Solutions of Nonelectrolytes

Many chemical and physical phenomena are associated
with properties of solutions.

Vapour pressure varies with composition of solution.
Solubility depends on the nature of the solvent.

The position of equilibrium depends on the solvent
system.

Properties of solutions may be assessed on the basis of
equilibrium with other phases.

The characteristics of the equilibrium state may be
determined by the dependence of the chemical potential
of all phases and all components on temperature,
pressure, and concentration.
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* Measurements of composition in the liquid and vapour
phase may be used to determine the chemical potentials
of components.

* The deviation of a chemical potential from ideal
behaviour can be considered in terms of molecular
Interactions.

The Chemical Potential of a Component in an
Ideal Solution

* To study the thermodynamic properties of a solution, it
Is desirable to know the function dependence of the
chemical potential of each species on composition,
temperature, and pressure.

* In the gas phase, the equation of state is used, but this
Is not applicable to condensed phases.
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Specific knowledge of the equation of state cannot be
required in a useful thermodynamic analysis of
condensed phases.

Consider a mixture in which no chemical reactions are
occurring.

When two liquids are mixed at constant temperature and
pressure, there may be a change in volume and there
may be heat evolved or absorbed.

Occasionally, these changes in volume or enthalpy are
too small to be measured.

The changes in volume and enthalpy are related to how
similar or dissimilar the molecules and their interactions
are.
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* In an ideal solutions, the interactions between molecules
of different types are the same as interactions between

molecules of the same type.
* An ideal solution is defined by the conditions:

(AHmixing)T,p — (HE)T,p = (

(AViiging)rp = (V)1 =0

* Consequently:
(AUmixing)T,p — (UE)T,p =0

(AGmixing ) Tp — _T(Asmixing)T,p

* This will permit the exploration of the dependence of
chemical potential on composition.
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* The superscript O refers to pure components.

* The chemical potential may be written by:
r
AGmia}ing =G — GO — Z ni(:ui — :u?)
i=1

where n; is the number moles of component s.

* The excess volume may be written as:

8AGmixing> —0
ap T'n

VEEV—VO:<

Y

The excess enthalpy may be written as:

oT T

p,n . — p.216/393



* Assuming the the condition apply to each of the ¢ terms,
from the expression for V¥

la(ui — 115)
dp

=0

* From the expression for H”:

o (7)),

* Together this means that the chemical potential of each
component may depend on the composition and
temperature:

Mg — ,u? — Twi(nla T 7”7“)
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w; is a function only of composition variables.
1Y depends only on T and p.

It has been shown previously for an ideal solution that:
wi(ny, -+ ,ny) = Rlnz;
Therefore:
i = ,u? + RT'In z;

This result depends on the assumption that the chemical
potential has the same form for all species.

Other choices of composition variables may be used
instead of x;, such as the volume fraction v; may be
more convenient for polymers.

ud (T, p) is analogous to uf(T) for gases.
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Chemical Potential of a Component in a Real
Solution

e Real solutions have nonzero excess volumes and
enthalpies.

e The nonideal behaviour needs to be addressed in terms
of the chemical potential.

* For example the nonideal behaviour may be accounted
for by an excess chemical potential:

wi = i + RT Inz; +
* |t may then be shown:

A miTrin A E
VE _ (8 G g> S, (3/% >
Op Toyoom, =1 D )1y,
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* Similarly:

HE _ 2 (3 (AGmizing/ T))
P11, 5Ny

oT

oo (20T
P11, Ny

* Note that only the excess chemical potential makes a
contribution to these.

* The entropy of mixing for a real solution has
contributions from ideal mixing plus the contribution of

the excess chemical potential:

AS aAszxzng
mixring —
8T DL, N . — p.220/393




which gives:

T T 8MZE
ASmizing = — I Z n; lnx; — Z n; 57
1=1 1=1 P, 1, Ty

The excess entropy of mixing is:

...’nr

Instead of excess functions it i1s convenient to consider a
mixture in terms of of deviations from mean molar
properties.
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The mean molar volume is:

Vv

Um,
i M

Therefore the excess molar volume is:

V ) V
E _ i .
i M > N > i N -

]

U

where v? is the molar volume of pure component i at
the temperature and pressure of the mixture.

The mean and excess values of enthalpy, entropy, and
free energy may be defined similarly.

For components in solution, activity may be used in a
similar way to fugacity.
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* The chemical potential of 7 is:

i = 113 (T, p) + RT Inv;z;

where a; = v;x;, a; activity, and ~; Is the activity
coefficient.

* The activity may be thought of as an effective
concentration.

* The activity coefficient is dependent on temperature
and pressure.

* |t may be shown that:

i = RT Iy,

and that the activity coefficient contains all the
information about deviations from ideal behaviour.
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* These are only two ways of dealing with the nonideal
behaviour for solutions.

e Excess functions are convenient for solutions of
nonelectrolytes.

* Activity coefficients are useful for solutions of
electrolytes.

* Changes in the chemical potential of i are measured with
respect to the chemical potential of the standard state,

(T, p).
o u(T,p) is independent of composition, therefore:

w (T, p) = ui (T, p)

or
u(T,p) = 13 (T, p)
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The reference potential is the chemical potential of the
pure substance (in solid or liquid phase) at the
temperature and pressure of interest.

This is one widely used convention.

Another convention is to denote one component of the
solution as the solvent and the remaining components as
solutes.

* Usually the component with the largest mole fraction
s labelled “1" and is the solvent.

The standard state for the solvent is the pure solvent:

u(T,p) = puy (T, p)

while a hypothetical standard state is chosen for all
other components (or solutes).
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* The hypothetical state for solutes assumes that the
properties are determined in the low concentration limit
(and that the activity coefficient is unity).

Wd(T,p) = (T, p) = lim (j; — RT Ina;)

:C’L—>1

* This standard state depends on the temperature,
pressure, and the solvent.

* Consider a solution of 7 in 1 that is sufficiently dilute
so that each molecule of 7 is surrounded only by
molecules of solvent.

* The molecules of 7 are separated from each other so
far that they cannot interact with each other.

* |f the solution is diluted further, the nature of the
interaction of ¢ with the solvent does not change.
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If the interaction of molecules of 7 with molecules of the
solvent is different from the interaction of molecules of 7
with molecules of ¢ then species ¢ in the solvent will
behave differently from species ¢ as pure .

A hypothetical liquid of pure 7 where species 7 interacts
with other molecules the same way that 7 interacts with
the solvent will be different from pure 3.

(v
(2 anz Tpn’.

does not change with further dilution, but also is not
equivalent to the partial molar volume of pure .

In dilute solution,

In the hypothetical reference state, the low

concentration limit is vf not v?. . p.227/393



* |t is to be noted that this hypothetical reference state is
not a state of infinite dilution, but rather a state where
molecules of species i interacts with other molecules of ¢
In the same manner ¢ interacts with the solvent.

* Enthalpy changes and volume changes are among the
more convenient properties to measure.

e Therefore it is desirable to consider these in terms of
their excess values:

lﬁ(uf/T)] :R<8ln%> :@i—v?

o Jrpm, O )y, T

O(uF | T) (O By —
A OT ) i T2

. — p.228/393



These equations describe the behaviour of volume and

enthalpy in terms of the excess chemical potential.

Recall the Gibbs-Duhem equation:

(Z nid,uZ) =0
1=1 T,p

From this it follows:

(Z n; dﬂf) — RT (Z N dlnw) =0
=1 Tp Tp

i=1
This means that for a two-component system:

ni (d In ’yl)ij -+ nz(d In ’yg)ij =
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e Therefore:

] ]
(1 — x9) (a n’Yl) + x9 (8 nny) — 0
8:1:2 Tp (9:132 T.p

Y

* This means that u&’ can be determined from ui”.

11 —a60lny

: diy
To Lo 0:132

11— o out
T2 Lo 0:132

1Y = RTIn~y = RT

* To evaluate the excess chemical potential of component
1, the dependence on the composition of the equation of
state, the heat capacity of the solution, and the activity
coefficient need to be known.
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* A model equation of state would be convenient.

* Such a model equation of state may be defined by the
following conditions:

* The entropy of mixing has ideal form:

.
—RZ n;lnxy
=1

* The excess chemical potential for a binary mixture
has the form:

1y = RTIn~y = was
,uQE — RT In~yy = wx% = w(l — 332)2

* |t may be assumed that w is independent of
temperature and pressure.
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* This model mixture is a reqular mizture.

* The heat of mixing takes the form:

0 py 0 iy
AHmz'a:ing — _T2 ni <__> + N9 <——
ol T P T pni |

= nlwx% + ngwx%

= niwza(1l — x1) + nowx (1 — x2)
= w(ny + ng)xr2(l — x2)
which Is symmetric in 1 and xs.

* If w/RT is sufficiently large, the mixture will separate
into two phases of distinct composition.

* |t also allows the definition of a critical temperature
above which the two phases are miscible.
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* Instead of the regular solution, there are other models
related to the virial expansion.

* For the mathematical description of activity in a two
component system, the general solution is:

In~y; = /:Uggp(xg)dxg

In~y = /(1 — x2)(x2)dxs

where ¢(x2) is some function of x».

* A virial-type form of p(x2) is:
k
Zz%k (T, p)x 1 — x2)

where a;(T,p) do not depend on the composition. .- ;.2ss/s05



* For the zeroth order approximation:

1
Invy; = /xQCLOO(Ta p)dxry = iaool’%

1

In~yy = /(1 — w2)agodrs = 5@00(1 - 5’52)2

the result is equivalent to the regular mixture.

Partial Molar Quantities

* For Z, an extensive thermodynamic property, the
corresponding partial molar quantity, Z;, may be defined:

B ( YA )
7. =
Z on; ) DT £
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Because Z Is extensive:

Z(gnlagn% T 7T7p) — £Z(n17n27 T 7T7p)

Upon differentiation with respect to £ and setting £ =1
this gives:

.
[ = Z Nn;2;
1=1

Thus partial molar quantities are intensive properties.

Consider a binary solution with ny moles of 1 and ns
moles of 2 in a total volume V.

* |ncremental additions of 1 and 2 are made to the
solution such that:

ony  nq

one N9
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The partial molar volumes 71 and 7> depend only on the
relative composition.

Thus after the incremental additions:
V = n1701 + navo

A differential change in an extensive property at
constant 7" and p is:

(dZ)rp = (é nidzi> + (é zidni>

T.p Tp

This leads to the constraint:

(Z nzdzz> =0
1=1 T

P
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If Z; = u;, this is equivalent to the Gibbs-Duhem
equation.

Gibbs-Duhem type of constraints exists for changes to
any partial molar quantity.

Partial molar quantities may be determined
experimentally.

Define z,,, the mean molar value, by:

Consider the case of a binary mixture:

0zZm 0
(;) = ( [$1§1 —+ (1 — 5131)22]>
L1/ Tp 0z T,p
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* This may be rearranged to:
<3Zm> . . (821) (822)
— = Z1—29+2x1 | — + 19 | ——
3561 Tp (91‘1 T.p (95132 Tp

e This leads to:

* This is illustrated in Figure 25.1 where z,, Is the tangent
to the curve.
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F

Z4 (x1)

Figure 25.1 The mean molar function z,, = Z/Zn; as a function of
the mole fraction of component 1 in a binary mixture. The tangent

to Zn(x() at x; = x, has intercepts zo(x;) at x; = 0 and 7;(x|) at
X] — 1.
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Liquid-Vapour Equilibrium
* For each component of a mixture:
wi(liquid) = p;(vapour)
* With pure 7 as the reference state:

,LL? + RT In Yili = /ﬂ{(T) + RT ln%

* This may be rearranged to give:

Ji 1
Yili = = €XPp [—(/ﬁf — M?)]

P RT
* Forpurei, z; =1, u; = Y and ; = 1.
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* This means:

0
) L * 0
and
Ji
f9

* For an ideal solution with an ideal vapour:

Yili =

pi = Tip;
which is Raoult’'s Law.

* This means that the activity coefficient of ¢ in solution

may be obtained from measurement of fugacity of 7 in
the gas phase.
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This also means that if v; is known the composition of
the vapour phase may be predicted.

Consider the equilibrium between an ideal gas mixture
and an ideal condensed phase mixture.

Dalton’s law for the gas phase is:

Pi = YiP

where y; is the mole fraction in the gas phase and p is
the total pressure of the gas mixture

Combining with Raoult's Law gives:

YiD = Tipy
Y
i = T
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* This means that the compositions of the two phases can
be very different.

* Consider the liquid vapour equilibrium of an ideal binary
mixture (See Figure 25.2).

* The total vapour pressure is:

p=p1+p2=21p) + 29py = 21(P) — 1Y) + P

which is the equation of a straight line.
* But p is not a linear function of y;.
* |t may be shown that:

W/y2) _ oy —=21) 4l

(w1/z2)  wi(l—wy1) Py

where a2 Is independent of the composition.
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re 25.2 (a) Schematic representation of the isothermal dependence of the total pressure of an ideal binary mixture on the mole frac-
of component 1 in the liquid, x{, and on the mole fraction of component 1 in the vapor, y,. () Schematic representation of the-separa-
of a mixture into vapor and liquid phases when compressed to p = p” isothermally from a state where p is less than the pressure along
lew-point curve, or when expanded isothermally from a state where p is greater than the pressure along the bubble-point curve.
chematic diagram of the bubble-point and dew-point curves on a temperature-composition diagram at constant pressure (ideal binary
ure). '
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* Total pressure may be expressed as a function of y1, the
composition variable for the gas phase:

B n _ pips
12 — 91(0412 — 1) p(f — Y1 (p(f — p(z))

* This equation describes a rectangular hyperbola which is
concave upward.

* At equilibrium vapour and liquid have the same pressure
and the composition of each phase may be determined
from the intersection of p’ with each of the curves at

z1(p') and y1(p')
* The line p = z1pY) + (1 — z1)pY is the bubble point
curve.

* The curve p = pips/(p} — y1(p] — p3)) is the dew
point curve.
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At pressures above the bubble point curve, the liquid
phase Is stable.

At pressures below the dew point curve, the gas phase is
stable.

At pressures between the curves, liquid and vapour
coexist with the composition of each determined by the
total pressure.

It is to be noted that p{ and pY depend on temperature,
usually in different ways.

* This means that a9 is a function of temperature
and the boiling point is not a linear function of
composition.

B ri1aq2(T)
nll) =17 xll[@i(T) 1
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* A temperature composition diagram is shown in 25.2 (c).

* |f T"is above the dew point curve, then the gas
phase is stable.

* |f T is below the bubble point curve, then the liquid
phase is stable.

* The region between the two curves is the
coexistence region, where the compositions of each
phase is determined by the intersection of T'(p) with
each of the bubble point and dew point curves.

* As the composition of the liquid changes, its boiling
point changes resulting in the enrichment of the

vapour in one component.
* This is the basis of distillation.

* Now consider an nonideal mixture where the gas is only
slightly soluble in the liquid.
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The gas does not react with the solvent.

It is generally observed that the solubility of a gas is
proportional to its fugacity and increases as 1" decreases.

Molecules of both solvent and solute may be transferred
across the gas-liquid interface.

Because both components are in both phases at
equilibrium:

11 (gas phase) = u1(liquid phase)

t2(gas phase) = ps(liquid phase)
The solvent is labelled 1 and the solute is labelled 2.

Since the gas solute is only slightly soluble, x1 is near
unity.
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Therefore:

11 (liquid phase) = uy + RT In x;

12 (liquid phase) = pu5 + RT In 29
This assumes that the liquid phase is an ideal solution.

The standard state for component 1, the solvent, is that
of the pure liquid at the same temperature and pressure.

The standard state for component 2, the solute, is the
hypothetical state with the same properties per mole as
an infinitely dilute solution.

This gives:

us(T) + RT ln% — 15 (T, p, solvent) + RT In 29
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Upon rearrangement this gives:

8
% = T2 €XpP (MQRTluQ) = :L’Q]CQ (T,p, SOlVGIlt)

which is Henry's Law with ko as the Henry's Law
coefficient.

In the low pressure limit, partial pressure may be used
instead of partial fugacity and Henry's Law may be
written as:

p2 = x2Pko(T, p,solvent)

Thus the solubility of a gas is proportional to its partial
pressure.

Note that k9 is specific to both the solute and solvent.
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For the solvent, it may be written:

N (M0
P RT
If the vapour is assumed to be ideal, then:
PU_ e (M
P RT

It is to be noted that the choice of standard state is

different for the solvent and the solute.

Pure solvent liquid vapour equilibrium is described by:

pi(T) + RT In

n_
D

1(T)
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This can be rearranged to:

0 0 %
f_1 — exp M1 — M
P RT

where the reference state for the solvent is that of the
pure liquid.

Therefore:
fi=a1f]
If the gas phase is ideal then:

P1 = 51512?(1)

where pY is the vapour pressure of pure solvent.

This is Raoult's Law.
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Figure 25.3 Schematic display of the Henry’s law representation
and the extrapolation to the standard state of the solute.
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When this is compared to Henry's Law, it is to be noted
that ko is NOT the vapour pressure of the solute.

Instead ko defines the fugacity of the solute in the
hypothetical reference state.

Raoult's Law and Henry's Law are compared in Figure
25.3,

The fugacity of the solute, ko differs from the vapour
pressure for the pure solute due to the difference in the
hypothetical reference state.

* The solute molecules are sufficiently far from each
other that the solute-solute interactions can be
assumed to be negligible.

* |n the solution, the solute molecules have less
volume in which to move freely than is the case of
the same molecules in the ideal gas phase.
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This means that they have lower entropy and that the
entropy of solution is negative.

The effective volume per molecule of solute in solution is
usually different from the effective volume per molecule
of pure solute.

This i1s because the forces of interaction between solute
molecules is different from the forces of interaction
between molecules of solute and solvent.

As a result the enthalpy of solution is usually nonzero
and may be either positive or negative.

The forces of interaction can lead to changes in local
ordering of solvent molecules about the solute which also
contributes to the entropy.

All these factors contribute to the fugacity of the solute
differing from the vapour pressure of pure solute.
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Figure 25.4 Partial pressure as a function of composition for car-
bon disulfide—acetone and chloroform—acetone solutions. From
R. H. Cole and J. S. Coles, Physical Principles of Chemistry (Free-
man, San Francisco, 1964).
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* Consider a nonideal mixture of volatile liquids that is not
dilute.

* Deviations of vapour pressure from ideality may be
positive or negative.

* This may be interpreted in terms of the interactions in
the condensed phase.

* |f unlike molecules attract each other more than like
molecules, then the vapour pressure will be lower
than that predicted by Raoult’s Law.

* |f unlike molecules repel each other more than like
molecules, then the vapour pressure will be higher
than that predicted by Raoult’s Law.

* Enthalpy contributions tend to be the most significant
but entropy contributions can be significant if the
molecules are very different in size.
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Figure 25.5 (a) The excess functions of the system acetonitrile +
carbon tetrachloride at 45°C as a function of the mole fraction of
acetonitrile. (b) The excess functions of water + pyridine at 80°C
as a function of the mole fraction of water. (¢) The excess functions
of water + dioxane at 25°C as a function of the mole fraction of
water. (d) The excess functions of water + hydrogen peroxide at
25°C as a function of the mole fraction of water. From J. S. Row-
linson, Liquids and Liquid Mixtures, 2nd ed. (Butterworths, Lon-
don, 1969).
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As shown in Figure 25.5, excess enthalpy and entropy
are functions of concentrations.

In principle, activity coefficients may be determined from
measurement of vapour pressure as a function of
concentration of solution, although in practice, such
measurements may be difficult.

Recall:

fi

Vit = o

i

If the total pressure and composition of the vapour can

be determined and the composition of the liquid and the
equation of state of the vapour are known, then ~; may

be determined.

Usually the second virial coefficient is sufficient since the
vapour pressure is low.
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* For a binary solution:

ni (d In ’yl)T,p —+ nz(d In ’yg)T,p =0

| |
(1 — x9) (8 nfﬂ) + x9 (8 n72> = (
(9%2 Tp (95132 T.p

Y

and

* If the vapour is ideal then:

P1 = 'Ylwlp(l)

P2 = ’szng
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Therefore:
| |
(1 — lCQ) (a np1> + T2 (a np2> =2
(9:132 T (9:132 T

iIf it is assumed that p; and ps do not depend on the
total pressure.

This is the Duhem-Margules equation and is valid if the
vapour behaves ideally and there is negligible
dependence of p; and p2 on the total pressure.

This may be rearranged to:

(%) _ (A —z)p (010)
Ox2 ) (p1 —x1p) \O%2 ) 1
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* Thus p1, p2, 71, and 5 may be determined from
measurements of total pressure as a function of
composition.

* The inverse problem is the calculation of bubble point
and dew point curves as a function of composition from
the dependence of the chemical potentials on
composition.

* The condition for phase equilibrium at T" and p is:

fi/P

Vil

= 1 — (T, p) +RTln% —I—RTlnﬁ — RT In~;z; =0

p

ui(T) — p(T, p) + RT'n
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* For coexistence of vapour and liquid at 7"+ d1" and
p + dp:

i (T +dT,p+ dp) = uf (T + dT, p + dp)

e Therefore:

—RIn

fi/P _ | 0 pi(T) =@ (Tp)] -
Yi g N 6’T T D

0 (1 (T) — 13 (T, p) p
— [ = ! In —|d
+[0p< T T+R np 1

_ =i ol(Tp) — RT/p
72 T
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* This can be integrated to yield the bubble-point and
dew-point curves.

* Consider the composition dependence of isothermal
liquid-vapour equilibrium:

.
71 Y1 1 /p 0

In = —— Avid
(713?1) RT Jpy ~ P

v
72 Y2 1 /
| — Avdd
. (’)/21132 > " RT V24P
where v/ = f; /y;p is the activity coefficient of ¢.

* Because the molar volume of liquid is negligible
compared to the molar volume of the gas phase, AvY

and AvY are the molar volumes of the respective gas
phases.

. — p.264/393



* |f the vapour phase is ideal, then

o= i iy
YiP  Yip
and
RT
Av) = Avy = —
p

* Integration gives:
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* These can be solved to give equations for the
bubble-point curve:

P
L2 = 75 0
P11 — P32

and the dew-point curve:

_ Piphine — ppdys
ppiy — P9

* The activity coefficients are also related to the heat of
vaporization:

Y121 Ty RT"?

. — p.266/393



Vo2 Ty, RT"?

* Upon integration these yield:

T Rr—=nYy o R —-K) (1 1
A = T, RT" " =5 Ty, T
and
_(Thy—hy , hi—hy (1 1
Ay = Ty, RIT" = R 1oy T

* If it is assumed that the vapour is ideal, then:

v y1 — y1 and 73 y2 — 1o
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e Thus:
_ exp(A1p)y2 — Y172
exp(A1p)y2 — exp(—Agp)y2

Y2

exp(A1p) — 71
exp(A1p) exp(Agp)y2 — 71

Liquid-Solid Equilibrium

r9 =

* Treatment parallels treatment of Gas-Condensed Phase

equilibria, but neither phase can be assumed to be an
ideal gas.

* |t will not be covered in detail in class, but is included in
material for the exam.
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Figure 25.6 Phase diagram for liquid—solid equilibrium in the sys-
tem Ag(1)-Pd(2). The dashed curves are the calculated liquidus and
solidus lines for ideal solutions (Eqs. 25.98 and 25.99).
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The Colligative Properties of Solutions:
Boiling-Point Elevation, Freezing-Point Depression,
and Osmotic Pressure

* Consider the case of a binary solution where the solute is
not volatile.

* This would be equivalent to assigning a vapour
pressure of zero to the pure solute.

* Qur previous treatment would predict a lowering of
the vapour pressure of the solution when compared
to the vapour pressure of the pure solvent.

* The vapour pressure of the solution is proportional
to the mole fraction of the solvent.

* This means that the boiling point of the solution will
be elevated relative to the pure solvent.
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The measurement of boiling point elevation is the basis
of some experimental techniques for determining molar
mass of a solute or the activity coefficient of the solvent.

When the solution is in equilibrium with the vapour,
then:

,u‘l/(leap) — M%(leap)
But
Y (T.p) = pi (T, p) + RT Inyiy

Therefore:

Wl (T,p) pi (Tw,p) _ pi(T,p)  pt(Tw,p)

T Ty T T

—|—RT In Y11
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e But

Th:‘l/_g%dT/:_ I [Jl’U2
T, RT' Ty, RT"

Invyi21 = —

where Ly, = h{ — hi, the latent heat of vaporization.

* L1, will vary depending on the temperature due to the
difference in the heat capacities of liquid and solid:

Ly = Ahyy + {CX — Cﬂ (T —Thp)

e Thus:

dT"

T Ahlv —+ Acp (T, — le)
ln’yldil = — /le RT’2
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If 0 =T — Ty, this may be rearranged to:

0 Ahi, + ACPQI

— do’
0 R(Tw+0)°

Invyir1 =

If 6, the difference in the boiling point, is small
compared to the boiling point, then:

11 (1 20, )
(T +0)2  1T7 Ty
which can be substituted into the integrand.

Upon integration:

2
Ah1,0  (Ac, Ahy 0
1 _ _2M =% o) (% o3
el RT2 i ( R RT15> (le> + 00
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If 6 is small, the second term can be ignored.
It Is also to be noted that everything on the right hand
side of the equation depends only on the solvent.

* This means that boiling point elevation depends only
on the mole fraction of solute and not the nature of
the non-volatile solute.

If it can be assumed that solution is ideal and dilute then
~v1 = 1 and only the first order term needs to be retained:

Ah,0
RT?,

lnwl - —

When the solution is dilute, x5 is small, and:
Inz; =In(l —x2) = —x9
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Therefore:

Lo —

 Ahyf

This can provide the basis for determination of molar

Mass.

The mole fraction may be written as:

If z9 << 1 then:

L2

wQ/MQ

wy /My + wa /Mo

L2

B wQ/MQ

B wl/Ml
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e Therefore:

wa BTy, _o00%2 K

Mo =
: wl/Ml Ahq,0 wy 6

* K is the ebulliscopic constant and is defined as:

( M ) RT?,
Kb = | ———
1000 ANy
and has units of K kg mol~1!.

* Note that:

Mo wr
1000 w9

Is the molality, moles of solute per kg of solvent.
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This is applicable to solutes which no vapour pressure.
Analogous to this is freezing-point depression.

Consider a solute that is insoluble in the crystalline
phase of the solvent.

It can be shown that:

N NN A
| — — _ p 7 03
Y121 RTff <2R + RT1f> <T1f> + O(6°)

where the subscript f refers to freezing and 0 =T, —T.

As before 6 depends only on the solvent properties and
not the solute.

If the concentration of solute is low and (6/1¢) is small,
then:
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Ahis0 6 M

Invyi21 = —

RTZ, Ky 1000
where
My \  RTi
1000 Ahyy
* Then
0 = Kfmz

where ms is the molality of the solute.
* |f the solution is ideal:

 Ahy 0

2T ORI,
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* Consider two phases separated by a rigid membrane that
Is permeable to the solvent but not solute.

* As in the case of boiling point elevation and freezing
point depression, the solute is excluded from one
phase.

* Heat can cross the membrane, but not work.

* At equilibrium:

p' #ptt

Pl _ Il
Il 11

H1 = Hq

* Chemical potential is related to pressure:

(@%) _ o
1
ap % .~ p.279/393




PU PD + 7

L —

pure solvent solution
pressure pg pressure po + n

.

rigid semipermeable membrane

Figure 25.7 Schematic representation of an osmotic pressure
experiment.
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The pressure of the pure solvent is pg and the pressure
of the solution is pg + ™ where 7 is the osmotic pressure.

This gives the limits of integration:

Do+

pi(T,po +m x) — (T, po, x) = / v;dp
Po

When applied to a particular solvent becomes:

Po+T

RT Wy = pf (T,po) = p (Topo +7) = [ w1
Po

The partial molar volume of a solvent varies smoothly
with pressure:

v
n) =)+ o) (2] 4
P 7T 20,p0
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* Because (0v1/9p)r, ,, 1 small and the osmotic
pressure of a dilute solutions is small,

o0v
v1(po) >> (p — po) (5)
p T',x0,po

and in this limit:
RT Invyz1 = —701(po)
* |f the solution is dilute and ideal then:
RTInxy = —RTx9 = —701(po)

e Recall that in a dilute solution:

_ UJQ/MQ N ’LUQ/MQ _ E
’(Ul/Ml —|—w2/M2 U}l/Ml 19 . — p.282/393
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The total volume of the system is:

w1 _ _
—7v1 =n1v1 =V
M,

Therefore, for an ideal dilute solution:
™V = noRT
If the solution is not ideal or dilute:
—701(pg) = RT Iny121 = g1 RT In ¢

where g1 is the osmotic coefficient and is usually
expressed as a power series in cag = na/V.

g1=1+Bcy+Cc5+ -
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In the limit of a dilute solution:

™= RTco(1+ Beg + Cc5+ - - )

Note the resemblance to the virial equation of state.

The coefficients depend on the effective interaction
potential of the solution.

Osmotic pressure measurements can be used to
determine the activity of the solvent.
These three properties of solutions:

* Boiling point elevation

* Freezing point depression

* Osmotic pressure

are known as the colligative properties of a solution.
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Chemical Reaction in Nonelectrolyte Solutions

* At equilibrium,
.
> vipi =0
i=1

where v; are the stoichiometric coefficients of the

reaction.

e Recall
AGY = —RT'In K(T, p, solvent)
where
.
AGY = > oy
i—1
and

r

K(T7 D, SOIVeﬂt) — H (W@xz)yz



If the standard state is pure solid or liquid then the
equilibrium coefficient is a function of temperature and
pressure.

If the standard state is the hypothetical state (same
properties per unit mass as an infinitely dilute solution)
then the equilibrium coefficient is a function of
temperature, pressure, and the solvent.

As in the case of a gas phase reaction, the temperature
and pressure derivatives of the equilibrium coefficient
depend on, respectively, the entropy and volume changes
of the reaction.

For an ideal solution:

r

K(T,p,solvent) = ][ «7
i=1
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Equilibrium coefficients do not have units.

When units other than mole fractions are used for
composition, then the standard state is the hypothetical
state for the substance.

Molality units assume one component is the solvent.

The relationship between mole fraction and molality is:

T, _ wz/Mz
ny+ > —eny  wi/Mi+ 3o wi/M;

Ly =

Molality is defined as the number of moles of the
substance in a 1000 g of solvent.

* Therefore m; = w;/M; if the amount of solvent is
fixed at 1000 g.
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* Therefore the mole fraction may be written:

T, = mj
©1000/My + Yo m

* Thus the activity coefficients may be written in terms of
molality:

; Vil
pi = pi (1, p)+RT In

; Vi T
— (T RT'1
wi (T, p)+ n{[1+(M1/1000) §:2mj] <1000/M1>}
— (T, p) — RTIn My + RT In~/m;
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* 7/ and M are defined as:

T (M 1000) Sy my 1+ Xy (myj /M)
1000
MU=

* Thus the activity is defined with a standard mass of
solvent and the term R7 ln My is included in the
definition of a new standard state for the potential:

1™ (T, p,solvent) = p (T, p) + RT In M

* The equilibrium coefficient may then be described by:

r

Km (T, D, SOIVGIlt) — H (fyéajz)uz

i—=1 . — p.289/393



e Similarly, it is possible to define activity for a standard
state of molarity:

0

1(T, p,solvent) = pud(T, p) + RT In 1860

* A new activity coefficient v, may be defined such that:

r
Kc(T,p, 801vent) = H(fyélci)m
i=1
* In all cases the equilibrium coefficient is dimensionless.

* When an equilibrium coefficient is written as if it had
units, those units indicate the reference state and
concentration scale.
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More about Phase Equilibrium in Mixtures

* Consider the stability of a mixture against phase
separation.

* At constant temperature and pressure:
dG = pi1dny + podno
* Expressed in terms of mole fractions this becomes:
dG = (n1 +no)prdry + (n1 + n2)pad(l — x1)

= (n1 +n2)(u1 — p2)dz1 = (n1 + n2)(p2 — p1)dxs

* Therefore the slope of a plot of G against x5 has a slope
that is proportional to 1o — 11 at each point of the curve.

* |f there is no phase separation then GG versus x5 is a
continuous curve.
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Figure 25.8 Schematic representation of the Gibbs free energy as
a function of composition for a binary mixture. (a) One-phase
region. (b) Two-phase region.
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* |f phase separation occurs into phases | and Il and the
phases have different composition then at equilibrium:

I I
H1 = M7

py = iy’
and
i — = —
* In a plot of G against composition, each phase has a
separate curve.

* The above condition for equilibrium means that when
the slopes of the two curves are equal, the two phases
are in equilibrium.

* This is shown as points A and B in Figure 25.8.
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Because G depends on temperature, there exists a
critical temperature above which the system is miscible
and below which the system separates into two phases.

This may be considered in terms of the dependence of ¢
on composition.

When the two phases are miscible (Figure 25.8 a), then
everywhere GG is concave upward:

0*G
) >0
Ox5 T

When the two phases are immiscible, (Figure 25.8 b),
there Is a region where

(52
“— ) <o
81’2 T.p . — p.294/393



* These join two regions where:

0*G
5 > ()
x5 T

* Between these are two inflection points where:

ey
Ox3 ij_

* At T, these inflection points merge such that:
0°G 03G
<2> =0 and <2> =0
Ox5 Top O3 Top
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* At the critical temperature:
(%) _ (%)
(9:132 T..p (9:132 T..p
82/L1 B 82/&
0:1:% Top N 0:1:% Top

* Recall the Gibbs-Duhem relation for two components at
constant 7" and p:

9, 9,
(1_952)(&) +x2<ﬁ> 0
8:1:2 T,p 8:1:2 T,p

and
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* This may be differentiated with respect to xs:

0* 0* 0 0
19 (o), (o), (o), 02 ),, =
03 )1, 0xz ), \Ox2)p, \O0r2/)p,

* Therefore at T;:

and

<32M1> _ (32/@) —0
Ox3 Top Ox3 Top
* This now may be put into terms of activity coefficients.
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* This gives:

0ln v I .
31‘2 T..p 1 — i) N
01 1
( ﬂ’Yz) I
05132 T..p L9
0% 1In v 1
2 - ; =0

(02 ln'yz> 1 _ 0
Ox3 T.p T3

* Consider T, for a regular mixture where:

RT Inv = wrs
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* Using the expressions for the activity coefficient at the
critical point gives:

1

(2x9)c = 1= ).

RT.

w 5 _ 1
RT.” (1 — x9)?

* When this pair of simultaneous equations is solved:

1
(x2)e = = and -

= 2
2 RT.

° If w/RT > 2 then T' < T, and there is separation of the
phases.

. — p.299/393



Consider some 1" and p where a binary mixture separates

into two phases with compositions =1, x4 and z{!, 24!

How does the composition of each phase change if T'
and p are altered.

This can be determined by the fact that uf = p1’ and
nd = ud! along the coexistence curves.

Therefore: du! = dpi! and dud = dud!.

Upon expansion:

Il i Il
(5%) ap + (am> AT+ (5%) .
8p T,x (‘9T DT 81232 T,p

II II II
O Op1 O
— [ === d — dT — d
<8p>T,x p—i_(aT)p,x +<8:€2>T>p "
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* A similar equation for component 2 can be written.

* Consider the free energy of mixing g,, where:

gm = T1H1 + T2/42

® |t can be shown that:
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* For equilibrium states along the constant pressure
coexistence line:

I —II -
(595’52)[ (k=R Jai! + (hy — hy )a3!

ar ), T(9gn/023)] (v} — xb!)

(axz>” (B =B )al 4 (g — By )

ar ), — T(9gn/0xd) (x] — xb])

* Recall that for a stable phase (829m/8x§)§7p > 0.

* Therefore the sign of (0z2/9T'),, is determined by the

sign of the numerator and the sign of (24 — z31).

* The numerator is the heat of solution of an infinitesimal
amount of one phase in the other phase at constant T°
and p.
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* Consider the constant temperature coexistence line:

I _ _ _ _
(6‘:62) _ ' (0 — ) + 21! (@) — )
Op )y (23 = 23)(Pgm/023),

17 _ _ _ _
(%) _ 2y — 1) + a1 (01! — 7))
Op )y (23— 23)(0Pgm/023)1,

* As in the case of the constant pressure coexistence line,
the sign of (0x2/0p), depends on the signs of the

numerator and of (z3! — z1).

* The numerators may be interpreted as the volume
change when an infinitesimal amount of one phase is
added to the other phase.
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* Also to be considered are constant composition
coexistence curves:

I 1 I I —
(5911?) _ w5 (hy —hy) +ai'(hy —h
O )y T g (3! —vh) + af! (@f! —o])]

and

17 _ N I B | _ AN
(@) _ (01! = v1)(hy — hy) — (W3 =03 (. — hy)
OT ) i T(2gm /03, |3 (@5 —vh) + 2l (w]! — o))

* This is analogous to the Clausius-Clapeyron equation in
that it describes the variation of total pressure with
temperature for a phase of fixed composition in
equilibrium with another phase.

. — p.304/393



If the composition is the same in both phases, i.e.

r! = 2! and x4 = 23!, then

I 11
oT oT

p p

Thus, if at constant p, the temperature along the
coexistence line at a point of horizontal slope (i.e. a
minimum, a maximum, or an inflection point), the two
phase will have the same composition and the solution
will form an azeotrope.

If in a series of isothermal equilibrium states of a two
phase binary system, the composition of the phases
becomes the same, then the pressure of the system will
have an extremum.

These are the Gibbs-Konovalov theorems. .~ p.305/393
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Figure 25.9 (¢) Minimum- and maximum-boiling-point binary
system phase diagrams. The bubble-point curve, labeled bpe, rep-
resents the liquid composition; the dew-point curve, labeled dpc,
represents the vapor composition. (b) Phase diagrams for the
binary systems acetone—carbon disulfide and acetone—chloroform.
The partial pressures of components in these two systems are
shown, at 35.2°C, in Fig. 25.4. From J. Hildebrand and R. Scott,
Regular Solutions (Van Nostrand Reinhold, New York, 1950).
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Consider Figure 25.9, in which coexistence curves are
shown for typical azeotropic systems.

Systems with a maximum in the total vapour pressure
curve have positive excess Gibbs free energy, while those
with a minimum have negative excess Gibbs free energy.

Stability of a system may be considered in terms of
Figure 25.10.

A ¢g(T,p) surface is represented.

A point on the surface I'y, represents the Gibbs free
energy of one mole of substance at pressure py and
temperature 1.

The tangent plane to this surface is defined by
(89/8T)p:p0 — —S50 and (89/8]))T:TO A

g—go = —so(1T" —Tp) + vo(p — po)
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T

Figure 25.10 Free energy-temperature-pressure surface for a sub-
stance. The surfaces labeled V, L, and § refer to the vapor, liquid,
and solid, respectively. (Courtesy of Prof. J. A. Beattie.)
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The tangent plane cuts the g axis at:

g = go + Loxo — povo = Ug

Note that the surfaces u(s,v) and g(¢,p) have a
reciprocal relationship that arises from the Legendre
transforms.

Quantities represented by the tangent planes of ¢ are on
the u surface.

Gaps on the u surface are bridged by derived surfaces.

On the g surface it is convenient to consider each phase
as having its own surface.

If the lowest surface is considered at each 71" and p, then
a composite surface can be constructed from portions of
each of the surfaces for each phase.

The seams represent coexistence regions. -~ p:309/393



Consider Figure 25.10.

The surfaces labelled V', L and S are for vapour, liquid,
and solid.

The intersections EM, M A, and M D projected onto
the T', P plane. are respectively solid-vapour, solid-liquid
and liquid-vapour coexistence lines.

The continuations of each of these curves, M'F’', M'B’,
and M'C’ are the projections of the intersections of the
metastable parts of the surface.

Each of these extensions describes the metastable
coexistence of two phases which are both unstable with
respect to the third phase.

The coexistence lines and the metastable extensions can
be considered to divide the g, 7", p space into six regions.
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Above E'M'B’, ¢V < ¢° < ¢~
Above B'M'D’, ¢V < ¢t < ¢°
Above D'M'F’, ¢~ < ¢vV < ¢
Above F'M'A!, b < ¢° < ¢V
Above A'M'C!, ¢° < g¥ < ¢v
Above C'M'FE’, ¢° < ¢¥V < g*
Since every point on the ¢g(T', p) surface represents a

stable state of the system, the surface is concave
downward.

Examination of the second derivatives verifies this.

0% g 0s Cp
(w) “(w) 7 <Y
p p
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0% ¢ ov
(a?)f‘ (a?)f‘”““o

Recall that for a stable system, ¢, >0, 7" > 0, v > 0,
and k7 > 0.

Each point on the surface ¢(7T, p) must be a minimum
with respect to virtual variations.

* Virtual variations would generate different surfaces
that are everywhere above ¢(7T,p) and its tangent
plane.

Consider the surface G(T',p,ni,na,---,n,) for an
r-component fluid.

The system is completely defined by the temperature
and pressure, the total mass, and the masses of r — 1
components.
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The total free energy is:
.
G =) ni
i=1
and can be rewritten as:

r r
i = = Y = (1= )+ 3

=1

If the variables T', p, xo, - - -, x, define orthogonal axes,
then g,, is a surface in r + 2 dimensional space.

The constraints of stability will now be considered.

The system will be stable at T" and p if
gm(T,p,x2, -+, ) IS @ minimum.
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Let Tg = (T0, po, 29, - - -, £2) which is a point on
gm(Tapa Ly ,er).

Virtual variations generate new states in the vicinity of
I['g that lie on g, ., g/, each of which lies above g, and
the tangent plane through I'y.

Therefore for small displacements Azo,---, Az, at T, p:

Agm — (Agm)tangent plane > ()

Agm, can be expanded in a Taylor series about I'y

(Agm)tangent plane 1S described by the first order terms.

Agm — (Agm )tangent plane 15 described by the second
order terms:
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* This condition for stability is equivalent to requiring that
the determinate of the corresponding matrix is positive.
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Any system that satisfies these conditions is stable with
respect to adjacent states.

Consider g,,,(T', p, z2) which represents the equilibrium
states of a binary mixture in four dimensions.

Consider a fixed pressure situation, which reduces it to
three dimensions, ¢,,, T, and xs.

This can then be projected onto the (7', x2) plane to give
a temperature composition diagram (see Figure 25.11
(a).

Intersections of g,, with different constant 1" planes
gives the subsequent diagrams in (g, x2) space, which
are all for the same pressure.

In the case of binary mixture, the second order term has
only one contribution.
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The binary mixture will be state if:

(6’29m> .
8:13% T,p,n

0% gm _ 0

0:1:% Tpm
The limit of stability is:

0° g 0

8$% T pn N

The stability condition may be expressed in terms of
chemical potential using the Gibbs-Duhem equation.

and unstable if:
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* The Gibbs-Duhem equation may be written as:

m(%) H;Q(%) 0
8:1:2 T.p, 8:1:2 T.p,

* The condition for spontaneity becomes:

<%> > 0
(9:132 T.p,

<%> <0
03 T,p,

2
— < 0
<8x1>T,p,

which implies:

QO
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* The constant temperature and pressure slope of the free
energy-composition curve Is:

9gmy\ _ [ 99m
8331 T T /Ll ,u2 — (91'2 -

* This means that when z; — 0, ¢,,, — ,u(l), and
(Ogm/0x1) 1, — —00 and when z1 — 1, g, — pf, and
(89m/axl)T,p,n — X

* From this the properties of a free energy versus

composition diagram may be inferred.

* For a homogeneous system, g, Is concave upward
and Is tangent to the axis at zo = 0 and x5 = 1.

* For a system where vapour, liquid, or solid can exist,
there will be three curves, one for each phase.
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Figure 25.11 (@) Temperature-composition diagram for a binary mixture in which neither compounds nor solid solutions are formed, there
is no miscibility gap, and there are no minimum- or maximum-boiling mixtures. () 7} is greater than the boiling points of both components,
hence the vapor is the stable state for all compositions. (¢) The temperature is, in this case, equal to the boiling temperature of component
2, hence g,’; =g at x, = 1. Everywhere else the vapor is the most stable state. (d) T intersects the region where vapor and liquid coexist. For
large x, the liquid phase is most stable, for small x; the vapor phase is most stable. The common tangent is the line along which g, is least,
hence describes the equilibrium situation of coexisting liquid and vapor between domains where either only liquid (x; = &) or only vapor
(x2 £ a) is stable. The phase coexistence domain is a < x2 < b. {e) T4 coincides with the boiling point of component 1, so this case is the ana-
log of that in Fig. 25.11c and g,’,; =g’ at x, = 0. (f, g) The analogs of Figs. 25.11& and 25.11c¢ with liquid and solid replacing vapor and lig-
uid in the descriptions. (k) 77 intersects the coexistence lines for liquid—-solid 1 and liquid-solid 2, hence two common tangents need to be
drawn in the g, x diagram. (i) T3 touches the liquid—solid coexistence curve at only one point, where solids 1 and 2 and liquid are in equi-
librium. This is called the eutectic temperature. () Ty lies below the melting points of both solids, hence the two solids are coexisting phases.
All of the preceding also apply to solid solutions; only the free energy-composition diagram needs relabeling for the appropriate phases.

(Courtesy of Prof. J. A. Beattie.)
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X2

(c)

Figure 25.12 Temperature-composition diagram at constant pres-
sure and the corresponding molar free energy-composition dia-
grams at constant pressure and temperature. (Courtesy of Prof,
J. A. Beattie.)
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p =1atm.

Figure 25.13 The components form a compound C that melts con-
gruently. (Courtesy of Prof. 1. A. Beattie.)
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Figure 25.14 The components form a compound C that melts
incongruently. (Courtesy of Prof. J. A. Beattie.)
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p =1atm

(a) (b)

Figure 25.15 The components form a maximum-boiling liquid.
(Courtesy of Prof. J. A. Beattie.)
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| 4 V
L
Li+V+ L,
0 X2 1
(c)

Figure 25.16 The liquid components are not miscible in all pro-
portions. (Courtesy of Prof, J. A. Beattic.)
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The lowest curve represents the most stable phase.

If phases can coexist, then the curves for each of the
phases will have common tangents.

Consider now the properties of three component
mixtures.

* |n this case, A,_1 = Ay

In this case:
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* Since:
9m = T11 + Tou2 + T3S

Gm = T1p1 + xope + (1 — x1 — 22) 3

It can be shown at constant 71" and p:

* The limiting cases may now be considered:
* When x1 — 1, g — 45, (09m[0x2) ) 4y — —X
and (99 /0x1) ) 4, — —00
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* When 9 — 1, g — 19, (09m/0x3) 1, ., — —00 and
(agm/axl)T,p,xg — X

* When 23 — 1, gm — u3, (09m/0x1) 1, ., — —00 and
(agm/axQ)T,p,xl — —OC

* The other type of limiting case is when one component
becomes negligible:

e When z1 — 0O:

Ggm = Tauz + (1 — x2) 3

(agm> (agm>
S — 00 and [ —— — 00
8552 T,p,$3 81)3 T,p,$2
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When 29 — 0:

gm =11 + (1 — 21) 3

(5% (5%
— — o0 and | —— — 00
81)3 T7p7x1 aajl T7p7x3

When 23 — O:
9m = T11 + T2

(o) (42:)
— — 00 and | =— — 00
axl Tapva axQ Tapaxl

A triangular prism may be used to represent the
equilibrium states of a ternary system (see Figure 25.17)
where each side of the triangular base represents the
axes in one component.
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Figure 25,17 Triangular coordinates.
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The limit of one pure component corresponds to a
vertex of the triangle while the limit of one component
absent corresponds to a side of the the triangle.

gm or T is the vertical axis of the prism.
Some limiting cases are considered in Figure 25.18.

The ternary system in 25.18 (a) which shows T as
function of composition does not form solid solutions, so
It is possible for liquid to be in equilibrium with pure
solids of one or more of the components.

The three components are miscible in the liquid phase.

T1, Th and T3 are the melting points of each of the pure
components.

Figure 25.18 (b) shows g,, as a function of composition,
while (c-f) are projections of g,, at various temperatures.
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Figure 25.18 (a) The temperature-composition surface at p =1 atm
for the condensed phases of a ternary system with no compound
formation, no solid solutions, and no miscibility gap in the liquid
phase. Points in the surfaces (1, 4, 7, 6), (2, 5, 7, 4),(3, 6, 7, 5) give
the compositions of the liquid phase in equilibrium at various tem-
peratures with the solid components 1, 2, 3, respectively. Points on
the curves (4, 7), (5, 7), (6, 7) give the composition of the liquid in
equilibrium at various temperatures with the two solids 1 and 2, 2
and 3, 1 and 3, respectively. The point 7 gives the temperature and
composition of the liquid in equilibrium with the three solids 1, 2,
3. Points 4, 5, and 6 are binary eutectic points, 7 is a ternary eutec-
tic point. When the curves (4, 7}, (5, 7), and (6, 7) are projected onto
the composition triangle, an arrow is appended to show the direc-
tion of decreasing temperature. (b) Molar free energy-composition
surface corresponding to (a). (c), (d), (e), ( f) Projections of (b) on
the composition triangle for different temperatures. The labels on
the temperatures correspond to the numbers in part (a). (Courtesy of
Prof. J. A. Beattie.)
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Spectroscopy and Diatomic Molecules

* In a molecule nuclei are not fixed:
* They can vibrate about an equilibrium position.
* They can revolve around a molecule’s centre of mass.

* Energy levels are associated with these motions.

* These may be accessed through quantum mechanics or
through spectroscopy.

* |nsights from quantum mechanics will be used to
Interpret molecular spectra.

* Consider a molecule of Hs in the ground electronic state.

* The E(R) may be obtained from quantum mechanics
and represents the electronic energy of the molecule
as a function of R, the separation of the two nuclei.

* The Born-Oppenheimer approximation is used, which
Is based on the fact that nuclei are much heavier
than eleCtronS. . — p.333/393



* This allows the Schrodinger equation to be separated
Into nuclear and electronic parts which are then solved
separately, with the final wavefunction being the product
of the nuclear and electronic wavefunctions.

* The Heisenberg uncertainty principle means that nuclei
cannot be in fixed positions.

* The quantum mechanical description of the molecule
gives the probability of the atoms in a molecule being is
a particular position relative to each other.

Vibrations of Diatomic Molecules

* When the Born-Oppenheimer approximation is used,
E(R) may be obtained from the electronic portion of the
Schrodinger equation.

* FE(R) becomes the effective potential energy for the
nuclear portion of the equation. - p.334/303



Thus the nuclear portion of the Schrodinger equation is:

pi PQB
| \Ijnuc ) 2n = |k E(R \Ijnuc / 2n
( 2m A 2mp > l ( ) [ ( )] l ( )

where R,, represents all the nuclear coordinates, £ the
total energy of the molecule.

It iIs now assumed that the translational, rotational, and
vibrational motions may be separated from one another.

* Corrections for this inaccuracy will be applied later.
This approximation gives:
Ph , Pp

Hnucl — 2— + — = Htrans + Hmjb =+ Hrot
mag  2mp

E — E(R) = Btrans + Eyip + Erot
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This means that the wavefunction is:

\Ijnucl (Rn) — \Ijtrans \Ijm'b\ljrot

Thus Hypgns and Vyqns depend only on the motion of
the centre of mass.

H,;, and ¥,;;, depend only on the intermolecular
separation.

H,.,: and W, depend only on the angular coordinates
describing the orientation of the molecules in space.

Each type of motion give an equation:

H,U, = E;V;
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* For translational motion, this is the equation for a
particle in free space.

* Quantum and classical solutions give the same result.

* The operator for total energy may be rewritten in centre
of mass coordinates:

p% + 0% + 1%

2M i

p2
ﬁ + V(R)]

- B(R) - |

T L P

20 R? Po T mrgin?e
where XY, Z are the coordinates of the centre of mass,
M is the total mass, u is the reduced mass, pr is the

radial momentum, and py and p, are the components of
the angular momentum.
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Consider now the vibrational motion of a diatomic.

Since E(R) depends only on R, it may be identified as
V(R).

Thus the Schrodinger equation for vibrational motion is:

i E(R)] \Ijvib — Em’b\Ijvib

where pr = ih(0/0R), the radial relative momentum
operator.

This equation can be solved to give the vibrational
eigenfunctions W,;;, and the vibrational eigenvalues
(energy levels) E,p.

The form of the solution depends on the functional form
of F(R).

. — p.338/393



* For most functional forms of E(R) only numerical
solutions are feasible.

* As an approximation, FE(R) will be replaced by a
function of R for which exact solutions are possible.

* To determine what a suitable “replacement” function
would be, the properties of the actual E(R) must be
considered.

* E(R) has a stable minimum where dE(R)/dR = 0
at R = R,.

* Since dE(R)/dR gives the binding force, the force
on either side of R, will restore the separation to R,.

* There exist values of E such that the molecule is
bound.

* The resulting wave functions are oscillatory functions
of R, decaying exponentially in the forbidden regions.
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* The number of bound states that a diatomic may have
depends on E(R) for the particular electronic state
under consideration.

* From spectroscopy, it is known that the Hy molecule
has 15 bound vibrational states (from v = 0 to
v = 14) in the ground electronic state.

* For a model form for E(R), it will be assumed that the
restoring force, dE(R)/dR, is proportional to the
displacement from equilibrium:

F(R) o< |R — Re|

e This is consistent with the harmonic oscillator described
by:

F(R)=—-k(R—R.,) and V(R)= %k(R — R,)*
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If = is defined as R — R,, then:
F(x)=—kxr and V(z)= zkx

This is the equation of a parabola.

However, this does not behave like the potential for a
real molecule since it predicts an infinite number of
vibrational levels and does not asymptotically approach
the dissociation limit.

In spite of this, it does a reasonably good job of
predicting the energy levels in the region near the
equilibrium separation.

The harmonic oscillator model predicts uniformly spaced
energy levels.

But how well does this model do?
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Figure 7.1 Vibrational energy levels of the H, molecule. Solid
lines ( ) represent the experimental E(R) curve and energy lev-
els; dashed lines (- - - -) give the parabolic approximation
described in the text and the first few of the corresponding har-
monic oscillator levels; and the dotted line (- - - - - - ) is a Morse
potential fit. The inset shows an enlargement of the region near the
minimum. The two “dissociation energies’’ are indicated:

D,=4.748 eV, Dy = 4.477 eV.
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* Consider a “typical” diatomic:
* The well depth is about 5 eV or 8 x 10~ J.
* The amplitude of the vibration is about 1
A(|[R — R.| < 0.5 A).
e If it is assumed that at |R — R.|, V(R) is the well
depth, then £ may be determined.

2V (R) 2x8x 10719 ] 4
k= = — 640 N
(R—R.)? (0.5 x 10~ m)? o

* Once k has been determined, then it may be
combined with the reduced mass of the diatomic
under consideration to determine the oscillator
frequency.

* For the Hy molecule, the reduced mass is about
8 x 10723 kg.

. — p.343/393



* Therefore the oscillator frequency is:

1/2 1\ 1/2
V(Hg):i<5> 1 (640Nm )

or\u) 27 \8x 1078 ke

1028 4—2)1/2
_ (80 02 ST s 101 ¢
-

* When this frequency is converted into wavenumbers:

v _ _ —1
— =7 = 5000 cm
C

* Since the spacing of vibrational levels is hv, this can now
be calculated:

AE(Hg) = hv(Hs) = (6.6x1073* Js)(1.5x 10 s7 1) ~ 10719 J
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* For the harmonic oscillator, the lowest energy level is
%hu above the minimum.

* When the harmonic oscillator energy levels are compared
with the actual levels as determined by spectroscopy, it
Is observed that while the first two levels agree well, the
higher levels do not.

* Because at room temperature, only the lowest two
or three vibrational levels have non-negligible
populations, the harmonic oscillator approximation
has proved to be quite useful.

* This approximation does break down for molecules with
very shallow or non-parabolic wells.

* The vibrational energy levels of a real molecule may be
fitted to a power series in (v + 3).
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The first order term may be identified with a harmonic
oscillator, (v + %)hue.

For Hy, 1, = 1.3192 x 10 ¢ 1.

This indicates that the harmonic oscillator model can
predict within 10% the ground state energy of the
molecule.

The suitability of the harmonic oscillator model may also
be assessed by isotope effects.

E(R) is the same for all isotopic combinations of the
same atoms, since the electronic structure of a diatomic
is determined by the nuclear charge.

For a given E/(R), the harmonic oscillator model predicts

~1/2 ~1/2

that v, ox or that p Ve IS a constant.

For isotopic analogues of Ho, this works well.
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Table 7.1 Test of Harmonic Oscillator Model with Vibrational
Constants of H; Isotopes

(Atomic masses: 'H, 1.00782 amu; D, 2.01410 amu)

Reduced Mass, Vibrational Frequency, 2y,
Molecule 4 (amu) v, X 10-14(s~1) 10Mamul/Zs-!
'H, 0.50391 1.3192 0.9365
HD 0.67171 1.1429 0.9367

D, 1.00705 0.9345 0.9378
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The deviations may be accounted for by the fact that
E(R) is not perfectly parabolic.

The harmonic oscillator vibrational energy levels are:

1
Eyip(v) = (v + §)huo

where 1y is the oscillator frequency and v is the
vibrational quantum number of the diatomic molecule.

The vibrational wavefunctions are W, (z) (see Table 4.1),
where z is a dimensionless displacement variable:

2 1/2
z = (47Th,uuo> (R — R.)

v gives the number of nodes in the wavefunction and
v + 1 gives the number of maxima in the wavefunctiorm.s+s/s93



Table 4.1 Harmonic Oscillator Wave Functions

n Hy(z) Wa(2)

0 1 (m 174 e—zzﬂ

1 2z (mhm)V4(2 - 1) 12e 222,

2 472-2 (mahinV(4 - 2y 2e 2472 - 2)

3 823-12z (m@hmVA(8 - 6)" 1224823 — 127)

4 1624 —482+ 12  (mommV4(16 - 24) 112221624 - 4822 + 12)
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Figure 4.4 The quantum mechanical harmonic oscillator.
(a) Potential energy curve, energy levels E,, and superimposed
wave functions y;(z), where z = (mw/fh)/2x. (b) Probability densi-
ties for n = 0, 1, 4, 10, with the dashed lines (- - -) giving the prob-
abilities for classical oscillators of the same energies.
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e As v increases the harmonic oscillator model becomes
less accurate and the oscillator behaves more like a
classical oscillator.

* In connection with F/(R) there are two representations of
dissociation energy that are widely used.

* D, is the depth of the well. This is of interest to
theoreticians.

* Dy is the difference between the zero point energy
and the dissociation limit. This is of interest to
experimentalists and represents bond energy.

* For the harmonic oscillator:

1
D¢ = Dy + (v + 5)huo
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For a more accurate representation of the energy levels
of the diatomic molecule, anharmonic corrections may
be applied to the harmonic oscillator model.

The harmonic oscillator models assumes that E(R) is
parabolic, while it actually rises more steeply at small R
and becomes less steep at large R.

Therefore, the correction should be positive for R < R,
and negative for R > R,.

The term (R — R¢)™ where n is odd will change sign in
the appropriate direction at R..

Since a parabola involves (R — R.)?, n = 3 will give the
next lowest power term.

The higher power corrections to the harmonic oscillator
model are referred to as the anharmonicity.
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Defining x = R — R, an anharmonic oscillator may be
described by:

1 1
V(R) = §kx2 - gk’x?’

F(R) = —kz + k'2°

For most molecules, the anharmonic correction shifts the
position of the energy levels that would be populated at
room temperature by about 1%.

It still does not do a good job at describing the higher
vibrational energies, because even with anharmonic
corrections, the model V(R) does not level off to the
dissociation limit.

This can be addressed to some extent by adding higher
order terms. . p.353/393



The vibrational energy may also be expressed as a power
series In v + %:

1 1 1
E’l}ib(v) = he (?J + 5) — 5136(?} -+ 5)2 + ye(v 4+ 5)3 IR
where v =0,1,2,... and v, Z¢, Ye, . . . are determined

from spectroscopic data.
Ve, Te, Ye, - - - may be related to E(R).
This is not trivial.

A functional form that is closed for E(RR) needs to be
assumed.

One particularly convenient one is the Morse potential:

V(R) = D, [1 — eme(A=R)]"
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D is the well depth.

a may be shown to be a = v, (rp/D.)"2.

The Morse potential has the property of rising more
steeply at small R and levels off to the dissociation limit

at large R such that V(0) = oo and V(o0) = D..

When the Schrodinger equation is solved using the
Morse potential, the eigenvalues match the sum of the
first two terms in the power series expansion of E(vib) in

terms of (v + 3).

The Morse potential is shown in Figure 7.1 and matches
the true potential poorly at large R.

Information about energy levels may be obtained
experimentally by observing transitions between them
with spectroscopy.
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Transitions can be induced by radiation and observed as
discrete spectral lines in an absorption spectra.

For most heteronuclear molecules, the vibrational
absorption spectra lie in the near infrared in the region

corresponding to (0.6-12) x10% s71 or 200 - 4000 cm™!
or 2.5 - 50 um.

Isolated homonuclear molecules do not exhibit
vibrational spectra.

Consider the interaction of radiation with a diatomic.

A photon may be considered as a oscillating electric field
that interacts with the electrons of the molecule (see
Figure 7.2).

A heteronuclear diatomic molecule has a dipole moment
which oscillates as the molecule oscillates.
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Figure 7.2 Interaction between an electric field and an oscillating
(molecular) dipole. (a) The forces exerted on the dipole by the
field, which alternately tend to compress or stretch the dipole as
the field direction changes. (b) Field varies much faster than the
molecular vibration (v >> 1,); here and in the subsequent dia-
grams, the instantaneous forces on the dipole are indicated by
arrows. (c) Field varies much slower than the molecular vibration
(v << V). (d) Field and dipole oscillate at the same frequency
(v = V), but 90° out of phase. As shown here, the dipole absorbs
energy from the field; for a field phase 180° different, the forces are

reversed and the dipole gives up energy to the field.
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Consider a photon with a wavelength greater than any
dimension of the molecule.

The electric field is uniform in space but oscillates with
time.

The component of this field that is parallel to the axis of
a bond exerts an instantaneous force on the dipole that
will either compress or stretch the bond.

Whether or not this will affect the vibration will depend
on whether the frequency of the photon matches the
frequency of the molecular vibration.

If the frequency of the photon is higher than that of the
molecular vibration, then the field of the photon reverses
In less than one period of the molecular vibration.
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* |f the frequency of the photon is lower than that of the
molecular vibration, then the field varies slowly over
many vibrational periods and would eventually effect the
average value of R over the period of the photon, but
will not change the state of the molecule.

* |f the frequency of the photon closely matches the
frequency of the vibration and is in the right phase with
respect to the vibration then there will be energy
exchange between the molecule and the field.

* |f the field is stretching the molecule while it is
expanding and compresses it while the molecule is
contracting, then the molecule will be excited.

* |f the field is stretching the molecule while it is
contracting and compresses it while the molecule is
expanding, then the molecule will be deexcited.

* This is typical of electric dipole transitions. - p.359/393



If a molecule is homonuclear, then there is no dipole and
an oscillating electric field can exert no net force on the
vibrating molecule.

This why homonuclear diatomics do not have vibrational
spectra.

Classical mechanics cannot account for the quantization
of molecules or spectra.

A quantum mechanical approach is needed.

The quantum mechanical treatment gives as the
transition probability:

o = [ W (R)u(R)W,(R)AR

describing the transition between v and v’.
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1(R) is the instantaneous dipole moment of the
molecule.

v, and W, are the vibrational wavefunctions for states v
and v’.

In the case of a molecule with no dipole, u(R) is always
zero, and thus the transition probability is rigourously
Zero.

In order to probe experimentally the vibrational levels of
a homonuclear diatomic, the vibrational transitions
accompanying electronic transitions need to be probed.

Quantum mechanics also give rise to selection rules.
Consider a heteronuclear diatomic.

For the integral to be nonzero, in addition to u(R) # 0,
the properties of the wavefunctions must be considered.

. — p.361/393



The integral will be nonzero only when v and v’ differ by
1.

This gives the selection rule Av = #+1.

A heteronuclear diatomic that is described as a harmonic
oscillator changes energy one vibrational quantum at a
time.

But real molecules are not harmonic.

The vibrational wavefunctions of a real molecule may be
described as a linear combination of the harmonic
oscillator wavefunctions.

This means that the transition probabilities for
transitions that are not Av = 41 can be nonzero.

However the probabilities of these other transitions are
much smaller.
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Figure 7.3 Schematic representation of molecular vibrational
absorption spectra (neglecting rotational effects). (¢) Harmonic
oscillator model: Av = 1 only, all transitions at the same fre-
quency . (b) Real diatomic molecule: The energy levels are not
evenly spaced, so one can observe a band of lines beginning near
V,; since the selection rule is not rigorous, there is a weaker band
(Av = 12) near 2v,, and still weaker bands at 3v,, 4v,
. . . . Within each band, the intensity of a given line is propor-
tional to the population of the initial state; the intensities as drawn
here correspond to a gas with A v,/kgT = 1.8 (cf. Chapter 21).
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* In Figure 7.3 are shown the spectrum predicted by a
harmonic oscillator and the spectrum predicted by an
anharmonic oscillator.

* Since the spectrum is determined by the spacing of the
energy levels, the harmonic oscillator spectrum has only

one line.

* The spectrum that arises from the anharmonic oscillator
has a series of lines with different values of Awv.

* The transition between v = 0 and v = 1 requires
more energy than the transition between v = 1 and
v = 2, therefore the line arising from the latter will
be at a lower frequency than the line arising from
the former.

* Transitions for which Av = 2 will be at a higher
frequency than those for Av = 1.
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The relative intensity of the lines contains information
about the relative populations of the initial states.

For real molecules, vibrational transitions are
accompanied by changes in rotational states.

* This means that vibrational spectra contain bands of
closely spaced rotational-vibrational lines.

As shown in Table 7.2, vibrational constants vary among
molecules.

Part of this variation is due the electronic structure of
the molecule.

Part of this variation is due to the reduced mass.

The values shown may be corrected for differences in the
reduced mass for the isotopic analogues.
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Table 7.2 Vibrational and Rotational Constants of Some Diatomic Molecules

V,(em™)

VeXe

v.Y.

Dy B, &%
Molecule 4 (amu) R. (A) (V.= vle) (em™) (em™) (eV) (em™) (em™)
'y, 0.50391 1.7412 4400.39 120.815 0.7242 44773 60.864 3.0764
HD (‘H?H) 0.67171 0.7412 3812.29 90.908 0.504 4.5128 45.663 2.0034
Dy (*Hy) 1.00705 0.7412 311.70 61.82 0.562 4,5553 30.457 1.0786
First-row homonuclear molecules
"Liy 3.50800 2.6725 351.44 2.592 -0.0058 1.12 0.6727 0.00704
11, 5.50465 1.590 1051.3 9.4 2.9 1.212 0.014
2c, 6.00000 1.2425 1854.71 13.340 -1.172 6.24 1.8198 0.01765
N, 7.00154 1.094 2358.07 14.188 -0.0124 9.7598 1.9987 0.01781
150, 7.99745 1.2075 580.19 11.98 0.0475 5.1156 1.4456 0.01593
19F, 9.49910 1.409 919.0 13.6 1.604 0.8901 0.0146
Other homonuclear molecules
ZiNa, 11.4949 3.0786 159.23 0.726 -0.0027 0.75 0.1547 0.00079
¥K, 19.48185 3923 92.64 0.354 0.51 0.0562 0.00022
85Rb, -42.4558 420 57.28 0.96 —0.0008 0.47 0.0127 0.0000264
133Csy 66.9525 4.58 41,99 0.080 —0.0002 0.45
»Cl, 17.48222 1.9878 559.71 2.70 2.484 0.2441 0.00153
B3 !Br 39.9524 2.2809 323.33 1.081 1.9708 0.0811 0.00032
127, 63.4502 2.6666 214.52 0.607 —0.0013 1.5437 0.0374 0.00012
Hydrides
LilH 0.88123 1.5954 1405.65 23.200 0.1633 2429 7.5131 0.2132
2C'H 0.92974 1.124 2859.1 63.3 347 14.448 0.530
150'H 0.94808 0.9706 3735.21 82.81 4.392 18.871 0.714
IHYF 0.95705 09168 4139.04 90.05 0.932 5.86 20.9560 0.7958
1H3CI 0.97959 1.2746 2991.09 52.82 0.2244 4.4361 10.5936 0.3072
iH81Br 0.99511 1.4145 2649.21 45.22 -0.0029 3.755 8.4651 0.2333
127 0.99988 1.6090 2308.09 38.981 —0.1980 3.053 6.5108 0.1686
Other heteronuclear molecules
Li'%F 5.12381 1.5638 910.34 7.929 5.94 1.3454 0.02030
“Be'SQ 5.76432 1.3310 1487.32 11.830 0.0224 4.60 1.6510 0.0190
{IB4N 6.16351 1.281 1514.6 123 3.99 1.666 0.025
2C1N 6.46219 1.1720 2068.70 13.144 7.567 1.8991 0.01735
1ICl160 6.85621 1.1283 2169.82 13.294 0.0115 11.09 1.9313 0.01751
1N160 7.46676 1.1508 1904.03 13.97 -0.0012 6.50 17046 0.0178
BNa*Cl 13.8707 2.3606 366 2.05 4.25 0.2181 0.00161
¥K"Br 26.0850 2.8207 213 0.30 0.0011 3.925 0.0812 0.00040
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Rotations of Diatomic Molecules

* (Consider the rotational behaviour of diatomic molecules.

e [t will be assumed that the rotational motion can be
separated from the translational and vibrational motions.

* The rigid rotator model will be used.

* The diatomic molecule will be treated a a rigid
symmetric top which has two equal moments of inertia:

[()E x:[y#[z

where the z axis is the bond axis.

* The Hamiltonian of the rigid symmetric top is:

1 1/1 1
H,,; = —L%+ = (— - —) L?
rot = o T\ T 1)t
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L2 and L? are the angular momentum operators.

The eigenvalues of H,; are:

R[JJ+1) /1 1
Ero — [ - T T
T [ I Z([Z 10)

For a diatomic molecule:

I, = Zme(%z +?Jz2)
1

and is very small since it is due to the electrons and the
fact that the atoms have nonzero radii.

Also:
]() = /LRQ
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Therefore I, << Ij.

The energy associated with the L, term may be either
vary large or very small depending on the electronic state
and is constant for that electronic state.

* Therefore it can be included with the electronic part
of the Hamiltonian.

Thus the rotational energy of the molecule may be
written as:

no_JUH DA®  J(J + 1R
rot = 2]() N 2,LLR2

where J =0,1,2,... and J is the rotational quantum
number.

This equation has the form of the rigid rotator equation.
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Each energy level has a degeneracy of 2J + 1.

The angular momentum about an axis through the
center of mass is M jh.

My has 2J + 1 allowed values, J,J—1,...,—J+1,—J.
The rotational wavefunctions are the spherical harmonics
Yy, (0, 9).

The limitations on the validity of this model are due to
the fact that real molecules vibrate.

A further understanding of this may be gained by
examining the rotational and vibrational periods.

The angular momentum of diatomic molecule with fixed
R is pR2w and the rotational energy is E,o = suR%w? .

The eigenvalue for angular momentum is
L? = J(J+ 1A%
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* Combining these gives:

W =

T+ DY (B’
pR? N

* Equipartion predicts an average value of k1" as the
rotational energy of a diatomic molecule.

* For a hydrogen molecule at room temperature the
average period Is:

2 R?
Trot:_wzzﬂ<ue>
w

(8.3676 x 10~28 kg)(0.7412 x 10~10 m)]"/?
2(1.381 x 10-23 J K~ 1)(300 K)
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— 27(5.55 x 10728 $2)1/2 = 1,48 x 10713 &

The vibrational period is the reciprocal of the frequency.

* For a harmonic oscillator model of the hydrogen
molecule, this is:

Tib = Vg = (1.3192 x 101 s 7171 =758 x 1071 5
This means that a hydrogen molecule will vibrate about

20 times in the course of one vibrational period.

Thus it may be assumed that the effects of vibration will
average out over the course of one rotation and an
average (rigid) bond length may be assumed.

However the rigid rotator model is inadequate for
Sspectroscopy.
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* The average R value should increase with the vibrational
quantum number v.

* Rigorously, R-* should be replaced by the value of R~*
averaged over a vibrational period and

(R™%), < R.?

* The rotational energy levels can be approximated by:

|
Erot = J(J+1)heBy = J(J+1)he [Be — (v + 5) +. ]

where
h

" 4cpR2’

e 1S @ constant, B, is the rotational state v, and B, is
the rigid rotator value. - p.373/393
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For Hs:

1.0546 x 10734 J s
87(2.9979 x 10=8 m/s)(8.368 x 10728 kg)(0.7412 x 10710 m)?

— B, =60.9 cm™!

which agrees well with experiment.

. is determined experimentally to be ~ 3.0 cm~!.

Measurements of B, are used to determine R,.
Molecules with large R, have small B..

The rigid rotator model assumes that the nuclei are
point masses.

This assumption breaks down if the electronic state of
the molecule does not have zero angular momentum
relative to the nuclel. -~ p.874/393



Consider the eigenvalue equation for the symmetric top:

Erot = J(J + 1)heBy + M5he(A — By)

where A = h/4mcl,.

The quantum numbers J and M ; are defined by:
2

P':ﬂj+medL:Mﬁ

which are the square and z component of the total

angular momentum of the molecule.

Electronic and nuclear motions contribute to J.

J, I1s almost entirely due to the angular momentum of

electrons about the bond axis.
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* L, the orbital electronic angular momentum, and S can
couple with each other and the nuclear angular
momentum in many ways.

* Consider the simplest case.

* For most electronic states, the orbital electronic
angular momentum is strongly coupled to the bond
axis.

* Only the z component is quantized.
* Therefore:

‘LZ AL

* |f the electronic state is a singlet state with S = 0
(i.e. all the electrons are paired), L, is the only
contribution to .J..
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Therefore:
J >

= AR and ‘MJ‘ = A
The eigenvalue equation becomes:
Erot = J(J + 1)heBy + A*he(A — By)
where
A=0,1,2,... and J=AA+1,A+2,...

Although the second term is part of the electronic
hamiltonian, it is important to consider the restrictions
that it places on allowed quantum numbers.

Rotational transitions occur if the molecule has a dipole.

A homonuclear diatomic does not have a pure rotational
SpeCtrum. . — p.377/393



For heteronuclear diatomics, the rotational spectrum has
a selection rule for electric dipole transitions of

AJ = =1

Therefore, the only allowed pure rotational transitions
have:

AE =2JheB, or 7 = 2J'B,
where J' is the quantum number of the upper state.

The rigid rotator model predicts a pure rotational
spectrum consisting of a series of evenly spaced lines,

beginning with 7 = 2B,, and continuing in intervals of
2B, (see Figure 7.4).

The series is usually found in the far infrared or in the
microwave region.
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Figure 7.4 Pure rotational absorption spectrum of a diatomic
molecule. Given the selection rule AJ = x1, there is a series of
lines with the constant wavenumber spacing 2B,. The intensities
of the lines are proportional to the populations of the initial states,
and as drawn here correspond to a gas with B,hc/kpT = 0.1
(cf. Chapter 21).
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The spacing of rotational lines is one of the best
methods of determining bond lengths.

Generally the spectrum is best resolved if the gas is at
low pressure.

Usually the frequency of radiation is varied and
absorbance determined from the power loss from the
source to the detector.

The first spectra were obtained by using a prism between
the source and the sample to vary the wavelength and a
photographic plate to detect the photons transmitted.

With current technology, it is possible to obtain spectra
very accurately and in great detail.

To a first approximation, lines in a rotational spectra are
equally spaced. and B, may be estimated as half the
spacing in wavenumbers.
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Spectra of Diatomic Molecules

* When hv equals the energy difference between two
energy levels a transition may be induced.

* In the microwave and far infrared regions, pure rotational
spectra may be observed.

* In the near and middle infrared regions, vibrational
spectra may be observed.

* Vibrational transitions are accompanied by rotational
transitions.

* Radiation in the visible and ultraviolet region may cause
electronic transitions.

* These are usually accompanied by vibrational and
rotational transitions.

* Higher energies such as those in the X-ray region may
cause excitation of inner core electrons.
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e 7.5 Energy levels of the N, molecule. (¢) Electronic states, with vibrational levels (=10, 1, 2,. . .) shown in the lowest three. [Not
n is the W3A, state; this state has about the same minimum energy as the B? I, (see Table 7.6), but its R, is not known.] The energy zero
ground electronic-vibrational state (X3 v=0). After W. Benesch, J. T. Vanderslice, S. G. Tilford, and P. G. Wilkinson, Astrophys. J.
1227 (1965). (b) Rotational structure of the two lowest vibrational levels of the ground state; the energy zero is the same as in (a).
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* There are two main classes of spectroscopy:

* In emission spectroscopy, the sample is excited
(thermally, electrically, or in some other way), then
the emitted radiation is observed as it relaxes to an
equilibrium state.

* |f the sample is excited by radiation, then it is
fluorescence spectroscopy.

* In absorption spectroscopy, the sample is placed
between the light source and the detector.
* As the sample absorbs radiation, the molecules
are excited to higher levels.
* The absorbance is determined from the
measurement at the detector of the attenuation
of the original light source.

* Consider now the basic components of a spectrometer.
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* The sample:

* May be liquid or gas.
* Must be in a holder that is transparent to the

radiation being used.

* For UV below 2000 A, air is opaque and the

spectrum must be taken in a vacuum.

e Radiation source:

There are number of light sources, depending on the
wavelength of interest.

For UV and visible ranges, light sources include
tungsten filament lamps and electrical discharges.

For IR, heat rods of a refractory material are used.
In the microwave region, Klystron tubes are used.

Radiowave generators are used at longer
wavelengths.
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* QOptical system:

* The purpose of the optical system is to select the
wavelength of the radiation.

* This may be done by using either a prism or a
diffraction grating as a dispersing element.

* |t is also possible to use a tunable laser as the light
source.

e Radio and microwaves are also tunable.

* |f the light source is tunable, a dispersing element is
not needed.

e Detector:

* The first spectrophotometers used photographic
emulsions on plates with the intensity of a line
determined by the extent of darkening.
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e (Continued:)

* More recent spectrophotometers use electronic
means of detection with photosensitive
semiconductors, photoelectric cells, thermocouples
and bolometers, and crystal diodes.

e Computerized postprocessing is used to give the
relationship between intensity and wavelength or
wavenumber.

* A transition between bound states of a molecule has a
definite energy and frequency ( AE = hv).

e There are a number of factors that lead to the
observation of non-zero line widths.

* The natural line width is the consequence of the
uncertainty priniciple.
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* Doppler broadening is due to the fact that molecules are
moving randomly with some moving toward or away
from the detector.

* Pressure broadening is due to the perturbation of energy
levels do to interactions with other molecules.

* Pressure broadening can be controlled by controlling
the density and pressure of the sample.
Simultaneous vibration-rotation spectra

* For most diatomic molecules in the ground electronic
state, pure vibrational transitions are forbidden.

e The selection rules are:
Av =241 and AJ = +1

(Av = +£1 is only approximately true for real oscillators.)
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Figure 7.6 The infrared spectrum of HCI vapor associated with transitions (@) v=0— v=1 and () v=0 — v=2, The individual rotatic
vibration lines are all doublets because of the presence of the isotopic species H3Cl and H3'Cl; the former is the more intense. Numb

above spectral lines specify AJ. From C. E. Meyer and A. A. Levin, Phys Rev. 34, 44 (1929).
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Figure 7.7 Schematic representation of a vibration—-rotation band
in the infrared spectrum of a diatomic molecule in a ¥, electronic
state. Each line in the band corresponds to a transition between a
lower level v”, J” and an upper level v/, J, with J'=J” — 1 in the
P branch and J' = J” + I in the R branch. The lines are labeled with
the running number m, defined in Eq. 7.29. The band origin ; cor-
responds to the forbidden transition v’; J' =0 < v”; J” = 0. The
spectrum is drawn for B,y < B, so that the band converges to a
head (not shown) in the R branch.
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* Some representative spectra are shown in Figures 7.6
and 7.7.

* For each vibrational transition, there is an entire family
of vibration-rotation lines.

* The lines are nearly equally spaced with a gap in the
middle.

* This gap corresponds to the position of a
hypothetical line with AJ = 0.

* Such a transition is forbidden for a Y state.

* The position of this missing line is referred to a the
null line or band origin with wavelength 7.

* The group of lines with 7 < 7 is the P branch.
* The group of lines with 7 > 7 is the R branch.

* By convention, a single prime denotes the upper state,
while a double prime denotes the denotes the lower statgs, o5



The P branch corresponds to J' = J" — 1
The R branch corresponds to J' = J"” +1

The wavenumbers associated with the transitions are:

E/ . Ev//
V=—g— =P+ BJ(J +1)-B/J"(J"+1)

where
/A n//
— v1b v1b
vy =
hc

U may be rewritten as:
v =7+ (B, + B"Ym + (B, — B"Ym?

where m = —J” for the P branch and m = J” + 1 in the
R branch.
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For a rigid rotator, B], = B./, and the lines are evenly
spaced.

For a real rotator, B, increases with v, therefore
B., < B)! for any real infrared emission.

This means that the quadratic term is negative and the
spaces between successive lines decreases with increasing
m.

There can exist some value 7 such that the spacing
would decrease to zero.

At values of m above this mean that 7 would start to
Increase with m

This gives rise to the band head in the R branch, usually
at very high values of m which means that it is usually
difficult to observe.
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If the ground state is not a X state, then AJ =0

transitions (¢ branch) are allowed in addition to
AJ = +1.

For the () branch:
Uo =Ty + (Bl + BJ)J + (B, — BJ)J?
Since the spacing between the energy levels increase

smoothly, the is no band head.

The lines in the () branch are very close together and,
when not resolved, appear as a single intense line.

Molecules may also scatter radiation.

Radiation leaves the molecule in a different direction
than before it interacted with the molecule.
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