
Thermodynamic Description of a Gas Mixture

• To describe the properties of a mixture, it is necessary to
specify the temperature, pressure, total volume, and the
composition.

• Any unit may be used, but mole fraction is often
convenient.

xi =
ni

n1 + n2 + · · · + nr

• Mole fraction is related to partial pressure:

lim
p→0

pi

p
= x1

or:

lim
p→0

p =
RT

V
(n1 + n2 + · · · + nr) = (p1 + p2 + · · · + pr)
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• The composition variables are not completely
independent of each other.
• Mole fractions must add up to unity.
• Partial pressures must add up to the total pressure.

• Equilibria will impose additional constraints on
composition.
• Consider the reaction:

H2 + I2 ⇀↽ 2HI

• Only two of the three concentrations are
independent.

• The third is determined by the equilibrium.

• Consider Figure 21.9 in which a container is separated
into two compartments by a semipermeable membrane.
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• Compartment I contains pure i in equilibrium with with
component i in the gas mixture in compartment II.

• The semipermeable membrane is also diathermal and
rigid and heat but not work can be transferred from one
compartment to the other.

• The system is in equilibrium, so:

µI
i = µII

i = µi

T I = T II = T

• For gas mixtures at nonzero pressure:

µI
i = µ∗

i (T,P) + RT ln
pI

P
+
∫ pI ,T

0,T

[

vi(p
′) −

RT

p′

]

dp′
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• For the system in Figure 21.9, pI
i = pI

i I.

• In the low pressure limit, pI
i = pI = xII

i pII.

• Therefore the chemical potential of i in compartment II
is:

µII
i = µ∗

i (T,P)+RT ln
xII

i pII

P
+
∫ pII ,T

0,T

[

vi(p
′) −

RT

p′

]

dp′

where:

vi =

(

∂µi

∂p

)

T,nj

=
∂

∂p

(

∂G

∂ni

)

T,nj 6=i

=
∂

∂ni

(

∂G

∂p

)

T,nj 6=i

=

(

∂V

∂ni

)

T,p,ni6=j
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• Chemical potential may be determined from the
equation of state for the substance.

• The average molar volume for the mixture may be
considered in terms of the virial equation of state:

vm =
V

∑r
i=1 ni

=
RT

p
+ B(x1, x2, · · · , xr−1, T )

where B is an extension of the virial equation to account
for interaction of molecules and is proportional to the
frequency of occurence of all possible pairs.

• Thus:

B(x1, x2, · · · , xr−1, T ) =
r
∑

i=1

r
∑

j=1

xixjBij(T )
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• By symmetry, Bij = Bji.

• For a binary mixture:

V

n1 + n2
=

RT

P
+

n2
1B11 + 2n1n2B12 + n2

2B22

(n1 + n2)2

• But:

v1 =

(

∂V

∂n1

)

T,p,n2

• Therefore:

v1 =
RT

p
+

n2
1B11 + 2n1n2B11 + 2n2

2B12 − n2
2B22

(n1 + n2)2
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• This may be rewritten as:

v1 =
RT

P
+ x2

1(2B11 − B11) + x1x2(2B11 − B12)

+x2x1(2B12 − B21) + x2
2(2B12 − B22)

• Generally:

vi =
RT

P
+

r
∑

j=1

r
∑

k=1

xjxk(2Bij − Bjk)

• Therefore:

µi = µ∗

i (T ) + RT ln
pxi

P
+

r
∑

j=1

r
∑

k=1

xjxk(2Bij − Bjk)p
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• For a pure gas:

µi = µ∗

i (T ) + RT ln
p

P
+ B11p

• In a mixture of real gases, interactions between
molecules of 1 and 2 are not expected to be the same as
interactions between molecules of 1 with 1 or molecules
of 2 with 2.

• Yet it is desirable to make predictions about properties
of gas mixtures and relate these properties to the
properties of the pure components.

• Fugacity of component i in a mixture has been defined
by Lewis and Randall as:

fi = xip exp

[

∫ p

0

(

vi −
RT

p′

)

dp′

RT

]
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• This gives a partial fugacity:

fi(T, p, xi) = xif
0
i (T, p)

where f0
i is the fugacity of pure component i.

• If this is valid for a mixture, then that mixture is an
ideal solution.

• The chemical potential in terms of fugacity is:

µ0
i = µ∗

i (T,P) + RT ln
f0
i

P

for a pure gas and

µi = µ∗

i (T,P) + RT ln
fi

P

for a gas mixture. – p. 97/175



• Substituting the pure gas expression into the expression
for gas mixtures yields:

µi = µ0
i + RT ln

fi

f0
I

• Thus for an ideal solution:

µi = µ0
i + RT ln xi

• For an equation of state that follows the virial form, it
may be shown that:

f0
i = p exp

(

Bp

RT

)
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• For a virial equation of state that has been extended to
account for attractions between like and unlike
molecules:

f0
i = xipi exp

[
∑r

j=1
∑r

k=1 xjxk(2Bij − Bjk)p

RT

]

• As p → 0, f0
i → p0

i and fi → pi.

• When considering a mixture of gases, entropy of mixing
must be taken into account.

• The partial molar entropy of a gas is:

si = −

(

∂µi

∂T

)

p,xj
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• This gives:

si = s∗i (T,P) − R ln
pxi

P
−
∫ p,T

0,T





(

∂vi

∂T

)

p′,ni

−
R

p′



 dp′

• For a system of pure gases that are separated:

S0 =
r
∑

i=1

nis
0
i

• For the same gases mixed:

Sm =
r
∑

i=1

nisi

• The difference is due to the entropy of mixing.
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• The entropy of mixing is:

∆Smix = Sm − S0 =
r
∑

i=1

ni(si − s0
i )

= −R
r
∑

i=1

ni ln xi+
r
∑

i=1

ni

∫ p,T

0,T





(

∂vi

∂T

)

p′

−

(

∂vi

∂T

)

p′,nj



 dp′

• In the limit of low pressure for an ideal solution:

(

∂vi

∂T

)

p′

=

(

∂vi

∂T

)

p′,nj

and for perfect gases:

∆Smix = −R
r
∑

i=1

ni ln xi
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• Consider a container with two compartments in contact
with a thermal reservoir (Figure 21.10).

• Pressure and temperature are the same on both sides:

na =
pV I

RT
; nb =

pV II

RT

• When the partition is removed, the gases mix.
• After mixing:

p =
RT

V I + V II
(na + nb)

• Since molecules of a perfect gas in an ideal gas solution
behave as if individually present, the gas in each
compartment may be considered as expanding into the
other.
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• The entropy change for a perfect gas undergoing
isothermal expansion is:

∆S = nR ln
V2

V1

• For each gas expanding into the other compartment:

∆Smix = ∆S1+∆S2 = naR ln
V I + V II

V I
+nbR ln

V I + V II

V II

= −naR ln
na

na + nb
− nbR ln

nb

na + nb

= −naR ln xa − nbR ln xb

and the spontaneous process has maximized entropy.
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• Consider now the inverse process.

• This requires the use of a semipermeable membrane,
through which species a can pass, but not species b.

• This membrane is inserted at one end of the container
holding the mixture.

• It is then moved and used to compress the gas to an
arbitrarily small volume.
• Species a moves through the barrier, while species b

is compressed to the arbritrarily small volume.
• Recall that for compression:

s = −nRT ln
V2

V1

• The membrane does work only on species b, not
species a.
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• At the end of the compression a is in volume V I + V II ,
while b is in the arbitrarily small volume.

• Next the membrane is replaced with an impermeable
piston, which is then moved to the original position of
the barrier.
• The system has been restored to its original state.

• The total work done is:

w = −nbRT ln
0+

V I + V II
−naRT ln

V I

V I + V II
−nbRT ln

V II

0+

= − (naRT ln xa + nbRT ln xb)

• But for an isothermal expansion or compression in a
perfect gas, ∆U = 0.
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• From the first law of thermodynamics, it follows:

T
∫

dS =
∫

pdV = −wsep′n

and the entropy change due to separation is:

∆Ssep′n = naR ln xa + nbR ln xb

∆Ssep′n = −∆Smix

• Only molecules with some distinquishing feature may be
separated.
• If the molecules were all the same, they would stay

on the same side of the semipermeable membrane
and no separation would occur.

• Dalton’s law of partial pressures contains information
on the distinquishability of molecules.
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• Changes due to mixing are also associated with V , U ,
H, G, and A.
• The value of the quantity in a mixture is different

that that due to corresponding pure amounts.
• The difference is the excess value.

• Consider volume:

vE ≡
V E

∑r
i=1 ni

= vm −
r
∑

i=1

xiv
0
i

• Similarly for enthalpy:

hE ≡
HE

∑r
i=1 ni

= hm −
r
∑

i=1

xih
0
i
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• We have already established that excess entropy is
associated with mixing:

sE ≡
∆Smix
∑r

i=1 ni

• There are two factors that contribute to an excess
function.
• The first factor is the difference in intermolecular

forces between molecules in the mixture and in the
pure components.

• This is what is addressed by the term:

r
∑

i=1

ni

∫ p,T

0,T





(

∂vi

∂T

)

p′

−

(

∂vi

∂T

)

p′,nj



 dp′
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• This term is zero for a perfect gas and non-zero for
gases with intermolecular forces.

• In a perfect gas mixture, the contribution of this term is
zero.

• The second factor is due to the distinquishability of
different molecular species.

• In entropy, this is addressed by the term:

−R
r
∑

i=1

xi ln xi

• For any gas mixture, it may be shown:

HE =
∫ p

0



V E − T

(

∂V E

∂T

)

p′,nj



 dp′
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• For a perfect gas mixture:

sE ≡
∆Smix
∑r

i=1 ni
= −R

r
∑

i=1

xi ln xi

hE = uE = 0

vE = 0

gE ≡
∆Gmix
∑r

i=1 ni
= RT

r
∑

i=1

xi ln xi

aE ≡
∆Amix
∑r

i=1 ni
= RT

r
∑

i=1

xi ln xi
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• For an ideal solution, it may be shown that:

∆Smix =
r
∑

1=i

ni





(

∂µ0
i

∂T

)

P

−

(

∂µi

∂T

)

p,nj



 = −R
r
∑

i=1

ni ln xi

Thermodynamic Description of Gaseous Reactions

• For mixture of gases that reaches equilibrium, it is
necessary that:

r
∑

i=1

νiµi = 0

• Recall that:

µi = µ∗

i (T,P) + RT ln
xip

P
+
∫ p,T

0,T

[

vi(p
′) −

RT

p′

]

dp′

– p. 112/175



• Therefore, at equilibrium:

r
∑

i=1

νiµ
∗

i (T,P) = −RT
r
∑

i=1

[

ln
xip

P
+
∫ p,T

0,T

(

vi −
RT

p′

)

dp′

RT

]

νi

• Since the left-hand side of this equation is a function
only of temperature, this means that specifying the
temperature will fix the composition.

• The equilibrium coefficient K(T ) is defined by:

−RT ln K(T ) ≡
r
∑

i=1

νiµ
∗

i (T,P)

• This becomes:

K(T ) =
r
∏

i=1

(

fi

P

)νi
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• In the perfect gas limit, fi → pxi, therefore the
equilibrium coefficient in terms of partial pressures is:

Kp ≡
r
∏

i=1

(

xip

P

)νi

• In the limit of low pressure:

lim
p→0

Kp = K(T )

• It can be shown:

r
∑

i=1

νiµ
∗

i = ∆G∗(T,P)

• Therefore: −RT ln K(T ) = ∆G∗(T,P)
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• ∆G∗ is the difference in molar free energy of reactants
and products and depends only on temperature.

• This is in constrast to Kp which does depend on
pressure.

• The temperature dependence of K(T ) may be
elucidated as follows:

−R
d ln K

dT
=

d

dT

(

∆G∗

T

)

= −
∆G∗

T 2
+

1

T

d∆G∗

dT

• Since G∗ is a state function:

d∆G∗

dT
= ∆

(

dG∗

dT

)

= −∆S∗
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• Therefore:

−R
d ln K

dT
= −

1

T

(

∆G∗

T
+ ∆S

)

= −
∆H∗

T 2

• It may also be shown that:

∆S∗ = R
d

dT
(T ln K) =

∆H∗ − ∆G∗

T

• As K(T ) increases, ∆S∗ increases.
• The extent that a reaction proceeds when it reaches

equilibrium is determined by thermodynamics
through the balance of the enthalpy change required
and T times the entropy change associated with the
reaction.
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• If ∆S∗ is the same, an exothermic reaction will go more
to completion than an endothermic reaction.

• If ∆H∗ is the same, then the equilibrium position favours
the side of the reaction that has the most molecules.
• If a reaction has more molecules of products than

molecules of reactants, production of products will
be thermodynamically favoured.

• If a reaction has more molecules of reactants than
molecules of products, then the production of
products is thermodynamically unfavoured.

• ∆H∗ and ∆S∗ are defined with respect to the reactants
and products in their hypothetically perfect gas in a
reference state.
• The reference state what is most widely used is 1

atm pressure and a temperature of 25◦C.
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• This has been superseded by a standard pressure of 1
bar.

• In a nonideal mixture, the equilibrium coefficient K(T, p)
has a slight dependence on pressure since there is a
nonzero excess volume.
• When the reference state is the hypothetical perfect

gas, the equilibrium coefficient is independent of
pressure.

• This means that it is possible to calculate
equilibrium coefficient and its temperature
dependence from tabulated standard thermodynamic
enthalpies, entropies, and Gibbs free energies.

• If the reaction of interest is not tabulated, then
Hess’s law may be used to construct it from known
reactions.
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• In most cases, corrections for the fact that gases are not
perfect are not necessary.

• There are a number of approximations that correct
equilibrium coefficients for the effect of interactions
among molecules.
• For example, Lewis and Randall introduced an

approximation based on:

Bjk =
1

2
(Bjj + Bkk)

• Note that this contradicts molecular theory which
shows that molecular interactions among different
possible pairs of molecules are all different, ie.
Bjj , Bkk, and Bjk are all different.
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• From this it may be shown that:

ln
Kp

K(T )
= −p

∆B

RT

where ∆B =
∑r

i=1 νiBii(T ).

• Although this does not have a solid physical basis, it
does reasonably well at high pressures.

• It is convenient because it does not require knowledge of
the thermodynamic properties of the mixture, but just
properties of the pure components.

• If ∆B < 0, this predicts that Kp/K(T ) is greater than
unity and increases as p increases, resulting in a higher
yield of products than is predicted by assuming perfect
gases.
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Thermodynamic Properties of Solids
• There are a number of important differences between

gas and liquid phases.
• In condensed phases N/V , the number density of

molecules, is comparable to the closest packing
density of the molecules.

• This means that interactions between molecules are
significant and that there are more than pairwise
interactions involved.

• The translational energy of the molecules is, on
average, less than or approximately equal to the
height of the potential energy barriers separating the
equilibrium positions.

• This potential energy of interaction has a significant
effect on the structure of a condensed phase.
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Thermodynamic Properties of Liquids
• Liquids exist over a limited range of temperatures and

pressures.

• Consider pressure exerted by a liquid at temperature T.
• If this liquid is in equilibrium with its vapour, then

the pressure of the vapour and of the liquid must be
equal.

• The boundary separating a liquid and a gas may be
considered a deformable boundary that permits the
transfer of energy and matter.

• When a liquid and vapour are in equilibrium, the
pressure is denoted by pσ, which is a function of
temperature.

• If an inert gas that is insoluble in the liquid is
present, the vapour phase will have two components
and pσ is a function of temperature and the applied
pressure.
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• At equilibrium, the chemical potential of the vapour and
liquid are equal:

µL = µ∗(T ) + RT ln
pσ

P

• The derivative of chemical potential with pressure is:

(

∂µL

∂p

)

T

= vL

• Therefore:

RT

(

∂ ln pσ

∂p

)

T

= vL

and the rate of change of vapour pressure with applied
pressure may be determined.
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• This equation is the Poynting equation.

• A typical molar volume is of the order of 100 cm3.
• At room temperature, (∂ ln pσ/∂p)T is about 4

×10−3 atm−1.

• The temperature dependence of vapour pressure is
determined by differences in entropy and molar volume
of vapour and liquid.

• Consider the pressure temperature curve for coexistence
of liquid and vapour.
• Since the chemical potentials of liquid and vapour

are equal on this curve,

dµG = dµL

−sGdT + vGdpσ = −sLdT + vLdpσ

– p. 124/175



• This can be rearranged to:

(

∂p

∂T

)

σ

=
sG − sL

vG − vL

which is the Clausius-Clapeyron equation.

• If the system is far from the critical point, sG > sL and
vG > vL and

(

∂p

∂T

)

σ

≈
sG

vG

• Consider the thermal pressure coefficient for a liquid:

γV ≡

(

∂p

∂T

)

V
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• This is related to the dependence of the internal energy
on volume.

(

∂u

∂v

)

T

= T

(

∂p

∂T

)

V

− p

• The temperature dependence of γv is shown in Figure
23.2 (a).
• For gas in equilibrium with liquid, γσ = (∂p/∂T )σ

increases smoothly with temperature.
• The dark solid lines are γv for liquid on the

coexistence curve.
• The lines on the right hand side are γv for various

values of v and have slight temperature dependence.
• The deviation from zero slope for temperature

dependence indicates deviation of the fluid from
ideality.
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• The sign of γv is determined by the sign of α, the
coefficient of thermal expansion.

• It may be shown:

(

∂p

∂T

)

V

= −
(∂v/∂T )p
(∂v/∂p)T

=
α

κT

• κ is always positive.
• α may be negative or positive.
• Therefore α and γV have the same sign.

• Determination of (∂p/∂T )V from p, v, T properties of
liquids lead to some generalizations.
• κT decreases with increasing pressure, with rate of

decrease decreasing as pressure increases.
• κT increases with temperature, with the effect most

pronounced at low pressure.
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• α increases as temperature increases.

• From this conclusions about µ may be reached.
• If α is positive and since T is positive, γV is positive.

• If p is low, then u will decrease as v decreases.
• There will exist a pressure where [T (∂p/∂T )V − p]

becomes zero.
• At pressures above this pressure, (∂u/∂v)T is

negative and repulsive forces will dominate over
attractive forces.

• In this case, energy flows out of the liquid during
compression.

• There are no simple equations of state for a liquid, but
there are some empirical ones.

• The virial equation.
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• The Tait equation is:

v0 − v

v0p
=

A

B + p

• The Huddleston equation is:

ln





pv2/3

v
1/3
0 − v1/3



 = A + B(v
1/3
0 − v1/3)

• In the latter two, v0 is the molar volume at zero pressure
and A and B are positive empirical constants.

• If the virial equation is used, then several terms may be
necessary, particularly in high density regions above the
critical temperature.
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• For the virial equation, the order of the term may be
connected to the number of molecules interacting.

• There is no physical interpretation for either the Tait or
Huddleston equation.

• For liquids, cp has a much stronger temperature
dependence than cv.

• As in the case of gases, it is possible to calculate
thermodynamic properties from the equation of state
and the temperature dependent heat capacity.

• Also, as in the case of gases, the perfect gas will be used
to define a reference state.

• A residual function fE is defined:

fE(T, v) =
∫ v

∞





(

∂f

∂v

)

T

−

(

∂f

∂v

)perfect gas

T



 dv
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• This will be considered in two steps.
• The initial state is in the low pressure limit with

infinite volume.
• The vapour is compressed isothermally to a finite

volume,vG, which is the volume of the vapour phase
at pressure pσ and temperature T .

• The second step is isothermal condensation to a
liquid with volume vL.

• Thus, when applied to enthalpy:

hE(T, v) =
∫ v

∞





(

∂h

∂v

)

T

−

(

∂h

∂v

)perfect gas

T



 dv

=
∫ v

∞

[

T

(

∂p

∂T

)

v

+ v

(

∂p

∂v

)

T

]

dv + ∆hvap
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• hE for liquid and vapour along the coexistence curve is
shown in Figure 23.4.

• Note that the difference in hE for the gas phase vanishes
at the critical point.

Phase equilibria in One-Component systems

• When a phase transition occurs, there is a sudden
change in physical and thermodynamic properties.

• The changes in enthalpy, entropy, and heat capacity are
discontinuous.

• How and why do phase transitions occur?
• Melting of solid.
• Evaporation of liquid.
• Sublimation of solid.
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• Consider the transition of a solid to liquid at constant T .
• The solid phase is distinct from the liquid phase.
• The solid phase has a well defined crystalline

structure.
• Thus the environment of a molecule in that solid is

different from the environment of a molecule in a
liquid.

• In a liquid (or in a amorhphous solid such as a
glass), long range molecular order is absent.

• Note that an amorphous solid does not have a sharp
phase transition and thus is not distinct from the
liquid phase.

• A phase transition occurs at a sharp temperature.
• However this temperature depends on pressure.
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• A phase transition is accompanied by an enthalpy
change.

• Two phases can coexist in any proportion at the
transition temperature for a particular pressure.
• At other temperatures at the same pressure (or other

pressures at the same temperature) only one phase
or the other is stable.

• The vapour-liquid coexistence curve may be thought
of as dividing the (p, T ) plane into two regions (see
Figure 24.1).
• In one region, the liquid is the stable phase.
• In the other region, the gas is the stable phase.

• A phase transition may also be considered in the
(v, T ) plane (see Figure 24.2).
• At constant temperature a gas can be compressed

until condensation occurs.
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• Condensation will occur when the volume reaches VG,
the volume of the gas at the pressure equal to the
vapour pressure.

• As the gas is compressed further, more liquid appears.

• The volume decreases until the volume reaches VL, the
volume of the liquid at the vapour pressure.

• The proportion of substance is each phase is determined
by the lever rule.

• Let x be the mole fraction in the gas phase.

• Then 1 − x is the mole fraction in the liquid phase.

• The total volume of the system is:

V = xVG + (1 − x)VL
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• This may be rearranged to:

x =
V − VL

VG − VL

1 − x =
VG − V

VG − VL

• The mole ratio of gas to liquid is:

x

1 − x
=

V − VL

VG − V
=

length BD

length AD

• In both (T, V ) and (p, V ) planes, coexistence of two
phases defines an area.
• This is a consequence of coexistence requiring that

the phases have the same pressure and temperature,
but not the same density.
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• Consider the (p, V, T ) surface shown in Figure 24.3.

• Note that at the critical point, the density of the liquid
phase converges to that of the gas phase in both the
(p, V ) plane and the (V, T ).

• The existence of the critical point is indicative that there
is no fundamental difference between liquid and gas.
• In both liquid and gas, the local structure around a

molecule has a spherical symmetry.
• Thus both phases are isotropic.

• If two phases exist and the internal symmetries are
different (at least one is anisotropic), then a critical
point does not exist.
• The densities could become equal, but the phases

can be distinguished on the basis of internal
symmetry.
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• In a phase, a particular symmetry property either exists
or does not exist.

• It is a property of all molecules of the phase as a whole.

• It cannot be partially present.

• Different crystalline of a particular substance forms are
different phases.

• Usually, different crystalline forms have different
densities.

• They can coexist along certain (p, T ) curves in the (p, T )
plane.

• If a coexistence curve is crossed, there will be a
spontaneous phase transition and one crystal form will
change into the other accompanied by an enthalpy
change.
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• Most phase transitions, liquid-gas, solid-gas, liquid-solid
and some crystal-crystal phase transitions involve a
discontinuous change in density across the coexistence
curve.
• This discontinuity in density is accompanied by

discontinuities in entropy, internal energy, and
specific heat.

• Such phase transitions are phase transitions of the
first kind and are known as first-order phase
transitions.

• In priniciple, it is possible to have a change in the type
of symmetry without discontinuities in density, entropy,
or internal energy.
• Consider the case of a tetragonal crystal with

unequal edges a and c and c > a.
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• These edges change with length with temperature, but
at different rates such that:

(

∂a

∂T

)

p

>

(

∂c

∂T

)

p

• Then there exists some temperature at which a = c and
the symmetry has become cubic.

• In this case, the change in symmetry is not accompanied
by a discontinuous change in the thermodynamic
properties of the crystal.

• This is an example of a transition of the second kind or
a second-order transition.

• Second order transitions are not common, but have been
observed for perovskites (ABO3)
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Thermodynamics of Phase Equilibria in

One-Component Systems

• When two phases of a one component system are in
equilibrium, their chemical potentials, temperatures, and
pressures are equal.

• Consider a phase transition of the first kind.
• For each (T, p) at which liquid and gas coexist,

µL(T, p) = µG(T, p)

.
• If the equations of state are known, then this can be

used to determine the pressure as a function of
temperature.

• Usually, the equations of state of both phases are
not known.
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• Note that
dµL(T, p) = dµG(T, p)

at all points on the coexistence curve.

• Therefore, for two phases to remain in equilibrium, a
change in the chemical potential of one must be
matched by a change in chemical potential of the other.

• But the system is a one-component closed system.

dµ =

(

∂µ

∂T

)

p

dT +

(

∂µ

∂p

)

T

dp

= −sdT + vdp

• Thus:
= −sLdT + vLdp = −sGdT + vGdp

– p. 151/175



• This may be rewritten as:

(

dp

dT

)

σ

=
sL − sG

vL − vG

• But:

sG − sL = ∆svap =
∆hvap

Tvap

and thus:
(

dp

dT

)

σ

=
∆hvap

Tvap∆vvap

• This may also be applied to the coexistence of liquid and
solid phases:

(

dp

dT

)

σf

=
∆hfus

Tfus∆vfus
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• This means that pressure and temperature measurements
can be combined with density measurements to
determine the entropy and enthalpy of a phase change.

• It is also possible to determine the sign of (dp/dT )σ.
• ∆Hvap and ∆vvap are always positive.

• Therefore (dp/dT )σ > 0 and boiling temperature
increases with pressure.

• ∆Hfus is always positive, but ∆vfus may be either
positive or negative.
• The sign of the slope of the coexistence curve is

determined by the sign of ∆vfus.

• Consider vaporization of liquid at low pressure.
• If the pressure is low enough, the gas phase may be

treated as obeying the perfect gas equation of state.
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• At this low pressure, the molar volume of the gas phase
is much greater than the molar volume of the condensed
phase.
• Thus: ∆vvap ≡ vG.

• Then
(

dp

dT

)

σ

=
∆hvap

TvG
=

∆hvapp

RT 2

• This is the Clausius-Clapeyron equation.

• The variables p and T may be separated:

dp

p
=

∆hvap

RT 2
dT

• This may be integrated directly if the dependence of
∆hvap on T is negligible.
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• Upon integration this yields:

ln

[

p2(T2)

p1(T1)

]

σ

= −
∆hvap

R

(

1

T2
−

1

T1

)

• This means that the heat of vapourization may be
determined from measurements of vapour pressure at
two temperatures.

• Consider three phases of a pure substance at equilibrium.
• Denote these phases as 1, 2, and 3.
• Since the three phase are at equilibrium,

µ(1) = µ(2)

µ(1) = µ(3)

µ(2) = µ(3)
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• Corresponding to this are three Clausius-Clapeyron
equations:

(

dp12

dT

)

σ12

=
∆h12

T∆v12

(

dp13

dT

)

σ13

=
∆h13

T∆v13

(

dp23

dT

)

σ23

=
∆h23

T∆v23

• Two of these are independent.

• In p, T space, the coexistence of these phases is shown
in Figure 24.9.

• The three phases coexist at the triple point.
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• Each coexistence curve is described by the appropriate
Clausius-Clapeyron equation.

• For any (p, T ) point not on a coexistence line only one
phase is stable and p and T may be varied independently
of each other.

• If two phases coexist, then p depends on T .

• If three phases coexist, then there are no independent
variables and p and T are completely defined for that
substance.

• This may be summarized in the Gibbs phase rule.
• Left f be the number of independent variables and

P be the number of phases.
• The Gibbs phase rule for a one-component system is

is f = 3 − p.
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• Now consider a multicomponent system with C
components in P coexisting phases in equilibrium.

• A component is a chemical species with a concentration
that can be varied independently of all other species
concentrations.
• There may be more chemical species present than

there are components, since some species may be in
chemical equilibrium with other species.

• To characterize a multicomponent system completely,
temperature, pressure, and mole fractions must be
determined for each of the C components in the P
phases.
• This would imply C + 2 variables for each phase and

P (C + 2) variables in total.
• However not all these variables are independent.
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• Mole fractions in each phase must add to unity.
• Therefore, there are C − 1 independent mole

fractions in each phase and this removes P degrees
of freedom from the entire system.

• The fact that P phases are equilibrium imposes a further
constraints.
• The chemical potential of each component is equal

in all phases, imposing C(P − 1) constraints.
• The temperature and pressure is uniform in all

phases, imposing 2(P − 1) constraints.

• Therefore:

f = P (C + 2) − P − 2(P − 1) − C(P − 1)

f = C − P + 2
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• When the general form of the Gibbs phase rule,
f = C − P + 2, is applied to a one component, three
phase system, it gives f = 0.

• This means that there will never be a quadruple point in
a one component system since that would involve a
negative number of degrees of freedom.

• This also means that for three phases in equilibrium, p
and T are uniquely determined.

• Now consider heat capacity in a multicomponent system.

• The constraint of coexistence of phases is different from
the constraint of constant volume or constant pressure.
• Heat capacity under this constraint, cσ, will be

affected by heat of the phase change.
• Consider the first law of thermodynamics:

d̄q = du −d̄w.
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• Therefore:

cσ =

(

d̄q

dT

)

phase equilibrium

[(

du

dT

)

−

(

d̄w

dT

)]

phase equilibrium

• In a liquid-vapour transition, only pV work is done.

• Therefore:

cσ =

(

du

dT
+ p

dv

dT

)

vapour pressure curve

• Define cσL and cσG as the heat capacities of the
coexisting liquid and vapour.
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• Since the two phases are in equilibrium,

pL = pG = pσ

TL = TG = Tσ.

• Then

cσL =

(

duL

dT

)

σ

+ pσ

(

dvL

dT

)

σ

cσG =

(

duG

dT

)

σ

+ pσ

(

dvG

dT

)

σ

• Therefore:

cσG − cσL =

[

d

dT
(uG − uL)

]

σ

+ pσ

[

d

dT
(vG − vL)

]

σ
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• The latent heat of vapourization per mole is:

∆hvap ≡ hG − hL = uG − uL + pσ(vG − vL)

• Therefore:

d∆hvap

dT
=

[

d

dT
(uG − uL)

]

σ

+ pσ

[

d

dT
(vG − vL)

]

σ

+(vG − vL)σ
dpσ

dT

= cσG − cσL + (vG − vL)σ
dpσ

dT

• But from the Clausius-Clapeyron equation:

dpσ

dT
=

∆hvap

T
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• Therefore:

cσG − cσL =
d∆hvap

dT
−

∆hvap

T

• If the temperature is low, then cσL ≈ cpL.

• Therefore at low temperature, the heat capacity of
saturated vapour will be:

cσG = cpL +
d∆hvap

dT
−

∆hvap

T

• Consider the case of water vapour in equilibrium with
liquid water at 100◦ C.
• The thermodynamic properties are well

characterized.
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• They are:
• ∆hvap = 40.67 J mol−1.

• d∆hvap/dT = -47.93 J K−1 mol−1

• cpL = 75.86 J K−1 mol−1

• On this basis, cσG = −80.91 J K−1 mol−1.

• This means that if saturated water vapour is
compressed, the temperature increases more rapidly than
the (p, T ) coexistence curve.

• This means that the final temperature would not be on
the coexistence curve, but rather in the region of the
phase diagram where gas is the stable phase.

• Therefore, to maintain coexistence, sufficient energy
would need to be removed to bring the system back to
the coexistence curve.
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Critical Point

• There exists a critical temperature Tc, above which gas
and liquid are indistiguishable.

• Consider the constraints of coexistence in equilibrium:

p1 = p2

T1 = T2

µ1(p1, T1) = µ2(p2, T2)

p1 = p1(v1, T1)

p2 = p2(v2, T2)

which gives five equations for the six variables,
p1, T1, v1, p2, T2 and v2.

– p. 168/175



• This leaves a relation between two variables to be
considered such as the relation between p and T along a
coexistence line.
• If there exists a p and T where v1 and v2 for the two

phases are equal and the symmetry of the two
phases is identical, then there exists a critical point.

• No critical point exists if there is no temperature for
which v1 = v2 along the coexistence curve.

• No critical point exists if there is a temperature for
which v1 = v2 along the coexistence curve, but the
lattice symmetries are different.

• This means that conditions of equilibrium and the
equations of state are an incomplete description of
the system.

• A complete description would involve a description
of the symmetry of each phase.
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• Consider the gas-liquid critical point.

• The critical isotherm at Tc has a point in the (p, v) plane
where the curve is horizontal and also has an inflection
point.

• Mathematically these are:

(

∂p

∂v

)

T=Tc

= 0

for the horizontal tangent and

(

∂2p

∂v2

)

T=Tc

= 0

for an inflection point.
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• This may then be used to explore fluid properties at and
near the critical point.

• Recall that:

κT =

[

−
1

v

(

∂v

∂p

)

T

]

.

• For any real substance (∂v/∂p)T < 0.

• At the critical point:

lim
T→Tc,v→vc

[

−
1

v

(

∂v

∂p

)

T

]

= ∞

and κT becomes positive and infinite.

• Consider (∂u/∂v)T as a finite quantity.
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• Recall:
(

∂u

∂v

)

T

= T

(

∂p

∂T

)

v

− p

• Since T and p are finite, (∂p/∂T )v is finite.

• Along the gas-liquid coexistence line:

(

∂p

∂T

)

σ

=
sG − sL

vG − vL

• At the critical point:

lim
T→Tc,v→vc

(

∂p

∂T

)

σ

=

(

∂s

∂v

)

T=Tc
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• But:
(

∂p

∂T

)

σ,critical point

=

(

∂p

∂T

)

v=vc

and (∂p/∂T )v is always a finite quantity.

• Therefore (∂p/∂T )σ,T=TC
is finite.

• Using the cyclic rule:

(

∂v

∂T

)

p

= −

(

∂v

∂p

)

T

(

∂p

∂T

)

v

it follows that:

lim
T→Tc,v→vc





1

v

(

∂v

∂T

)

p



 = ∞
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• The Clausius-Clapeyron equation may be written as:

∆hvap = T (vG − vL)

(

∂p

∂T

)

σ

• Since at the critical point, (∂p/∂T )σ is finite and
vG = vL,

lim
T→Tc

∆hvap = 0

• It may also be shown that:

(

d∆hvap

dT

)

T=Tc

= −∞

(See Figure 24.8).
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• A fluid near the critical point has peculiar properties.
• Densities converge toward each other as:

(ρL − ρG) = |T − Tc|
β

where the critical exponent β = 0.326 ± 0.002 (See
Figure 24.10 and 24.11)

• There is a thermal anomaly at the critical point.
• At the critical density,

cV (T ) → ∞

regardless of from which direction TC is approached.
• The critical exponents, δ, α, and γ are used to

describe the behaviour of other thermodynamic
properties near the critical point.
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