Molecular Spectroscopy of Small Free Molecules
e “Small” usually means 2-3 atoms

e Can mean more if there is a lot of symme-
try.

e “Free” means no other atoms or molecules close
enough to perturb the intramolecular potential.

e Concepts developed can be extended to larger
molecules.
Classification of Spectroscopy

by Molecular Motions

e We need to be able to describe how molecules
move.

e A molecule of N atoms have 3N degrees of free-
dom

e Translational (three degrees of freedom)

e Rotational (three degrees of freedom if non-
linear; two degrees of freedom if linear)

e Vibrational (all remaining degrees of free-
dom)



Principal Moments of Inertia
e First need the centre of mass.

e Define coordinates of the centre of mass as
(X,Y, Z) such that:

N
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N
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e Then we can treat the translational motion
of the molecule as a whole as the motion of

N
a mass M = ) m; located at (X,Y, Z).
=1

1=

e This leaves 3N — 3 coordinates.



Rotational Motion
e Define a coordinate system (Z, 7, Z) through the
center of mass and choose the orientation of an
axis such that:

Zmz P+y7)# 0

e This is the prmmpal inertial axis system.
e Usually use (a, b, ¢) instead of (T, 7, 2)

e (a,b,c) is situated in space relative to an exter-
nal frame of reference with its orientation de-
scribed by three angles.

e This gives us three principal moments of inertia.
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Linear and Nonlinear Molecules

e For a nonlinear molecule, all three of these are
NONZero.

e Therefore 3N — 6 degrees of freedom still
to be accounted for.

e For a linear molecule, only two of these are
NONZero.

e Therefore 3N — 5 degrees of freedom still
to be accounted for.

e [, is chosen such that I, = 0. Therefore
bi:ci:OandIb:IC

e The remaining degrees of freedom are internal
vibrational degrees of freedom.

The above describes the motion of atoms in
terms of classical mechanics.

e Quantum mechanics is used to describe the elec-
tronic degrees of freedom and the spin degrees
of freedom.

e In spectroscopy we are concerned with the spac-

ing of energy levels.

How are the different types of energy levels
spaced?



Spacing of Electronic Energy Levels

e From a quantum mechanical perspective, it is
useful to consider electrons belonging to a
molecule as particles in a box, where the size of
the box is connected to the size of the molecule.

e This quantum mechanical treatment (see
Chpt 12) gives the following formula:
B — him?n?
2m L2

e Thus the spacing of two successive energy
levels becomes:
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e Since we are dealing with electrons m = m,

e The molecule can be described by a size param-
eter R such that:
72

me R?
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Sample calculation: when m, = 9.1 x 1073! kg,
R=5A, then AE =5 x 1072% J or 30 kJ mol 1.



Spacing of Vibrational Energy Levels

e (Consider a diatomic molecule as a harmonic os-
cillator.

e [For a harmonic oscillator

F=—k(x — x0)

1 dr\? 1 5
E=T+4+V = §,u (E) —|—§]€(CE—$O)

e Since doubling a bond length from R to 2R
usually results in dissociation of a molecule
and the energy required for dissociation is
approximately the same order of magnitude
as that required for electronic excitation, it
may be argued that AE,; ~ k(AR)?, there-

fore:
AE,, B

Y

k
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e The energy for the n'”* level of a harmonic
oscillator are given by:

1
E, = (n-+ §)hw



where:

k h?
W = — =
7 me R p
e Thus:
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e If the molecule under consideration is a homonu-
clear diatomic with each atom of mass M then:

mi1mso9 . MM
mi + mo B M + M

e Then:

h? 2 1/2 2Mm. 1/2
AE”mjb — R2 (meM) — ( M ) AEel




Spacing of Rotational Energy Levels
e Assume the diatomic molecule is a rigid rotor.
e The quantum mechanical treatment of a

rigid rotor gives:

J(J 4+ 1))h*
21 R?

Ey=

as the energy of the J* energy level.

e Therefore the spacing between adjacent
levels are:

h2
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Small Molecule Energy Levels - Diatomics

e Must consider first the electronic configuration
for the molecular orbitals.

e This can be described with molecular quan-
tum numbers analoguous to atomic quan-
tum numbers

Molecular Atomic

by S
A L
Q J

e This time X does not represent total spin,
but rather that component of spin along
the bond axis of the molecule. S is still
used for total spin.

e The same information can be represented
in a “Term Symbol”:

23+1AZ—}—A



Internal Energy of a Molecule

e Consider diatomic molecule AB in the ground
electronic state with a known intramolecular po-
tential V (R) where R is the separation of atom
A from atom B.

e Recall the Born-Oppenheimer (B-O) approxi-
mation which allows the separation of nuclear
and electronic degrees of freedom because nu-
clei are over three orders of magnitude heavier
than electrons.

e The total nuclear energy may be expressed in
terms of the Hamiltonian:

Hnucl:_—vA — —V2B + V(R)

e The first term is the kinetic energy operator
for atom A,

e The second term is the kinetic energy op-
erator for atom B,

e The third term is the potential energy op-
erator.



e V is pronounced “nabla” and, for a particle in
(x,y,z) space, V? is:
0? 0? 0?

Ox? i 0y? i 022

e V7 is also known as “del squared” or the
Laplacian operator.

e Now the Hamiltonian needs to be transformed
to center-of-mass coordinates for the diatomic

AB. This yields:

R B2
Hnucl — _ﬂv?—'{ + V(R)
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1 1 1
i E
M ma B
or
. mamapg
b A+ ms
and

RN O (irg L1 0*
R | sin6 00 \"""" 56 sin260 0¢p?



e The quantum mechanical solution of this equa-
tion has the form:

\IJN(R, (9, ¢) — @D(R)YJ,M(Q, ¢)

where:

o Y (0, ¢) is the spherical harmonic func-
tion and describes the nuclear rotation as-
sociated with total angular momentum
quantum number J and its projection
quantum number M.

e (R) describes the nuclear vibrational mo-
tion.

e When the wavefunction can be factored, the ra-
dial and angular components can be solved sep-
arately.

e Thus the radial Schrodinger equation
(RSE) can be written for a diatomic
molecule:

R [d [ pdY
o=~ |an (% i)
J(J + 1)
+[ 2uR?
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This equation is of the same form as the
radial equation for the H atom (which can
be solved exactly):

2
Ev— |2 (222
2ur? | dr dr
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where

62

V(r) =

Admeqr

e For the diatomic radial equation, the equation
can be transformed into a simple form by con-

sidering the function x(R) = RY(R). Thus the
equation becomes:

Ex(R) =

b d*x(R) N J(J 4+ 1)R?
21 dR? 2uR?

+VI(R)| x(R)

The term inside the brackets can be consid-
ered as an effective potential. Each value
of J gives a different equation and a differ-
ent family of mathematical solutions (vi-
brational energy levels).



Expanding the Potential

e The potential may be expanded into a power
series.

e The variable is:
p=R— R,

where R, is the equilibrium separation and
p/R. is small.

e Then
V(R) =V (R)+V'(R)p + %V”(Re)pz + ...
and
e V(R.) = V. = a constant
e V'(R.) = (dV/dR)r—_gr, = 0 since R, is

the position of the minimum

e V"(R.,) = (d*V/dR?*)r_g, = k where k is

the harmonic force constant.

e If p is small and the higher order derivatives are
small, then:

V(R) = V(B,) + 5hp?

This can be recognized as the equation of a
parabola and is the harmonic oscillator po-
tential. This is approximation 1.



e Since dR = dp the RSE can be written in terms
of p:
n? d®x(p)
21 dp?

Ex(p) =

J(J +1)h? 1,
[2u(p+ R.)? + Vet 5o ] x(p)

e Now consider:

(p +1Re>2 B é [(1 +p1/Re>2]

(f) ()

o If p << R., then a second approxima-
tion (rigid rotor) can be made to keep
only the first term. Thus the RSE becomes:

1

~

RQ

e

B dPx {[J(J+1)h2

1
Ve—E|+<kp?px =0
24 dp? 2uRZ i ]+2 £ }X



e The vibrational energy E,;; is defined as:

J(J + 1)

Eyip = £ — Ve —
’ 21 R?

where

e F = the total molecular energy (not in-
cluding translational energy).

e V., = the total electronic energy plus
nuclear repulsion potential energy at

R,
2
° J(g:}%%h = the rotational energy of a
rigid rotor diatomic with quantum num-
ber J.

e Thus the RSE becomes:

e d?x 1
— =+ Sk = Bu
21 dp? T S RPTX = LvibX
which is the Schrodinger equation for the harmonic
oscillator.

This is the rigid rotor harmonic oscillator
approximation



The energy expressions become:

J(J 4+ 1)R?
B,y (J) = o J=0,1,2,3,...
E-(y—hA;UQ . ~0,1,2,3
vib\U) = 10 (% 9 , v=VU,1,2,9,...

E.(n) =V, for state n
such that
E = Eel + E’Uib + Erot

Spectra are full of evidence that molecules are not
rigid rotor, harmonic oscillators. Therefore need cor-
rections:

e Recall
1
V(R) = V(R) +V'(R)p+ 5 V"(R)p* + ...

e The deviations from the harmonic poten-
tial can be treated as anharmonic cor-
rections.

e Vibrational energy level spacing becomes
smaller as the vibrational quantum number
increases, therefore the anharmonic correc-
tions are negative and are expressed as ex-
pansion of (v — %)



e Corrections to rotational energy need to include
centrifugal distortion and wvibration-rotation
coupling.

e Correction for centrifugal distortion are ex-
pressed as a power series in J(J + 1).

e Correction for vibration-rotation coupling
is expressed as a power series in terms of

(v+3) J(J +1).

e Spectroscopists usually express energy as wave-
numbers in units of cm ™!

e Recall that:
1
A hc

e Since h = 6.626 x 1073 Js and ¢ = 2.998 x
10 cm s~ 1, the conversion factor is 1.986 x
10723J /em™1.

e Therefore, from this point on, spectroscopic pa-

rameters will be considered in units based on

Cm_1



The Dunham Expansion

e Consider the Dunham Expansion, a general ex-
pression of the energy of a diatomic molecule.

1
E(v,J) = Yo + Y10 (v + 5) + Yo1J(J + 1)

2
1
+Y5q (v + 5) + Yoo [J(J + 1))

+Y714 (v+%) J(J+ 1)+ Ysg (v+;>3+...

e The quantum numbers are dimensionless

e The Y’s are in units of ecm 1

e This notation is more recent (1932) than the
“traditional” spectroscopic notation. It is also
more systematic.



Traditional Spectroscopic Notation

Total energy is written as:
E’Uib,rot — G(U) + F’U(‘])

where:

and:
Fy(J) = By J(J+1) — Dy [J(J + 1)]°
with:

B, = B, — o, (v+—)+...

and:



Spectrum of Nay
( Making sense of table 19.3)

e Information of note:

Reduced mass

Dissociation energy Dgwith respect to the
zero point energy of the ground state elec-
tronic curve.

Ionization potential

e Also note that there is missing information.

e Electronic states are listed in descending order,
with the ground state at the bottom.

T, is the electronic energy, with reference
to the bottom of the potential curves (i.e.
Ve = V(Re))

Each row of the table corresponds to a par-
ticular electronic state.

Spectroscopic constants (cm_l) given 1n
traditional notation, with additional terms
(if any) in the footnotes.

Then dissociation energy, D., with respect
to the bottom of the well.

e And R., the equilbrium separation.
e Followed by notes on allowed transitions

and references.



Calculation of Transition Frequencies

e Use the information in the table to calculate
the energy associated with the (electronic, vi-
brational, rotational) state of interest.

e More conventions:

e "(double prime) refers to the state of lower
electronic energy.

e ' (single prime) refers to the state of higher
electronic energy.

e Consider the transition from (v = 0,J" = 0)
of the ground electronic state to (v' = 0,J" = 0)
of the first excited electronic state:

Voo — E/ — El,

=T +G' (W =0)-[T/+G"(v" =0)]

/ /" W 1"
. (T/ . T//) 4 We — We o Wele — We g
T e e 2 4

e For higher v or J levels, must consider anhar-
monicity.



Diatomic Rotational Spectroscopy

e Spectra are simplified considerably by selection
rules.
e Selection rules arise from the dipole transi-
tion moment

e For a heteronuclear diatomic, there is a perma-
nent dipole therefore in the ground electronic

state, the rotational selection rule is:
o AJ=J —J'=41

e For a homonuclear diatomic, there is no perma-
nent dipole, therefore there is no true rotational
spectrum (to first order).

Predicting a Pure Rotational Absorption Spectrum

e Selection rule is AJ = #£1

e Initial state is the lower state (v”’, J")

E(UH, J//) — Té/ _|_ G('U//) + FU//(J//)

e The final state is the upper state (v’, J’)

EW,J) =T+ G@') + Fy(J)

e Since the electronic state and the vibrational
state do not change, the observed frequency is:

AE = E(J') — E(J") = F,(J') — F,(J")



Example of Calculated Rotational Spectrum
e Assume v =0

e This is reasonable if the sample is at ther-
mal equilibrium.

e Therefore

B, =B, — =
2
D,=D,+ g
e Consider the transition J =0— J =1
AE = 2(B, — %) — 4(D, + g)
e The next line in the spectrum will be J =1 —
J =2
o p
AFE =4(B. — 5) — 32(D. + 5)
e And the next line J =2 — J =3
AE = 6(B, — %) — 108(D. + g)
e Generally:
AE =2(J" +1)(Be - %> —4(J" +1)*(D. + §>

This gives line positions in the spectrum.



Line Spacings in a Pure Rotational Spectrum

e Consider two adjacent lines for Av = O:

A(AFE) = 2(J”+2)(Be—%)—4(J”+2)3(D6+§)

2"+ D)(Be = §) — AT+ XD+ D)

or
84

A(AE) = 2(B, %)
A7 2P — (74 (D + 5)

e Thus the lines in the spectrum are nearly evenly
spaced, with the deviation due to the centrifugal
distortion.

e Spacing between adjacent lines is approxi-
mately 2(B, — §)
To interpret a spectrum, do this “backwards”

e Measure spacing between lines for a particular

Av.

e F'it to equation of appropriate curve to get spec-
troscopic coefficients.



Interpretation of Vibrational-Rotational Spectra
e Heteronuclear diatomic

e Infrared spectra, therefore a vibrational transi-
tion has occurred.

e Selection rules for strongly allowed transi-
tions are: Av = +1; AJ = +1

e Weakly allowed transitions are:
Av = 12,43, ...

but with diminished intensity.

e Absorption spectra, therefore final state has a
higher energy than the initial state

e Transitions observed are Av = 1; AJ = +1
e Initial state is v =0

e Recall energy of a (0,J") state (neglecting
higher order corrections):

E(0,J") = G(0) + Fo(J")

1 1 Qe
= GWe = JWeTe + (B, — 5

4 )J//(J// _|_ 1)



e And energy of a (1,J’) state is:
E1,J")=G(1) + Fy (J)

3 9 3ate
= We — JWeTe + (B — g

)J'(J 4+ 1)
e Therefore the energy of a line is:
E1,J") — E(0,J") = we — 2wexe

+BJ[J(J +1) = J"(J"+1)]
300,
2

J(J 1)+ %J”(J” 1)

e If AJ =1 (R branch):

E1,J"+1)—E0,J") = we — 2wexe
+2B(J" +1) — . (J"* 4+ 4J" +3)
= We — 2WeZe + (2B, — 3. ) + (2B — 4o )J" — e J"?

e Defining m = J" +1 and vy = we — 2w,
this becomes:

AFE = vy + (2Be — 2a)m — aem?



e If AJ =—1 (P branch):
E(1,J"—=1)—FE(0,J") = we — 2wewe

_zBeJ// . ae((J//Q . 2J//)
= We — 2wWeZe + (2B, — 20)J" — e J"?

e Defining m = J” and vy = w, — 2w, this
becomes:

AFE = vy + (2Be — 2a.)m — aem?

e Since AJ = 0 is not allowed, the QQ branch is
missing.

e If the Q branch existed, it would be at
EQ1,J") — E(0,J") = we — 2wee
e Line Spacings:
e R Branch (AJ =1)
A(AE) = (2B, — 4a.) — ae(2J" + 1)

A(AFE) = (2B. — 3a) — 2aem



e P Branch (AJ = —1)
A(AE) = (2B, — 2a.) — ae(2J" + 1)

A(AFE) = (2B. — 3a,) — 2a.m

Therefore, a plot of the spacings of adjacent lines
against m will give a slope of —2a, and an intercept

of (2B, — 3a,)



Interpretation of Electronic-Vibrational Spectra

e Comnsider two electronic states of a diatomic
molecule:
e Initial state is the lower state (v”, J")

El(v//7 <]//) — Té/ _|_ G(U//) + F/U//(J”)
e The final state is the upper state (v’, J’)

EW@,J)=T.+ GW) + Fy,(J)

e The selection rules for electronic transitions do
not place restrictions on changes in vibration.

e The limitations of instrumentation means that
rotational lines usually are not resolved.
e Discussion will be restricted to electronic
and vibrational changes.

e The likelyhood of vibrational changes is gov-
erned by Franck-Condon Principle

e Electrons are three to four orders of mag-
nitude lighter than are nuclei.

e Electronic transitions occur so fast that the
nuclei do not get a chance to move (Born-
Oppenheimer approximation).

e “Vertical” transitions are favoured.



e The wavenumber associated with a transition is:
p — E/ L E// — Té L Te// + G/(U/) . G/,(UN)
— / / 1 !/ !/ 1
:V€l+we(v + _) _we(v =+ _)
2 2
1
—were (v + 5)° + Wzl (" + 5)°

e Therefore, just need to assign v’ and v” and
fit.

e But, how do you know when the assignment
is correct?

e Consider the spacing of lines within each “fam-

ily”.
e For a given v”, the spacing between the
lines for v/ — v" and v — v’ 4+ 1 is:

Av(v) =70 +1,0") — (v, 0")
=w, —2w.x, (v +1)

e For a given v/, the spacing between the lines
for v/ +1 — v and v — v’ is:

Av(0") =" +1) = (v, v")
=w! =22 (v + 1)

e Therefore can test the line assignments with the
Deslandres table.



Construction of the Deslandres Table
e Column label is v”.
e Row label is v'.

e Using figure in lab handout for reference, Look
for patterns in your spectrum to make a provi-
sional assignment.

e Note direction of horizontal axis.
e Note that spectrum is in terms of wave-
length.

e Using a spreadsheet, have three columns for
each v/ and two rows for each v'.

e In the cells corresponding first of the three
columns and the first of the two rows, enter
the wavelength of the assigned lines.

e In the next column to each entry, calculate
the corresponding wavenumber.

e In the third column, calculate the differ-
ence between successive v” line positions
in wavenumbers.

e In the second row, second columns (with
respect to each spectral line) calculate the
difference between successive v’ line posi-
tions in wavenumbers.

e Inspect the table for anomalies.



What to do About Anomalies

Anomalies show up as an irregularities in the
“pattern”.

e FExpect Av(v') (or Av(v")) to become
smaller as v" (or v") gets larger.

e Anomalies are due to error in peak assign-
ment

e May also be due to errors in the peak posi-
tion

Errors in peak assignments often show up as
“jumps” in the pattern.

Errors in peak position are due to the limita-
tions of the peak-finding algorithm and show
up as “zigzags’.

Once peak assignments are correct, then spec-
troscopic parameters may be extracted from the
Birge-Sponer plots since:

AT(v') = Wl — 2wlzl (v 4+ 1)

Av(v") = w! =202 (v + 1)
From this, information about the interaction

potential may be inferred.
e Since this is general, ’ and " are dropped.



Estimation of Dissociation Energy

e At the dissociation energy, the spacing between
successive vibrational levels goes to zero.

AV (Vmaz) = We — 2WeTe(Vmaz +1) =0

e Solving for v,,q. gives:

1
Ummax — 5 — 1
2%,
and thus
1 e Ye
G(Umax) :we( /x4 - ) :De

This is the dissociation energy from the bottom
of the well.

e For Dy, the dissociation energy from the v = 0
state, this must be corrected for the zero point
energy, giving:

1/z, — 2
Dy = 17 =2




Determination of Morse Potential

e The Morse potential is a model potential form
with the characteristics of an anharmonic oscil-
lator.

U(r —re) = D{exp [—B(r —re)] — 1}

e [, is the dissociation energy.

e (3 is determined from D, and the harmonic
oscillator force constant k.

k. 1/2
b= (thDe)

e The harmonic oscillator force constant k.
is determined from wy:

ke = pu(2mcwe)?

e Potential for both electronic states can be de-
termined.



Potential Energy Surfaces

e If the potential is known, then the spectrum can
be calculated.

e But, can the potential be determined from
the spectrum?

e Consider a diatomic molecule in the ground
electronic state.

e Potential known to be repulsive at short
range and attractive at long range.

e Choose a functional form that has the de-
sired properties.

e Morse potential is one such form.
2
V(R) =D, (1 - e 7))

with only three parameters to be consid-
ered.



e How are the spectroscopic coefficients related to
the potential?

e Recall that the harmonic oscillator force
constant k = V" (R,)

e Taking the second derivative of the Morse
Potential and evaluating the result at R =

R,

d>V

— = 23°D, = k
(dR2)Re 7

e k can be determined from w,:

1\ /2
hcw. = h (—)
L4

e Determination of D., depends on how energy
levels are considered.

e Exact QM treatment gives an energy level
expression of the form:

G(v) = we (v + %) — Wele (v + ;)2



e Solving for (v + %) at the dissociation en-
ergy and noting that w.xr., << w,, gives

w2

D, = €
4w T,

e Now all the information to calculate 3 is avail-

able:
1/2
0 = 2mcw, ( a )

2D¢

e The Morse potential does a reasonable job of
representing a diatomic potential but it does
have drawbacks

e Because 1t has only two additional param-
eters beside R., it can represent only the
first anharmonic correction.

e It does not accurately predict spectral lines.

e [t is too “stiff” as a functional form to fit a
real potential.

HERE ENDS
OUR TREATMENT OF SPECTROSCOPY



