic properties from the equation of state
and the temperature dependent heat capacity.

Also, as in the case of gases, the perfect gas will be used
to define a reference state.

A residual function f¥ is defined:

. B v af af per fect gas’]
= [\(5), - (%), "
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* This will be considered in two steps.

* The initial state is in the low pressure limit with
infinite volume.

* The vapour is compressed isothermally to a finite
volume, v, which is the volume of the vapour phase
at pressure p, and temperature T

* The second step is isothermal condensation to a

liquid with volume v”.

* Thus, when applied to enthalpy:

" per fect gas’]
W (T, v) = / oy _ (oh dv
00 v T Ov T

Y Op Op
— /OO [T <0T>,U + v ((%)T] dv + Ahyap
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Figure 23.4 Sketch of the vanation with temperature of the resid-
ual enthalpy of gas and liquid along the liquid-vapor coexistence
curve. The difference between the two curves is the latent heat of
evaporation. From J. S. Rowlinson, Liquids and Liquid Mixtures,
2nd ed. (Butterworths, L.ondon, 1969).
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e LY for liquid and vapour along the coexistence curve is
shown in Figure 23.4.

* Note that the difference in k¥ for the gas phase vanishes
at the critical point.

Phase equilibria in One-Component systems

* When a phase transition occurs, there is a sudden
change in physical and thermodynamic properties.

* The changes in enthalpy, entropy, and heat capacity are
discontinuous.

* How and why do phase transitions occur?
* Melting of solid.
* Evaporation of liquid.
* Sublimation of solid.
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* Consider the transition of a solid to liquid at constant 7.
* The solid phase is distinct from the liquid phase.

* The solid phase has a well defined crystalline
Structure.

* Thus the environment of a molecule in that solid is
different from the environment of a molecule in a
liquid.

* In a liquid (or in a amorhphous solid such as a
glass), long range molecular order is absent.

* Note that an amorphous solid does not have a sharp
phase transition and thus is not distinct from the
liquid phase.

* A phase transition occurs at a sharp temperature.
* However this temperature depends on pressure.
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* A phase transition is accompanied by an enthalpy
change.

* Two phases can coexist in any proportion at the
transition temperature for a particular pressure.

* At other temperatures at the same pressure (or other

pressures at the same temperature) only one phase
or the other Is stable.

* The vapour-liquid coexistence curve may be thought
of as dividing the (p,T") plane into two regions (see
Figure 24.1).

* In one region, the liquid is the stable phase.
* In the other region, the gas is the stable phase.

* A phase transition may also be considered in the
(v, T) plane (see Figure 24.2).
* At constant temperature a gas can be compressed
until condensation occurs.
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Figure 24.1 Schematic diagram of a vapor pressure curve.

transition is easily appreciated when the (V, 7) plane is
examined (see Fig. 24.2). Suppose that a gas with volume
V. is compressed at constant temperature until condensa-
tion begins, which occurs at V = V. As the system is com-
pressed further, the amount of gas in the system decreases
while the amount of liquid increases. When V = V;, the
substance is entirely converted to liquid. Consider the
point D in Fig. 24.2. Let the fractions of gas and liquid at
D be x and 1 — x. Then the total volume of the system is
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Figure 24.2 Schematic diagram of the coexistence region of
liquid—gas equilibrium in the (V) T) plane. The line aADB repre-

sents the condensation path described in the text.




Condensation will occur when the volume reaches V,
the volume of the gas at the pressure equal to the
vapour pressure.

As the gas is compressed further, more liquid appears.

The volume decreases until the volume reaches V7, the
volume of the liquid at the vapour pressure.

The proportion of substance is each phase is determined
by the lever rule.

Let « be the mole fraction in the gas phase.
Then 1 — x is the mole fraction in the liquid phase.

The total volume of the system is:

V=xVg+ (1 —Ji)VL
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* This may be rearranged to:

V-V
- Ve—-Vg

X

Vo —V
Vo — Vi

* The mole ratio of gas to liquid is:

1l —x =

r V-V, length BD

1—2z Vg—V  length AD

* In both (7,V) and (p,V) planes, coexistence of two
phases defines an area.

* This is a consequence of coexistence requiring that
the phases have the same pressure and temperature,
but not the same density.
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Consider the (p,V,T) surface shown in Figure 24.3.

Note that at the critical point, the density of the liquid
phase converges to that of the gas phase in both the
(p, V) plane and the (V,T).

The existence of the critical point is indicative that there
Is no fundamental difference between liquid and gas.

* In both liquid and gas, the local structure around a
molecule has a spherical symmetry.

* Thus both phases are isotropic.

If two phases exist and the internal symmetries are
different (at least one is anisotropic), then a critical
point does not exist.

* The densities could become equal, but the phases
can be distinguished on the basis of internal
symmetry.
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Figure 24.4 Experimental pressure against density isotherms in
the critical region of xenon. From H. W. Habgood and W. G.
Schneider, Can. J. Chem. 32, 98 (1954).
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Figure 24.5 Phase diagrams for water. (a) Low-pressure ice-water vapor-liquid equilibrium. From J. Kestin, A Course in Thermodynami
(Blaisdell, Waltham, Mass., 1966). (b) High-pressure equilibria among various forms of ice. From B. Kamb, in E. Whalley, S. Jones, a
L. Gold (Eds.), Physics and Chemistry of Ice (University of Toronto Press, Toronto, 1973).
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In a phase, a particular symmetry property either exists
or does not exist.

It is a property of all molecules of the phase as a whole.
It cannot be partially present.

Different crystalline of a particular substance forms are
different phases.

Usually, different crystalline forms have different
densities.

They can coexist along certain (p,T') curves in the (p,T)
plane.

If a coexistence curve is crossed, there will be a
spontaneous phase transition and one crystal form will
change into the other accompanied by an enthalpy
change.
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* Most phase transitions, liquid-gas, solid-gas, liquid-solid
and some crystal-crystal phase transitions involve a
discontinuous change in density across the coexistence
curve.

* This discontinuity in density is accompanied by
discontinuities in entropy, internal energy, and
specific heat.

* Such phase transitions are phase transitions of the
first kind and are known as first-order phase
transitions.

* In priniciple, it is possible to have a change in the type
of symmetry without discontinuities in density, entropy,
or internal energy.

* Consider the case of a tetragonal crystal with
unequal edges a and ¢ and ¢ > a.
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skite structure with the B ion at the center: ® A, ®B, OO. The 1
eral chemical formula is ABO;.
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These edges change with length with temperature, but
at different rates such that:

oa - Oc
oT oT
p p
Then there exists some temperature at which a = ¢ and
the symmetry has become cubic.

In this case, the change in symmetry Is not accompanied
by a discontinuous change in the thermodynamic
properties of the crystal.

This is an example of a transition of the second kind or
a second-order transition.

Second order transitions are not common, but have been
observed for perovskites (ABOj3)
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4.7 Some schematic heat capacity versus temperature curves near transition points. (@) Order—disorder transition in a binary alloy.
id—gas transition; curves 1 and 2 are approximately to scale for argon and helium, respectively. (¢) Order—disorder transition in a
the curve 1s for nickel chloride hexahydrate.
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Thermodynamics of Phase Equilibria in
One-Component Systems

* When two phases of a one component system are in

equilibrium, their chemical potentials, temperatures, and
pressures are equal.

* Consider a phase transition of the first kind.
* For each (T, p) at which liquid and gas coexist,

p"(T,p) = pa(T, p)

* |f the equations of state are known, then this can be

used to determine the pressure as a function of
temperature.

* Usually, the equations of state of both phases are
not known.
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Note that
dp*™ (T, p) = duc(T, p)
at all points on the coexistence curve.

Therefore, for two phases to remain in equilibrium, a
change in the chemical potential of one must be
matched by a change in chemical potential of the other.

But the system is a one-component closed system.

oL o
duy = | =] dI — | d
= —sdT + vdp

Thus:
= —srdI + vrdp = —sqdl + vadp
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* This may be rewritten as:
dp\  sL—Sa
drl' ) T

Ahyap
Tvap

dp\  Ahyg
AT’ ) = ToapQAuvygy

* This may also be applied to the coexistence of liquid and

solid phases:
() - 2
dIl’ of TquAvqu

e But:

eS(; - é;[/::: ZXQSUC”O —

and thus:
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* This means that pressure and temperature measurements
can be combined with density measurements to
determine the entropy and enthalpy of a phase change.

* |t is also possible to determine the sign of (dp/dT),.

* AHyqp and Avyg, are always positive.
* Therefore (dp/dT), > 0 and boiling temperature
Increases with pressure.
° AHy,s is always positive, but Avy,s may be either
positive or negative.
* The sign of the slope of the coexistence curve is
determined by the sign of Avyys.

* Consider vaporization of liquid at low pressure.

* |f the pressure is low enough, the gas phase may be
treated as obeying the perfect gas equation of state.
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At this low pressure, the molar volume of the gas phase
Is much greater than the molar volume of the condensed
phase.

° Thus: Avygp = vg.
Then

d_p o Ahfva,p o Ahfva,pp
dr') . Tvg  RI?
This is the Clausius-Clapeyron equation.

The variables p and 1" may be separated:

dp  Ahyap

= T

This may be integrated directly if the dependence of
Ahyap on T is negligible.
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Figure 24.8 The heat of vaporization of water as a function of

temperature. From J. Kestin, A Course in Thermodynamics (Blais-
dell, Waltham, Mass., 1966).
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* Upon integration this yields:

S R S Gy

* This means that the heat of vapourization may be
determined from measurements of vapour pressure at
two temperatures.

* Consider three phases of a pure substance at equilibrium.
* Denote these phases as 1, 2, and 3.
* Since the three phase are at equilibrium,

L0 Z @)
EVRNC)
/’1'(2) — /’1'(3) — . 156/175



* Corresponding to this are three Clausius-Clapeyron
equations:
dp12 _ Al
dT o1o TAUlQ
dp13 _ A
dT’ s T Avis

dp23 _ Ahsgs
d1’ oo T Avog

* Two of these are independent.

* In p,T space, the coexistence of these phases is shown
in Figure 24.9.

* The three phases coexist at the triple point.
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solid

triple point

vapor

S-
T

Figure 24.9 Schematic diagram showing the triple point and the
equilibrium of solid, liquid, and vapor.
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Each coexistence curve is described by the appropriate
Clausius-Clapeyron equation.

For any (p,T) point not on a coexistence line only one
phase Is stable and p and T may be varied independently
of each other.

If two phases coexist, then p depends on 7.

If three phases coexist, then there are no independent
variables and p and T" are completely defined for that
substance.

This may be summarized in the Gibbs phase rule.

* Left f be the number of independent variables and
P be the number of phases.

* The Gibbs phase rule for a one-component system is
s f=3—np.

— p. 159/175



* Now consider a multicomponent system with C
components in P coexisting phases in equilibrium.

* A component is a chemical species with a concentration
that can be varied independently of all other species
concentrations.

* There may be more chemical species present than
there are components, since some species may be in
chemical equilibrium with other species.

* To characterize a multicomponent system completely,
temperature, pressure, and mole fractions must be
determined for each of the C' components in the P
phases.

* This would imply C' + 2 variables for each phase and
P(C + 2) variables in total.
* However not all these variables are independent.
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* Mole fractions in each phase must add to unity.

* Therefore, there are C' — 1 independent mole
fractions in each phase and this removes P degrees

of freedom from the entire system.

* The fact that P phases are equilibrium imposes a further
constraints.

* The chemical potential of each component is equal
in all phases, imposing C'(P — 1) constraints.

* The temperature and pressure is uniform in all
phases, imposing 2(P — 1) constraints.

e Therefore:
f=P(C+2)-P-2P~-1)-C(P-1)

f=C—-P+2
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When the general form of the Gibbs phase rule,
f=C—P+2, s applied to a one component, three
phase system, it gives f = 0.

This means that there will never be a quadruple point in
a one component system since that would involve a
negative number of degrees of freedom.

This also means that for three phases in equilibrium, p
and T’ are uniquely determined.

Now consider heat capacity in a multicomponent system.
The constraint of coexistence of phases is different from

the constraint of constant volume or constant pressure.

* Heat capacity under this constraint, ¢, will be
affected by heat of the phase change.

* Consider the first law of thermodynamics:
dq = du —dw.
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Therefore:

(dq )
C%T — I
a phase equilibrium

(i) - (i)
dT dT’ phase equilibrium

In a liquid-vapour transition, only pV" work is done.

Therefore:

_(du v
o= \ar " Par

>Vapour pressure curve

Define ¢, and ¢, as the heat capacities of the
coexisting liquid and vapour.
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* Since the two phases are in equilibrium,

PL — PG — Po

Ty =To =T,
_ (dur) o, (o
ColL — AT i Po AT i

duc dvg
“¢=\ar ), P \ar

* Then

® Therefore:
CoG — Col = [(ua — UL)] + Do [(va — UL)]
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* The latent heat of vapourization per mole is:

Ahvap — hG — hL — uqGg — uy, _|_pO'(UG — UL)

® Therefore:

dAhyap d : |+ d d )
= | == — o vGg — U
dT ar\'¢ | TR gpte TR
dpe
—|—(UG — UL) dT
dps
= CoG — CoLL + (UG — UL) dT

* But from the Clausius-Clapeyron equation:

dpy _ Ahyay
ar T
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Therefore:

dAhyap  Ahyap

CoG — CoL — dT — T

If the temperature is low, then c,1, = ¢,

Therefore at low temperature, the heat capacity of
saturated vapour will be:

dAhyap  Ahyap

R

Consider the case of water vapour in equilibrium with
liquid water at 100° C.

* The thermodynamic properties are well
characterized.
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They are:
* Ahygp = 40.67 J mol~1.

* dAhygp/dT = -47.93 J K= mol=!
® ¢, = (5.80 J K= mol—!
On this basis, ¢, = —80.91 J K= mol—1.

This means that if saturated water vapour is
compressed, the temperature increases more rapidly than
the (p,T") coexistence curve.

This means that the final temperature would not be on
the coexistence curve, but rather in the region of the
phase diagram where gas is the stable phase.

Therefore, to maintain coexistence, sufficient energy
would need to be removed to bring the system back to
the coexistence curve.
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Critical Point

* There exists a critical temperature 1, above which gas
and liquid are indistiguishable.

* Consider the constraints of coexistence in equilibrium:
P1 = P2
T =T,
p1(p1, Th) = po(p2, 13)
p1 = p1(v1,T1)
p2 = p2(ve, T2)

which gives five equations for the six variables,
p1,711,v1,p2, T2 and vs.
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* This leaves a relation between two variables to be
considered such as the relation between p and 7" along a
coexistence line.

* |If there exists a p and 1" where v and vy for the two
phases are equal and the symmetry of the two
phases is identical, then there exists a critical point.

* No critical point exists if there is no temperature for
which v1 = vy along the coexistence curve.

* No critical point exists if there is a temperature for
which v = v9 along the coexistence curve, but the
lattice symmetries are different.

* This means that conditions of equilibrium and the
equations of state are an incomplete description of
the system.

* A complete description would involve a description
of the symmetry of each phase.
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e Consider the gas-liquid critical point.

* The critical isotherm at T, has a point in the (p,v) plane
where the curve is horizontal and also has an inflection
point.

* Mathematically these are:

i/ I
Ov =T,

for the horizontal tangent and

2
Ov T—T.

for an inflection point.
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This may then be used to explore fluid properties at and

near the critical point.
Recall that:

RT =

_1fov
v \dp )

For any real substance (0v/dp); < 0.

At the critical point:

. [ 1 ((%) ]
lim — | =— = 00
T'—T.,v—v, (9 8}? T

and k7 becomes positive and infinite.

Consider (Ou/0v)r as a finite quantity.
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Recall:

ou Op
il NG ol (O N
<8U>T <8T>v g
Since T and p are finite, (Op/dT), is finite.

Along the gas-liquid coexistence line:

dp\  sqg—sL
oT O_U(;—UL

At the critical point:

lim @ = @
T—T.v—v. \ 0T o N ov T=T.
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e But:

(7).~ i)
oT o,critical point oT V=",

and (9p/0T),, is always a finite quantity.
* Therefore (Op/dT), r_r,. is finite.

* Using the cyclic rule:

(or), =~ @), ar),

It follows that:

¥ 1 ( Ov B
rdn o ler) | ==
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* The Clausius-Clapeyron equation may be written as:

%,
Ahyep = T(vg — vr) (a—éz)

* Since at the critical point, (Op/JT) is finite and
VG = UL,
Th_r)r% Ahygp =0

* |t may also be shown that:

dAhygp
= —00
dT )

(See Figure 24.8).
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* A fluid near the critical point has peculiar properties.
* Densities converge toward each other as:

(o1 — pg) = |T — T.|”

where the critical exponent 5 = 0.326 + 0.002 (See
Figure 24.10 and 24.11)

* There is a thermal anomaly at the critical point.
* At the critical density,

cy(T) — o0

regardless of from which direction T is approached.

* The critical exponents, 0, «, and ~ are used to
describe the behaviour of other thermodynamic
properties near the critical point.
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