
Molecular Spectroscopy of Small Free Molecules

• “Small” usually means 2-3 atoms

• Can mean more if there is a lot of symme-
try.

• “Free” means no other atoms or molecules close
enough to perturb the intramolecular potential.

• Concepts developed can be extended to larger
molecules.

Classification of Spectroscopy
by Molecular Motions

• We need to be able to describe how molecules
move.

• A molecule of N atoms have 3N degrees of free-
dom

• Translational (three degrees of freedom)

• Rotational (three degrees of freedom if non-
linear; two degrees of freedom if linear)

• Vibrational (all remaining degrees of free-
dom)



Principal Moments of Inertia

• First need the centre of mass.

• Define coordinates of the centre of mass as
(X,Y, Z) such that:

N∑

i=1

mi(xi −X) = 0

N∑

i=1

mi(yi − Y ) = 0

N∑

i=1

mi(zi − Z) = 0

• Then we can treat the translational motion
of the molecule as a whole as the motion of

a mass M =
N∑
i=1

mi located at (X,Y, Z).

• This leaves 3N − 3 coordinates.



Rotational Motion
• Define a coordinate system (x, y, z) through the

center of mass and choose the orientation of an
axis such that:

N∑

i=1

mixiyi = 0

N∑

i=1

mi(x
2
i + y2

i ) 6= 0

• This is the principal inertial axis system.
• Usually use (a, b, c) instead of (x, y, z)

• (a, b, c) is situated in space relative to an exter-
nal frame of reference with its orientation de-
scribed by three angles.
• This gives us three principal moments of inertia.

Ia =
N∑

i=1

mi(b
2
i + c2i )

Ib =
N∑

i=1

mi(a
2
i + c2i )

Ic =

N∑

i=1

mi(a
2
i + b2i )



Linear and Nonlinear Molecules

• For a nonlinear molecule, all three of these are
nonzero.

• Therefore 3N − 6 degrees of freedom still
to be accounted for.

• For a linear molecule, only two of these are
nonzero.

• Therefore 3N − 5 degrees of freedom still
to be accounted for.

• Ia is chosen such that Ia = 0. Therefore
bi = ci = 0 and Ib = Ic

• The remaining degrees of freedom are internal
vibrational degrees of freedom.

The above describes the motion of atoms in
terms of classical mechanics.

• Quantum mechanics is used to describe the elec-
tronic degrees of freedom and the spin degrees
of freedom.

• In spectroscopy we are concerned with the spac-
ing of energy levels.

How are the different types of energy levels
spaced?



Spacing of Electronic Energy Levels

• From a quantum mechanical perspective, it is
useful to consider electrons belonging to a
molecule as particles in a box, where the size of
the box is connected to the size of the molecule.

• This quantum mechanical treatment (see
Chpt 12) gives the following formula:

En =
h̄2π2n2

2mL2

• Thus the spacing of two successive energy
levels becomes:

∆E = En+1 − En = [(n+ 1)2 − n2]
h̄2π2

2mL2

= (2n+ 1)
h̄2π2

2mL2

• Since we are dealing with electrons m = me

• The molecule can be described by a size param-
eter R such that:

∆Eel ∼
h̄2

meR2

Sample calculation: when me = 9.1 × 10−31 kg,
R = 5 Å, then ∆E = 5× 10−20 J or 30 kJ mol−1.



Spacing of Vibrational Energy Levels

• Consider a diatomic molecule as a harmonic os-
cillator.

• For a harmonic oscillator

F = −k(x− x0)

E = T + V =
1

2
µ

(
dx

dt

)2

+
1

2
k(x− x0)2

• Since doubling a bond length from R to 2R
usually results in dissociation of a molecule
and the energy required for dissociation is
approximately the same order of magnitude
as that required for electronic excitation, it
may be argued that ∆Eel ∼ k(∆R)2, there-
fore:

k ∼ ∆Eel
R2

∼ h̄2

meR4

• The energy for the nth level of a harmonic
oscillator are given by:

En = (n+
1

2
)h̄ω



where:

ω =

√
k

µ
=

√
h̄2

meR4µ

.

• Thus:

∆Evib = h̄

(
k

µ

)1/2

=
h̄2

R2

(
1

meµ

)1/2

• If the molecule under consideration is a homonu-
clear diatomic with each atom of mass M then:

µ =
m1m2

m1 +m2
=

MM

M +M
= M/2

• Then:

∆Evib =
h̄2

R2

(
2

meM

)1/2

=

(
2me

M

)1/2

∆Eel



Spacing of Rotational Energy Levels

• Assume the diatomic molecule is a rigid rotor.

• The quantum mechanical treatment of a
rigid rotor gives:

EJ =
J(J + 1))h̄2

2µR2

as the energy of the J th energy level.

• Therefore the spacing between adjacent
levels are:

∆Erot = [(J + 1)(J + 2)− J(J + 1)]
h̄2

2µR2

∆Erot = 2(J + 1)
h̄2

2µR2

∆Erot ∼
(me

M

)
∆Eel

∆Eel : ∆Evib : ∆Erot :: 1 :
(me

M

)1/2

:
(me

M

)



Small Molecule Energy Levels - Diatomics

• Must consider first the electronic configuration
for the molecular orbitals.

• This can be described with molecular quan-
tum numbers analoguous to atomic quan-
tum numbers

Molecular Atomic
Σ S
Λ L
Ω J

• This time Σ does not represent total spin,
but rather that component of spin along
the bond axis of the molecule. S is still
used for total spin.

• The same information can be represented
in a “Term Symbol”:

2S+1ΛΣ+Λ



Internal Energy of a Molecule

• Consider diatomic molecule AB in the ground
electronic state with a known intramolecular po-
tential V (R) where R is the separation of atom
A from atom B.

• Recall the Born-Oppenheimer (B-O) approxi-
mation which allows the separation of nuclear
and electronic degrees of freedom because nu-
clei are over three orders of magnitude heavier
than electrons.

• The total nuclear energy may be expressed in
terms of the Hamiltonian:

Ĥnucl = − h̄2

2mA
∇2
A −

h̄2

2mB
∇2
B + V (R)

• The first term is the kinetic energy operator
for atom A,

• The second term is the kinetic energy op-
erator for atom B,

• The third term is the potential energy op-
erator.



• ∇ is pronounced “nabla” and, for a particle in
(x,y,z) space, ∇2 is:

∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

• ∇2 is also known as “del squared” or the
Laplacian operator.

• Now the Hamiltonian needs to be transformed
to center-of-mass coordinates for the diatomic
AB. This yields:

Ĥnucl = − h̄
2

2µ
∇2
R + V (R)

where
1

µ
=

1

mA
+

1

mB

or
µ =

mAmB

mA +mB

and

∇2
R =

1

R2

∂

∂R

(
R2 ∂

∂R

)

+
1

R2

[
1

sinθ

∂

∂θ

(
sinθ

∂

∂θ

)
+

1

sin2θ

∂2

∂φ2

]



• The quantum mechanical solution of this equa-
tion has the form:

ΨN (R, θ, φ) = ψ(R)YJ,M (θ, φ)

where:

• YJ,M (θ, φ) is the spherical harmonic func-
tion and describes the nuclear rotation as-
sociated with total angular momentum
quantum number J and its projection
quantum number M .

• ψ(R) describes the nuclear vibrational mo-
tion.

• When the wavefunction can be factored, the ra-
dial and angular components can be solved sep-
arately.

• Thus the radial Schrödinger equation
(RSE) can be written for a diatomic
molecule:

Eψ = − h̄2

2µR2

[
d

dR

(
R2 dψ

dR

)]

+

[
J(J + 1)h̄2

2µR2
+ V (R)

]
ψ



• This equation is of the same form as the
radial equation for the H atom (which can
be solved exactly):

EΨ = − h̄2

2µr2

[
d

dr

(
r2 dΨ

dr

)]

+

[
l(l + 1)h̄2

2µr2
+ V (r)

]
Ψ

where

V (r) =
e2

4πε0r

• For the diatomic radial equation, the equation
can be transformed into a simple form by con-
sidering the function χ(R) = Rψ(R). Thus the
equation becomes:

Eχ(R) = − h̄
2

2µ

d2χ(R)

dR2
+

[
J(J + 1)h̄2

2µR2
+ V (R)

]
χ(R)

• The term inside the brackets can be consid-
ered as an effective potential. Each value
of J gives a different equation and a differ-
ent family of mathematical solutions (vi-
brational energy levels).



Expanding the Potential

• The potential may be expanded into a power
series.

• The variable is:

ρ = R−Re
where Re is the equilibrium separation and
ρ/Re is small.

• Then

V (R) = V (Re) + V ′(Re)ρ+
1

2
V ′′(Re)ρ

2 + . . .

and

• V (Re) ≡ Ve = a constant

• V ′(Re) ≡ (dV/dR)R−Re = 0 since Re is
the position of the minimum

• V ′′(Re) ≡ (d2V/dR2)R−Re = k where k is
the harmonic force constant.

• If ρ is small and the higher order derivatives are
small, then:

V (R) = V (Re) +
1

2
kρ2

This can be recognized as the equation of a
parabola and is the harmonic oscillator po-
tential. This is approximation 1.



• Since dR = dρ the RSE can be written in terms
of ρ:

Eχ(ρ) = − h̄
2

2µ

d2χ(ρ)

dρ2

+

[
J(J + 1)h̄2

2µ(ρ+Re)2
+ Ve +

1

2
ρ2

]
χ(ρ)

• Now consider:

1

(ρ+Re)2
=

1

R2
e

[
1

(1 + ρ/Re)2

]

∼= 1

R2
e

[
1− 2

(
ρ

Re

)
+ 3

(
ρ

Re

)2

− . . .
]

• If ρ << Re, then a second approxima-
tion (rigid rotor) can be made to keep
only the first term. Thus the RSE becomes:

− h̄
2

2µ

d2χ

dρ2
+

{[
J(J + 1)h̄2

2µR2
e

+ Ve −E
]

+
1

2
kρ2

}
χ = 0



• The vibrational energy Evib is defined as:

Evib = E − Ve −
J(J + 1)h̄2

2µR2
e

where

• E = the total molecular energy (not in-
cluding translational energy).

• Ve = the total electronic energy plus
nuclear repulsion potential energy at
Re

• J(J+1)h̄2

2µR2
e

= the rotational energy of a

rigid rotor diatomic with quantum num-
ber J .

• Thus the RSE becomes:

− h̄
2

2µ

d2χ

dρ2
+

1

2
kρ2χ = Evibχ

which is the Schrödinger equation for the harmonic
oscillator.

This is the rigid rotor harmonic oscillator
approximation



The energy expressions become:

Erot(J) =
J(J + 1)h̄2

2µR2
e

, J = 0, 1, 2, 3, . . .

Evib(v) = h̄

(
k

µ

)1/2(
v +

1

2

)
, v = 0, 1, 2, 3, . . .

Eel(n) = Ve for state n
such that

E = Eel +Evib +Erot

Spectra are full of evidence that molecules are not
rigid rotor, harmonic oscillators. Therefore need cor-
rections:

• Recall

V (R) = V (Re) + V ′(Re)ρ+
1

2
V ′′(Re)ρ

2 + . . .

• The deviations from the harmonic poten-
tial can be treated as anharmonic cor-
rections.

• Vibrational energy level spacing becomes
smaller as the vibrational quantum number
increases, therefore the anharmonic correc-
tions are negative and are expressed as ex-
pansion of

(
v + 1

2

)



• Corrections to rotational energy need to include
centrifugal distortion and vibration-rotation
coupling.

• Correction for centrifugal distortion are ex-
pressed as a power series in J(J + 1).

• Correction for vibration-rotation coupling
is expressed as a power series in terms of(
v + 1

2

)
J(J + 1).

• Spectroscopists usually express energy as wave-
numbers in units of cm−1

• Recall that:

ν =
1

λ
=
E

hc

• Since h = 6.626×10−34 Js and c = 2.998×
1010 cm s−1, the conversion factor is 1.986×
10−23J/cm−1.

• Therefore, from this point on, spectroscopic pa-
rameters will be considered in units based on
cm−1



The Dunham Expansion

• Consider the Dunham Expansion, a general ex-
pression of the energy of a diatomic molecule.

E(v, J) = Y00 + Y10

(
v +

1

2

)
+ Y01J(J + 1)

+Y20

(
v +

1

2

)2

+ Y02 [J(J + 1)]2

+Y11

(
v +

1

2

)
[J(J + 1)] + Y30

(
v +

1

2

)3

+ . . .

• The quantum numbers are dimensionless

• The Y ’s are in units of cm−1

• This notation is more recent (1932) than the
“traditional” spectroscopic notation. It is also
more systematic.



Traditional Spectroscopic Notation

• Total energy is written as:

Evib,rot = G(v) + Fv(J)

where:

G(v) = ωe

(
v +

1

2

)
− ωexe

(
v +

1

2

)2

+ωeye

(
v +

1

2

)3

+ . . .

and:

Fv(J) = BvJ(J + 1)−Dv [J(J + 1)]
2

with:

Bv = Be − αe
(
v +

1

2

)
+ . . .

and:

Dv = De + βe

(
v +

1

2

)
+ . . .



Spectrum of Na2

( Making sense of table 19.3)

• Information of note:
• Reduced mass
• Dissociation energy D0with respect to the

zero point energy of the ground state elec-
tronic curve.
• Ionization potential

• Also note that there is missing information.

• Electronic states are listed in descending order,
with the ground state at the bottom.
• Te is the electronic energy, with reference

to the bottom of the potential curves (i.e.
Ve = V (Re)).
• Each row of the table corresponds to a par-

ticular electronic state.
• Spectroscopic constants (cm−1) given in

traditional notation, with additional terms
(if any) in the footnotes.
• Then dissociation energy, De, with respect

to the bottom of the well.
• And Re, the equilbrium separation.
• Followed by notes on allowed transitions

and references.



Calculation of Transition Frequencies

• Use the information in the table to calculate
the energy associated with the (electronic, vi-
brational, rotational) state of interest.

• More conventions:

• ′′(double prime) refers to the state of lower
electronic energy.

• ′ (single prime) refers to the state of higher
electronic energy.

• Consider the transition from (v′′ = 0, J ′′ = 0)
of the ground electronic state to (v′ = 0, J ′ = 0)
of the first excited electronic state:

ν00 = E′ −E′′

= T ′e +G′(v′ = 0)− [T ′′e +G′′(v′′ = 0)]

= (T ′e − T ′′e ) +
ω′e − ω′′e

2
− ω′ex

′
e − ω′′e x′′e

4

• For higher v or J levels, must consider anhar-
monicity.



Diatomic Rotational Spectroscopy

• Spectra are simplified considerably by selection
rules.
• Selection rules arise from the dipole transi-

tion moment

• For a heteronuclear diatomic, there is a perma-
nent dipole therefore in the ground electronic
state, the rotational selection rule is:
• ∆J = J ′ − J ′′ = ±1

• For a homonuclear diatomic, there is no perma-
nent dipole, therefore there is no true rotational
spectrum (to first order).

Predicting a Pure Rotational Absorption Spectrum

• Selection rule is ∆J = ±1

• Initial state is the lower state (v′′, J ′′)

E(v′′, J ′′) = T ′′e +G(v′′) + Fv′′(J
′′)

• The final state is the upper state (v′, J ′)

E(v′, J ′) = T ′e +G(v′) + Fv′(J
′)

• Since the electronic state and the vibrational
state do not change, the observed frequency is:

∆E = E(J ′)−E(J ′′) = Fv(J
′)− Fv(J ′′)



Example of Calculated Rotational Spectrum

• Assume v = 0

• This is reasonable if the sample is at ther-
mal equilibrium.

• Therefore

Fv = BvJ(J + 1)−Dv[J(J + 1)]2

Bv = Be −
α

2

Dv = De +
β

2
• Consider the transition J = 0→ J = 1

∆E = 2(Be −
α

2
)− 4(De +

β

2
)

• The next line in the spectrum will be J = 1 →
J = 2

∆E = 4(Be −
α

2
)− 32(De +

β

2
)

• And the next line J = 2→ J = 3

∆E = 6(Be −
α

2
)− 108(De +

β

2
)

• Generally:

∆E = 2(J ′′+ 1)(Be−
α

2
)− 4(J ′′+ 1)3(De +

β

2
)

This gives line positions in the spectrum.



Line Spacings in a Pure Rotational Spectrum

• Consider two adjacent lines for ∆v = 0:

∆(∆E) = 2(J ′′+2)(Be−
α

2
)−4(J ′′+2)3(De+

β

2
)

−[2(J ′′ + 1)(Be −
α

2
)− 4(J ′′ + 1)3(De +

β

2
)]

or
∆(∆E) = 2(Be −

α

2
)

−4[(J ′′ + 2)3 − (J ′′ + 1)3](De +
β

2
)

• Thus the lines in the spectrum are nearly evenly
spaced, with the deviation due to the centrifugal
distortion.

• Spacing between adjacent lines is approxi-
mately 2(Be − α

2 )

To interpret a spectrum, do this “backwards”

• Measure spacing between lines for a particular
∆v.

• Fit to equation of appropriate curve to get spec-
troscopic coefficients.



Interpretation of Vibrational-Rotational Spectra

• Heteronuclear diatomic

• Infrared spectra, therefore a vibrational transi-
tion has occurred.

• Selection rules for strongly allowed transi-
tions are: ∆v = ±1; ∆J = ±1

• Weakly allowed transitions are:

∆v = ±2,±3, . . .

but with diminished intensity.

• Absorption spectra, therefore final state has a
higher energy than the initial state

• Transitions observed are ∆v = 1; ∆J = ±1

• Initial state is v = 0

• Recall energy of a (0, J ′′) state (neglecting
higher order corrections):

E(0, J ′′) = G(0) + F0(J ′′)

=
1

2
ωe −

1

4
ωexe + (Be −

αe
2

)J ′′(J ′′ + 1)



• And energy of a (1, J ′) state is:

E(1, J ′) = G(1) + F1(J ′)

=
3

2
ωe −

9

4
ωexe + (Be −

3αe
2

)J ′(J ′ + 1)

• Therefore the energy of a line is:

E(1, J ′)−E(0, J ′′) = ωe − 2ωexe

+Be[J
′(J ′ + 1)− J ′′(J ′′ + 1)]

−3αe
2
J ′(J ′ + 1) +

αe
2
J ′′(J ′′ + 1)

• If ∆J = 1 (R branch):

E(1, J ′′ + 1)−E(0, J ′′) = ωe − 2ωexe

+2Be(J
′′ + 1)− αe((J ′′2 + 4J ′′ + 3)

= ωe−2ωexe+(2Be−3αe)+(2Be−4αe)J
′′−αeJ ′′2

• Defining m = J ′′ + 1 and ν0 = ωe − 2ωexe,
this becomes:

∆E = ν0 + (2Be − 2αe)m− αem2



• If ∆J = −1 (P branch):

E(1, J ′′ − 1)−E(0, J ′′) = ωe − 2ωexe

−2BeJ
′′ − αe((J ′′2 − 2J ′′)

= ωe − 2ωexe + (2Be − 2αe)J
′′ − αeJ ′′2

• Defining m = J ′′ and ν0 = ωe−2ωexe, this
becomes:

∆E = ν0 + (2Be − 2αe)m− αem2

• Since ∆J = 0 is not allowed, the Q branch is
missing.

• If the Q branch existed, it would be at

E(1, J ′′)−E(0, J ′′) = ωe − 2ωexe

• Line Spacings:

• R Branch (∆J = 1)

∆(∆E) = (2Be − 4αe)− αe(2J ′′ + 1)

∆(∆E) = (2Be − 3αe)− 2αem



• P Branch (∆J = −1)

∆(∆E) = (2Be − 2αe)− αe(2J ′′ + 1)

∆(∆E) = (2Be − 3αe)− 2αem

Therefore, a plot of the spacings of adjacent lines
against m will give a slope of −2αe and an intercept
of (2Be − 3αe)



Interpretation of Electronic-Vibrational Spectra

• Consider two electronic states of a diatomic
molecule:
• Initial state is the lower state (v′′, J ′′)

E(v′′, J ′′) = T ′′e +G(v′′) + Fv′′(J
′′)

• The final state is the upper state (v′, J ′)

E(v′, J ′) = T ′e +G(v′) + Fv′(J
′)

• The selection rules for electronic transitions do
not place restrictions on changes in vibration.

• The limitations of instrumentation means that
rotational lines usually are not resolved.
• Discussion will be restricted to electronic

and vibrational changes.

• The likelyhood of vibrational changes is gov-
erned by Franck-Condon Principle
• Electrons are three to four orders of mag-

nitude lighter than are nuclei.
• Electronic transitions occur so fast that the

nuclei do not get a chance to move (Born-
Oppenheimer approximation).
• “Vertical” transitions are favoured.



• The wavenumber associated with a transition is:

ν = E′ −E′′ = T ′e − T ′′e +G′(v′)−G′′(v′′)

= νel + ω′e(v
′ +

1

2
)− ω′′e (v′′ +

1

2
)

−ω′ex′e(v′ +
1

2
)2 + ω′′e x

′′
e (v′′ +

1

2
)2

• Therefore, just need to assign v′ and v′′ and
fit.
• But, how do you know when the assignment

is correct?

• Consider the spacing of lines within each “fam-
ily”.
• For a given v′′, the spacing between the

lines for v′′ → v′ and v′′ → v′ + 1 is:

∆ν(v′) = ν(v′ + 1, v′′)− ν(v′, v′′)

= ω′e − 2ω′ex
′
e(v
′ + 1)

• For a given v′, the spacing between the lines
for v′′ + 1→ v′ and v′′ → v′ is:

∆ν(v′′) = ν(v′, v′′ + 1)− ν(v′, v′′)

= ω′′e − 2ω′′e x
′′
e (v′′ + 1)

• Therefore can test the line assignments with the
Deslandres table.



Construction of the Deslandres Table

• Column label is v′′.

• Row label is v′.

• Using figure in lab handout for reference, Look
for patterns in your spectrum to make a provi-
sional assignment.
• Note direction of horizontal axis.
• Note that spectrum is in terms of wave-

length.

• Using a spreadsheet, have three columns for
each v′′ and two rows for each v′.
• In the cells corresponding first of the three

columns and the first of the two rows, enter
the wavelength of the assigned lines.
• In the next column to each entry, calculate

the corresponding wavenumber.
• In the third column, calculate the differ-

ence between successive v′′ line positions
in wavenumbers.
• In the second row, second columns (with

respect to each spectral line) calculate the
difference between successive v′ line posi-
tions in wavenumbers.

• Inspect the table for anomalies.



What to do About Anomalies

• Anomalies show up as an irregularities in the
“pattern”.

• Expect ∆ν(v′) (or ∆ν(v′′)) to become
smaller as v′ (or v′′) gets larger.

• Anomalies are due to error in peak assign-
ment

• May also be due to errors in the peak posi-
tion

• Errors in peak assignments often show up as
“jumps” in the pattern.

• Errors in peak position are due to the limita-
tions of the peak-finding algorithm and show
up as “zigzags”.

• Once peak assignments are correct, then spec-
troscopic parameters may be extracted from the
Birge-Sponer plots since:

∆ν(v′) = ω′e − 2ω′ex
′
e(v
′ + 1)

∆ν(v′′) = ω′′e − 2ω′′e x
′′
e (v′′ + 1)

• From this, information about the interaction
potential may be inferred.
• Since this is general, ′ and ′′ are dropped.



Estimation of Dissociation Energy

• At the dissociation energy, the spacing between
successive vibrational levels goes to zero.

∆ν(vmax) = ωe − 2ωexe(vmax + 1) = 0

• Solving for vmax gives:

vmax =
1

2xe
− 1

and thus

G(vmax) = ωe
(1/xe − xe)

4
= De

This is the dissociation energy from the bottom
of the well.

• For D0, the dissociation energy from the v = 0
state, this must be corrected for the zero point
energy, giving:

D0 = ωe
(1/xe − 2)

4



Determination of Morse Potential

• The Morse potential is a model potential form
with the characteristics of an anharmonic oscil-
lator.

U(r − re) = De{exp [−β(r − re)]− 1}2

• De is the dissociation energy.

• β is determined from De and the harmonic
oscillator force constant ke

β =

(
ke

2hcDe

)1/2

• The harmonic oscillator force constant ke
is determined from ωe:

ke = µ(2πcωe)
2

• Potential for both electronic states can be de-
termined.



Potential Energy Surfaces

• If the potential is known, then the spectrum can
be calculated.

• But, can the potential be determined from
the spectrum?

• Consider a diatomic molecule in the ground
electronic state.

• Potential known to be repulsive at short
range and attractive at long range.

• Choose a functional form that has the de-
sired properties.

• Morse potential is one such form.

V (R) = De

(
1− e−β(R−Re)

)2

with only three parameters to be consid-
ered.



• How are the spectroscopic coefficients related to
the potential?

• Recall that the harmonic oscillator force
constant k = V ′′(Re)

• Taking the second derivative of the Morse
Potential and evaluating the result at R =
Re (

d2V

dR2

)

Re

= 2β2De = k

• k can be determined from ωe:

hcωe = h̄

(
k

µ

)1/2

• Determination of De, depends on how energy
levels are considered.

• Exact QM treatment gives an energy level
expression of the form:

G(v) = ωe

(
v +

1

2

)
− ωexe

(
v +

1

2

)2



• Solving for
(
v + 1

2

)
at the dissociation en-

ergy and noting that ωexe << ωe, gives

De =
ω2
e

4ωexe

• Now all the information to calculate β is avail-
able:

β = 2πcωe

(
µ

2De

)1/2

• The Morse potential does a reasonable job of
representing a diatomic potential but it does
have drawbacks

• Because it has only two additional param-
eters beside Re, it can represent only the
first anharmonic correction.

• It does not accurately predict spectral lines.

• It is too “stiff” as a functional form to fit a
real potential.

HERE ENDS
OUR TREATMENT OF SPECTROSCOPY


