Mbolecular Spectroscopy of Small Free Molecules

“Small” usually means 2-3 atoms
e Can mean more if there is a lot of symmetry.

e “Free” means no other atoms or molecules close enough to perturb the intramolecular potential.

Concepts developed can be extended to larger molecules.

Classification of Spectroscopy
by Molecular Motions

We need to be able to describe how molecules move.

A molecule of N atoms have 3N degrees of freedom
e Translational (three degrees of freedom)
e Rotational (three degrees of freedom if nonlinear; two degrees of freedom if linear)

e Vibrational (all remaining degrees of freedom)

Principal Moments of Inertia
e First need the centre of mass.

e Define coordinates of the centre of mass as (X, Y, Z) such that:

N
Zmi(mi —X) =0
=1

N
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e Then v]\\;e can treat the translational motion of the molecule as a whole as the motion of a mass
M = > m; located at (X,Y, 7).

=1

e This leaves 3N — 3 coordinates.

Rotational Motion
e Define a coordinate system (Z,7,Z) through the center of mass and choose the orientation of an axis

such that:
N
Z MTY; = 0
i=1

N
Zmz(f? +75) # 0
=1

e This is the principal inertial axis system.
e Usually use (a,b,c) instead of (Z,7,z)
e (a,b,c) is situated in space relative to an external frame of reference with its orientation described by
three angles.



e This gives us three principal moments of inertia.

N
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Linear and Nonlinear Molecules
e For a nonlinear molecule, all three of these are nonzero.
e Therefore 3N — 6 degrees of freedom still to be accounted for.
e For a linear molecule, only two of these are nonzero.
e Therefore 3N — 5 degrees of freedom still to be accounted for.
e [, is chosen such that I, = 0. Therefore b; = ¢; =0 and I, = I,

e The remaining degrees of freedom are internal vibrational degrees of freedom.

The above describes the motion of atoms in terms of classical mechanics.
e Quantum mechanics is used to describe the electronic degrees of freedom and the spin degrees of freedom.

e In spectroscopy we are concerned with the spacing of energy levels.
How are the different types of energy levels spaced?

Spacing of Electronic Energy Levels

e From a quantum mechanical perspective, it is useful to consider electrons belonging to a molecule as
particles in a box, where the size of the box is connected to the size of the molecule.

e This quantum mechanical treatment (see Chpt 12) gives the following formula:

h2r2n?2
" o2

e Thus the spacing of two successive energy levels becomes:
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e Since we are dealing with electrons m = m,
e The molecule can be described by a size parameter R such that:
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Sample calculation: when m, = 9.1 x 1073 kg, R=75 A, then AE =5 x 1072° J or 30 kJ mol~!.

Spacing of Vibrational Energy Levels
e Consider a diatomic molecule as a harmonic oscillator.

e For a harmonic oscillator
F=—Fk(x — )

1 de\? 1
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e Since doubling a bond length from R to 2R usually results in dissociation of a molecule and the
energy required for dissociation is approximately the same order of magnitude as that required for
electronic excitation, it may be argued that AFE.; ~ k(AR)?, therefore:
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e The energy for the n'* level of a harmonic oscillator are given by:
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If the molecule under consideration is a homonuclear diatomic with each atom of mass M then:

where:

e Thus:
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e Then:
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Spacing of Rotational Energy Levels

Assume the diatomic molecule is a rigid rotor.
e The quantum mechanical treatment of a rigid rotor gives:

J(J+1)R?

E; =
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as the energy of the J*" energy level.
e Therefore the spacing between adjacent levels are:
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Small Molecule Energy Levels - Diatomics

e Must consider first the electronic configuration for the molecular orbitals.

e This can be described with molecular quantum numbers analoguous to atomic quantum numbers

Molecular Atomic

by S
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e This time ¥ does not represent total spin, but rather that component of spin along the bond axis
of the molecule. S is still used for total spin.

e The same information can be represented in a “Term Symbol”:

2S+1AE+A

Internal Energy of a Molecule

e Consider diatomic molecule AB in the ground electronic state with a known intramolecular potential
V(R) where R is the separation of atom A from atom B.

e Recall the Born-Oppenheimer (B-O) approximation which allows the separation of nuclear and electronic
degrees of freedom because nuclei are over three orders of magnitude heavier than electrons.

e The total nuclear energy may be expressed in terms of the Hamiltonian:

A h? h?
Hnucl = - V124 - —2mB VQB + V(R)
e The first term is the kinetic energy operator for atom A,

e The second term is the kinetic energy operator for atom B,

e The third term is the potential energy operator.

e V is pronounced “nabla” and, for a particle in (x,y,z) space, V2 is:

e V2 is also known as “del squared” or the Laplacian operator.

e Now the Hamiltonian needs to be transformed to center-of-mass coordinates for the diatomic AB. This
yields:

h2
Hnucl = _Ev% + V(R)



where
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e The quantum mechanical solution of this equation has the form:

lI/N(}%a 0, d)) = w(R)YJ,]\/I (9, ¢)

where:

e Y; (0, ¢) is the spherical harmonic function and describes the nuclear rotation associated with
total angular momentum quantum number J and its projection quantum number M.

e ¢(R) describes the nuclear vibrational motion.
e When the wavefunction can be factored, the radial and angular components can be solved separately.

e Thus the radial Schrodinger equation (RSE) can be written for a diatomic molecule:
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e This equation is of the same form as the radial equation for the H atom (which can be solved

exactly):
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e For the diatomic radial equation, the equation can be transformed into a simple form by considering
the function x(R) = Ry(R). Thus the equation becomes:

CRPdPx(R) | [J(J+ DR’
21 dR2 2uR?

Ex(R) = +V(R)| x(R)

e The term inside the brackets can be considered as an effective potential. Each value of J gives a
different equation and a different family of mathematical solutions (vibrational energy levels).

Expanding the Potential

e The potential may be expanded into a power series.



e The variable is:

p=R—R.
where R, is the equilibrium separation and p/R, is small.
e Then X
V(R) =V(Re) +V'(Re)p+ §V”(Re)p2 +...
and

e V(R.) = V. = a constant

e V/(R.) = (dV/dR)gr—g, = 0 since R, is the position of the minimum

o V"(R.) = (d?V/dR?)g_r. = k where k is the harmonic force constant.
e If p is small and the higher order derivatives are small, then:

V(R) = V(R.) + %ka

This can be recognized as the equation of a parabola and is the harmonic oscillator potential. This
is approximation 1.

e Since dR = dp the RSE can be written in terms of p:
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e Now consider:
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e If p << R., then a second approximation (rigid rotor) can be made to keep only the first
term. Thus the RSE becomes:
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e The vibrational energy FE,; is defined as:

J(J + 1)R?

Evip =E -V, —
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where

e F = the total molecular energy (not including translational energy).

e V. = the total electronic energy plus nuclear repulsion potential energy at R,

J(J+1)R?
21 R?

e Thus the RSE becomes:

° = the rotational energy of a rigid rotor diatomic with quantum number J.
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which is the Schrédinger equation for the harmonic oscillator.

1
+ riﬁx = EuivX

This is the rigid rotor harmonic oscillator

approximation
The energy expressions become:
J(J + 1)R?
Eroi(J) = ————F—, J=0,1,2,3,...
t( ) 2,LLRZ

B\ /2 1
Evib(v):h(;) (v+§), v=0,1,2,3,...

E.(n) =V, for state n
such that
E= Eel + Evib + Erot

Spectra are full of evidence that molecules are not rigid rotor, harmonic oscillators. Therefore need correc-
tions:

e Recall X
V(R)=V(R.) +V'(Re)p+ 5V“(Re),ﬂ +...

e The deviations from the harmonic potential can be treated as anharmonic corrections.

e Vibrational energy level spacing becomes smaller as the vibrational quantum number increases,
therefore the anharmonic corrections are negative and are expressed as expansion of (v + %)

Corrections to rotational energy need to include centrifugal distortion and vibration-rotation coupling.
e Correction for centrifugal distortion are expressed as a power series in J(J + 1).

e Correction for vibration-rotation coupling is expressed as a power series in terms of (v + %) J(J+1).
1

Spectroscopists usually express energy as wave-numbers in units of cm™

o Recall that:
_ 1 FE
V= — = —

he

e Since h = 6.626x 10734 Js and ¢ = 2.998x10'% cm s™1, the conversion factor is 1.986x10723J /em ™!,

1

Therefore, from this point on, spectroscopic parameters will be considered in units based on cm™

The Dunham Expansion

e Consider the Dunham Expansion, a general expression of the energy of a diatomic molecule.

1
E(v,J) =Yoo + Y10 <U+ 5) +YnJ(J+1)
1 2
+Y20 (U + 5) + Yoo [J(J + 1)

ne (w%) [J(J +1)] + Y3 (U+%)3+...



e The quantum numbers are dimensionless

e The Y’s are in units of cm™!

e This notation is more recent (1932) than the “traditional” spectroscopic notation. It is also more
systematic.

Traditional Spectroscopic Notation

e Total energy is written as:
Evib,rot = G(U) + FU(J)

where:
G(v) = +1 - +l 2
V) =we |V 5 WeTe | v 5
1\?
TWele (v—i——) +...
2
and:
Fo(J) = ByJ(J + 1) — Dy [J(J + 1))
with:
1
B, =B, — a, (v+§) + ...
and:

1
DvDe+ﬁe(v+§)+...

Spectrum of Nas
( Making sense of table 19.8)

e Information of note:
e Reduced mass
e Dissociation energy Dowith respect to the zero point energy of the ground state electronic curve.
e Ionization potential

e Also note that there is missing information.

e Electronic states are listed in descending order, with the ground state at the bottom.
e T, is the electronic energy, with reference to the bottom of the potential curves (i.e. V. = V(R.)).
e Each row of the table corresponds to a particular electronic state.
e Spectroscopic constants (cm~!) given in traditional notation, with additional terms (if any) in the
footnotes.
e Then dissociation energy, D., with respect to the bottom of the well.
e And R., the equilbrium separation.
e Followed by notes on allowed transitions and references.

Calculation of Transition Frequencies

e Use the information in the table to calculate the energy associated with the (electronic, vibrational,
rotational) state of interest.

e More conventions:
e "(double prime) refers to the state of lower electronic energy.

e ’ (single prime) refers to the state of higher electronic energy.



Consider the transition from (v = 0, J” = 0) of the ground electronic state to (v’ = 0,J" = 0) of the
first excited electronic state:

Voo = B _ g
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For higher v or J levels, must consider anharmonicity.

Diatomic Rotational Spectroscopy

Spectra are simplified considerably by selection rules.
e Selection rules arise from the dipole transition moment

For a heteronuclear diatomic, there is a permanent dipole therefore in the ground electronic state, the
rotational selection rule is:

e AJ=J —J"'=41

For a homonuclear diatomic, there is no permanent dipole, therefore there is no true rotational spectrum
(to first order).

Predicting a Pure Rotational Absorption Spectrum
Selection rule is AJ = £1

Initial state is the lower state (v, J")

EW",J") =T/ + G@") + Fy (J")

The final state is the upper state (v’, J')

E(W,J) =T+ GW')+ Fy(J)

Since the electronic state and the vibrational state do not change, the observed frequency is:

AE = E(J') — E(J") = F,(J') — Fy(J")

Example of Calculated Rotational Spectrum
Assume v =0
e This is reasonable if the sample is at thermal equilibrium.

Therefore
Fy, = B,J(J+1) = D,[J(J +1)]?

B,=B.—=
2
B
D,=D,+ =
+ 2
Consider the transition J =0— J =1
a B

AE =2(B. — 5) —4(De +



e The next line in the spectrum will be J =1 — J =2

AE = 4(B, — %) —32(D, + g)
e And the next line J =2 — J =3
AE = 6(B. — %) —108(D. + g)
e Generally:
AE =2(J" +1)(B. — %) —4(J" +1)*(De + g)
This gives line positions in the spectrum.
Line Spacings in a Pure Rotational Spectrum
e Consider two adjacent lines for Av = 0:
_ " « 1" 3 ﬁ
A(AE) =2(J" +2)(B. — 5) —4(J" 4+ 2)*(De + 5)
" a " 3 6
—2(J" + 1)(B. — 5) —4(J"+1)°(D. + 5)]
or
@
A(AE) =2(B. — 5)
A" +2) — (/" + 1) (D +5)

e Thus the lines in the spectrum are nearly evenly spaced, with the deviation due to the centrifugal
distortion.

e Spacing between adjacent lines is approximately 2(B. — )

To interpret a spectrum, do this “backwards”
e Measure spacing between lines for a particular Awv.

e Fit to equation of appropriate curve to get spectroscopic coefficients.

Interpretation of Vibrational-Rotational Spectra

Heteronuclear diatomic

Infrared spectra, therefore a vibrational transition has occurred.
e Selection rules for strongly allowed transitions are: Av = +1; AJ = +1

e Weakly allowed transitions are:
Av =42 43, ...

but with diminished intensity.

Absorption spectra, therefore final state has a higher energy than the initial state
e Transitions observed are Av =1; AJ = +1

e Initial stateisv =10

Recall energy of a (0, ") state (neglecting higher order corrections):

E(0,J") = G(0) + Fy(J")
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e And energy of a (1, J’) state is:
EQ1,J")=GQ)+ Fi(J)

3 9 3are
= 5We — JWeTe + (Be — (;

)J'(J +1)

e Therefore the energy of a line is:
E(1,J)— FE0,J") = we — 2wex,

+B[J (J +1) = J"(J"+1)]
_3ae

(I 1)+ %J”(J” +1)

o If AJ =1 (R branch):

EQ,J"+1) = E(0,J") = we — 2wee
2B (J" +1) — ae((J"? +4J" 4 3)
= We — 2wWeTe + (2Be — 3a) + (2B — 4a)J" — e J"?

e Defining m = J” + 1 and vy = we — 2w, e, this becomes:

AE = vy + (2B, — 2a.)m — aem?

o If AJ = —1 (P branch):
E(,J"=1) = E(0,J") = we — 2wewe

72Be<]// _ Oée((J//2 _ 2J//)
= We — 2wWee + (2Be — 20)J" — aJ"?

e Defining m = J"” and vy = we — 2w, this becomes:
AE = vy + (2B, — 2a)m — aem?
e Since AJ = 0 is not allowed, the Q branch is missing.

e If the QQ branch existed, it would be at

E(1,J") — E(0,J") = we — 2wex,

e Line Spacings:

e R Branch (AJ =1)
A(AE) = (2B — 4ae) — ae(2J" + 1)

A(AE) = (2B, — 3a.) — 2a.m
e P Branch (AJ = —1)
A(AE) = (2B, — 2a,) — a(2J" + 1)
A(AE) = (2B, — 3a.) — 2a.m



Therefore, a plot of the spacings of adjacent lines against m will give a slope of —2a, and an intercept of
(2B — 3a)

Interpretation of Electronic-Vibrational Spectra

e Consider two electronic states of a diatomic molecule:
e Initial state is the lower state (v”/, J")

E('UH, J//) — Tél + G(U”) + Fv// (J//)
e The final state is the upper state (v, J")

EW,J) =T+ G(') + Fy(J)

The selection rules for electronic transitions do not place restrictions on changes in vibration.

The limitations of instrumentation means that rotational lines usually are not resolved.
e Discussion will be restricted to electronic and vibrational changes.

The likelyhood of vibrational changes is governed by Franck-Condon Principle
e Electrons are three to four orders of magnitude lighter than are nuclei.
e Electronic transitions occur so fast that the nuclei do not get a chance to move (Born-Oppenheimer
approximation).
e “Vertical” transitions are favoured.

The wavenumber associated with a transition is:

T—F _ g = Te/ _ Te// + G/(U/) _ GN(’UN)

1 1
(0 ) W+ 5

e Therefore, just need to assign v’ and v and fit.
e But, how do you know when the assignment is correct?

e Consider the spacing of lines within each “family”.
e For a given v”, the spacing between the lines for v/ — v' and v — v’ + 1 is:

Av(V) = +1,0") = v, v")

=w, — 2wzl (v +1)

e For a given v’, the spacing between the lines for v” +1 — v" and v” — v/ is:
AT =p(" 0" + 1) =70 0")
=w! =22 (v +1)
e Therefore can test the line assignments with the Deslandres table.

Construction of the Deslandres Table
e Column label is v”.

e Row label is v'.



Using figure in lab handout for reference, Look for patterns in your spectrum to make a provisional
assignment.

e Note direction of horizontal axis.

e Note that spectrum is in terms of wavelength.

Using a spreadsheet, have three columns for each v” and two rows for each v'.
e In the cells corresponding first of the three columns and the first of the two rows, enter the wave-
length of the assigned lines.
e In the next column to each entry, calculate the corresponding wavenumber.
e In the third column, calculate the difference between successive v” line positions in wavenumbers.
e In the second row, second columns (with respect to each spectral line) calculate the difference
between successive v’ line positions in wavenumbers.

Inspect the table for anomalies.

What to do About Anomalies
Anomalies show up as an irregularities in the “pattern”.
e Expect AT(v') (or AT(v"”)) to become smaller as v’ (or v”) gets larger.
e Anomalies are due to error in peak assignment
e May also be due to errors in the peak position
Errors in peak assignments often show up as “jumps” in the pattern.

Errors in peak position are due to the limitations of the peak-finding algorithm and show up as “zigzags”.

Once peak assignments are correct, then spectroscopic parameters may be extracted from the Birge-
Sponer plots since:
AV(V) = w!, — 2wzl (v + 1)

Av(V") =Wl = 2002 (v + 1)

From this, information about the interaction potential may be inferred.
e Since this is general, ’ and ” are dropped.

Estimation of Dissociation Energy

At the dissociation energy, the spacing between successive vibrational levels goes to zero.

ATV (Upmaz) = We — 2WeZe(Umaz + 1) =0

Solving for v,q. gives:
1

Umax = 2
e

and thus
(1/xe — x.)
4

This is the dissociation energy from the bottom of the well.

G(Umaz) = We = De
For Dy, the dissociation energy from the v = 0 state, this must be corrected for the zero point energy,

giving:
(1/zc - 2)

Dy = w,
0=w 1

Determination of Morse Potential



e The Morse potential is a model potential form with the characteristics of an anharmonic oscillator.

U(r —re) = Dfeap [—B(r —re)] — 1}>

e D, is the dissociation energy.

e (3 is determined from D, and the harmonic oscillator force constant k.

ke 1/2
b= (thDe)

e The harmonic oscillator force constant k. is determined from we:

ke = p(2mcw.)?

e Potential for both electronic states can be determined.

Potential Energy Surfaces
e If the potential is known, then the spectrum can be calculated.
e But, can the potential be determined from the spectrum?
e Consider a diatomic molecule in the ground electronic state.
e Potential known to be repulsive at short range and attractive at long range.
e Choose a functional form that has the desired properties.

e Morse potential is one such form.
2
V(R) =D, (1 - e (R-R)

with only three parameters to be considered.

e How are the spectroscopic coefficients related to the potential?
e Recall that the harmonic oscillator force constant k = V" (R,)

e Taking the second derivative of the Morse Potential and evaluating the result at R = R,

a*v
— | =26"D.=k
(), =

e k can be determined from we:

1/2
hcwe =R (E)
1

e Determination of D., depends on how energy levels are considered.

e Exact QM treatment gives an energy level expression of the form:

G(v) = we (U + %) — Wele (U + %)2



e Solving for (v + %) at the dissociation energy and noting that wex. << we, gives

2

We

D, =

dwexe

e Now all the information to calculate (3 is available:

4\ 2
= 2 e
B =2mcw (2De)

e The Morse potential does a reasonable job of representing a diatomic potential but it does have draw-
backs

e Because it has only two additional parameters beside R., it can represent only the first anharmonic
correction.

e It does not accurately predict spectral lines.
e It is too “stiff” as a functional form to fit a real potential.

HERE ENDS
OUR TREATMENT OF SPECTROSCOPY



