
Phase Equilibria, Mixtures, and Solutions

• Properties of phase transitions

• Abrupt changes in physical properties under very specific conditions of P and T .

• Not satisfactorily explained until the 20th century.

• Prior to that, there were many erroneous theories.

Why do phase transitions occur?

• Phase transitions are spontaneous processes.

• A spontaneous process occurs when it is possible to lower the chemical potential.

• But thermodynamics tells us nothing about when or how quickly a spontaneous process occurs.

• Thus is it possible to find substances in unstable, metastable, states.
• Supercooled
• Superheated
• Supersaturated

• Metastable states are important in metallurgy and material science.

Properties of Phases of Matter

• Thermodynamic properties may be found for any phase, regardless of whether it is thermodynamically
stable at that T and P .
• Extrapolate from observations in the absence of an established equation of state.
• The van der Waals equation of state can describe the properties of a gas and of a liquid.

• Properties of any phase can be described through fugacity.

µ(P, T ) = µ◦(1 bar, T ) +RT ln

(
Pf

P

)

or
µ(P, T )− µ◦(1 bar, T ) = RT lnP +RT ln Φ

• Since we wish to connect this with the van der Waals equation, subtract RT ln(a/b2) from both
sides:

µ(P, T )−
[
µ◦ +RT ln

( a
b2

)]

= RT lnP + RT ln Φ− RT ln(a/b2)

= RT ln

(
Pb2

a

)
+RT ln Φ

∆µ = RT ln P̃Φ

• Thus:
∆µ

RT
= ln P̃Φ

• Now examine ∆µ/RT for three van der Waals isotherms:

• Above the critical temperature

• At the critical temperature

• Below the critical temperature

• Below the critical temperature, coexistence of liquid and vapour are possible.



• Coexistence shows up in Figure 6.1 (c) as an intersection of two curves.

• The stable phase is the one with the lower chemical potential.

• How does chemical potential relate to a van der Waals isotherm in P̃ Ṽ space?

• Note unphysical region characterized by a negative isothermal bulk compressibility:

κ ≡ − 1

V

(
∂V

∂P

)

T

• Note also that there are regions with more than one value of V for a given value of P .

• While a phase transition is occurring, the isothermal bulk compressibility is infinite since a large volume
change is occurring at constant pressure.

• For the van der Waals gas, the coexistence line is constructed such that the area above and below the
line are equal.

PΦ(Vb − Ve) =

∫ Vb

Ve

P (V )dV

• Integrating by parts (PdV = d(PV )− V dP ) gives:

PΦ(Vb − Ve) =

∫ Vb

Ve

[d(PV )− V dP ]

= PΦ(Vb − Ve)−
∫ P (Vb)

P (Ve)

V (P )dP

• Thus ∫ P (Vb)

P (Ve)

V (P )dP = 0

Some facts about phase transitions

• A spontaneous phase transition is possible when the chemical potential of an existing phase exceeds
that of another phase.

• If two phases have equal chemical potential, then they may coexist in any proportion.

Phase Transitions on Isobars

• Consider a pure substance at constant pressure of 1 atm.

• Assume that the substance has
• One solid phase
• A single liquid phase
• Gas phase

• Start with the substance in a solid phase and raise the temperature.

• Fusion occurs at normal melting point.

• Liquid becomes warmer.

• Vaporization occurs at normal boiling point.

• Vapour is warmed.

• This process for Zn is illustrated in Figure 6.4 as a function of µ and T .



Behaviour of Chemical Potential
in Phase Transitions

• Consider a plot of chemical potential against temperature.

• Vertical axis is the chemical potential relative to that at 300 K.

• Recall that: (
∂µ

∂T

)

P

= −S

• Therefore the slope of each section of the graph corresponds to the molar entropy of that phase.
• Note that the slope becomes steeper as the system moves from solid to liquid to gas phase.
• Changes in slope mean changes in entropy.

• Recall that: (
∂2µ

∂T 2

)

P

= −
(
∂S

∂T

)

P

= −CP (T )

T

• Therefore the slope (in Figure 6.4) gives information the heat capacity for each phase.

• If the heat capacity is not a constant, then the µ vs T plot will be curved.

Construction of Phase Diagrams

• Phase diagrams are constructed in (P, T ) space because they are the natural variables for G.

• Consider the phase diagram for the van der Waals gas.

• Only liquid and/or vapour are possible.

• Only one phase can exist in any “area” of the diagram.

• Above the critical point, the van der Waals gas can be described as being in a “fluid” state.

• Phases are separated by a liquid-vapour coexistence curve. This means that P and T are constrained
by coexistence.

The Triple Point

• For a pure substance that can exist as a solid, a liquid, and a gas, there is one unique (P, T ) for the
triple point.

• Recall that: (
∂µ

∂P

)

T

= V

• Since V (g) >> V (l) ∼ V (s), the chemical potential of a gas is very sensitive to pressure relative
to that of a condensed phase.

• Reconsider figure 6.1: the slopes of the curves are proportional to the volume.

• A plot of µ(T ) against P will be steeper for a gas than for a condensed phase.

The Triple Point

• There exists some pressure P for which the µ(T ) curves for gas, liquid, and solid intersect in a point.
This point is the triple point.

• Consider a pressure below the triple point

• The µ(T ) curve for the liquid phase will be above either the gas or the solid curve.

• Therefore the liquid phase will not be stable, either by itself or in coexistence with another phase.



• Therefore sublimation is the only phase transition possible

• Solids at pressures below the triple point pressure have vapour pressure.

• Since it is possible for substances to have more than one solid phase, it is possible for any three phases
to have a triple point, if each pair can coexist at some (T, P ).

Coexistence Lines

• Consider two phases in equilibrium:
Φ1(T, P ) ⇀↽ Φ2(T, P )

• Consider the infinitesimal change in chemical potential of each phase:

µ1(T + dT, P + dP ) = µ1(T, P ) + dµ1

µ2(T + dT, P + dP ) = µ2(T, P ) + dµ2

• Since the system is at equilibrium before and after the infinitesimal change, it can be shown that:

dµ1 = dµ2

• But
dµ = −SdT + V dP

• Therefore:
−S1dT + V 1dP = −S2dT + V 2dP

(S2 − S1)dT = (V 2 − V 1)dP

• Defining
∆SΦ ≡ S2 − S1

∆V Φ ≡ V 2 − V 1

• Gives the slope of a two phase coexistence line on a phase diagram as:

(
dP

dT

)

Φ

=

(
∆SΦ

∆V Φ

)

This is the Clapeyron Equation

• Substituting ∆HΦ = T∆SΦ gives: (
dP

dT

)

Φ

=

(
∆HΦ

T∆V Φ

)

• Everything in this equation is a state function or a state variable and therefore is independent of the
path chosen for the phase transition.

• The coexistence curve between gas and liquid ends in a critical point.

• The properties of liquid and gas are indistinguishable at the critical point. Therefore

∆V Φ = 0

• But (dP/dT )Φ is not observed to be infinite.

• This is possible if only ∆SΦ approaches zero more quickly than ∆V Φ



Is this true for the van der Waals gas?

P =
RT

V − b −
a

V
2

• Therefore: (
dP

dT

)

V

=
R

V − b =

(
dS

dV

)

T

• and

dS =
RdV

V − b

∆SΦ

R
= ln

(
V 2 − b
V 1 − b

)

∆SΦ

R
= ln

(
Ṽ2 − 1

Ṽ1 − 1

)

which approaches zero faster than ∆V Φ as illustrated in Fig 6.9.

Using the Clapeyron Equation

• Starting with (
dP

dT

)

Φ

=

(
∆HΦ

T∆V Φ

)

• Use ∆V Φ ≡ V 2 − V 1 and find V = V (T, P ) using the equation of state for each phase.

• Use ∆HΦ ≡ H2 −H1 and find H = H(T, P ) using (∂H/∂P )T = V − T (∂V/∂T )P and the equation of
state for each phase.

• and integrate:

∫ Tf

Ti

(
dP

dT

)

Φ

dT =

∫ Tf

Ti

(
∆HΦ

T∆V Φ

)
dT =

∫ Pf

Pi

dP

• This integration is nontrivial for most equations of state.

• But what if one phase is an ideal gas?

Vapour-Liquid Coexistence and
Vapour-Solid Coexistence

• Consider a gas far enough from the critical point that V g >> V (condensed phase) is a valid statement.

• Therefore
∆V Φ = V g

• Thus the Clapeyron Equation becomes:

(
dP

dT

)

Φ

=
∆HΦ

TΦ∆V Φ

∼= ∆HΦ

TΦV g
=

∆HΦP

RT 2
φ

which can be integrated if ∆HΦ is assumed constant:

∫ Pf

Pi

dP

P
∼= ∆HΦ

R

∫ Tf

Ti

dT

T 2



P (Tf ) = P (Ti) exp

[
−∆HΦ

R

(
1

Tf
− 1

Ti

)]

Coexistence of Condensed Phases

• Consider Solid-Liquid (fusion) and Solid-Solid Coexistence

• Cannot assume that the volume of one phase is significantly greater than the other.

• Cannot assume an equation of state that is as convenient to work with as is that of the ideal gas.

Solid-Liquid Coexistence

• Start with the Clapeyron equation: (
dP

dT

)

Φ

=
∆SΦ

∆VΦ

• Assume that ∆VΦ is constant since both phases have low compressibility.

• Assume that ∆SΦ is constant since the change in molecular order that occurs with fusion is not strongly
dependent on T and P .

• These two assumptions imply that the coexistence line is a straight line.

• Other treatments are semiempirical, such as that of Simon and Glatzel:

P

P0
=

(
T

T0

)a
− 1

where a and P0 are determined empirically for the substance of interest and T0 is a reference temperature
(usually near the critical temperature).

• Differentiation gives: (
dP

dT

)

fus

=

(
P0a

Tfus

)(
Tfus
T0

)a

∆Hfus

Tfus∆V fus
=

(
P0a

Tfus

)(
Tfus
T0

)a

which can be interpreted as

∆Hfus

∆V fus
∝ P0a

Tfus ∝ Tfus
(

T0

Tfus

)a

(i.e.) the temperature of fusion corrected by an empirical factor.

Solid-Solid Coexistence

• Coexistence lines are usually observed to be straight.

• Sometimes nearly vertical which means that there is an entropy change with a negligible volume
change.

• Sometimes nearly horizontal which means that there is a volume change associations with a negli-
gible entropy change.

Thermodynamics of Phase Transitions



• For equilibrium between gas and a condensed phase, it can be shown:

d(∆HΦ)

dT
∼= ∆CPΦ

• For vaporization
∆CPΦ = CP (g)− CP (l) < 0

since CP (l) > CP (g) and ∆Hvap decreases as T increases.

• Trouton’s rule applies to vaporization and sublimation of simple condensed phase (weak intermolecular
forces, no H bonds, nonpolar):

∆S
◦
vap
∼= 10.5R

∆S
◦
sub
∼= 11.5R

• Based on the observation of near constant entropy of vaporization or sublimation at pressure of 1
atm.

• Hildebrandt’s Rule is based on observations of entropy of vaporization at a constant vapour density of
22.414 L mol−1:

∆S
◦
vap
∼= 11.1R

• Guggenheim’s Rule is based on observation of entropy of vaporization at 1/50th of Pc;

∆S
◦
vap
∼= 9.0R

• Any of these rules may be used to estimate the vapour pressure by replacing ∆Hvap with T ◦vap∆S
◦
vap

in the integrated Clapeyron equation.

Composition Variables in Mixtures

• Consider a closed system in two-phase equilibrium

• Below TΦ all in one phase

• Above TΦ all in other phase

• But how much is in each phase at TΦ?

• Define mole fraction:

x(i) =
n(i)

n
=

amount in phase i

total amount

• Mole fractions must add up to 1: ∑

all phases

x(i) = 1

• Define molar volume of the system:

V ≡ V

n
=

∑

all phases

V (i) x(i)

• But for two phase equilibrium:

V = V [x(1) + x(2)] = V (1)x(1) + V (2)x(2)



which can be rearranged to:
x(2)[V − V (2)] = x(1)[V (1)− V ]

This is the Lever Rule

• Isolating the mole fractions yields:

x(1) =
V − V (2)

V (1)− V (2)

x(2) =
V − V (1)

V (2)− V (1)

• Some points about notation:

• One component system: x(Φ) is the mole fraction in phase Φ

• Multicomponent system: xi(Φ) is the mole fraction of compound i in phase Φ.

Solutions and Mixtures

• A solution has atoms randomly dispersed throughout the phase at microscopic level and is homogeneous.

• Solutions may be solid or liquid

• A mixture has macroscopic regions of the pure constituents and is inhomogeneous.

The Ideal Mixture

• The ideal mixture consists of non-interacting components such as ideal gases that differ only mass.

• Example: a mixture of isotopes of a rare gas 83Kr and 84Kr

• Initially separated in two containers of equal volume.

• The two containers are joined by a valve.

• Adiabatically isolated.

• Same T and P .

• Valve opened and mixing occurs.

• Equilibrium is recognized by equal amounts of each isotope in each container. T and P are un-
changed.

• Spontaneous change, therefore G has decreased.

• At any point in the process:
G(total) = µ1n1 + µ2n2

where
µi = µ◦i +RT ln fi

• Since Kr behaves nearly ideally, fi may be replaced with Pi, the partial pressure of component i.
Therefore:

P = P1 + P2

which is known as Dalton’s Law.

• But, we know pressures are intensive, not extensive.

• Partial pressure can be defined as:

Pi = xiP = partial pressure of component i.



This is valid if there are no strong interactions between molecules.

Partial Pressure and Thermodynamics

• V is one of the natural variables of U and A.

• −P is the conjugate variable of V . Therefore:

(
∂U

∂V

)

S,n

=

(
∂A

∂V

)

T,n

= −P

• Neither of these definitions rely on a particular equation of state.

• Consider A (since it is easier to control T than S) at constant T and P :

A =
∑

i

niAi = n
∑

i

xiAi

• Assume that composition is constant (no chemical reactions, system closed) then:

(
∂A

∂V

)

T,n

=
∑

i

xin

(
∂Ai
∂V

)

T,n

P = −
∑

i

xin

(
∂Ai
∂V

)

T,n

and

Pi = −xin
(
∂Ai
∂V

)

T,n

Can partial pressure be measured?

• Consider an apparatus with two compartments separated by a fixed, rigid semipermeable membrane.

• H2 on one side and H2 and N2 on the other side.

• The membrane(Pd foil) is perfectly permeable to H2

• The membrane(Pd foil) is perfectly impermeable to N2

• At equlibrium, the chemical potential of H2 is the same on both sides of the membrane and the pressures
are different on both sides.

• This method is accessible to very few combinations of membranes and gases.

Mixing

• Consider the change in an extensive quantity such as G, V , S, etc. that accompanies mixing.

• Using G as an example:

∆Gmix = G(x1, x2, . . .)

−
∑

i

G(pure, isolated species i)

where G(x1, x2, . . .) is:

G(x1, x2, . . .) = n
∑

i

xiµi(xi)



= n
∑

i

xi(µ
◦
i +RT lnPi)

Assume T , P , and n to be constant.

• For each pure component i:

G(pure i) = niµi(xi = 1) = ni(µ
◦
i +RT lnP )

• Therefore:
∆Gmix = n

∑

i

xi(µ
◦
i +RT lnPi)

−n
∑

i

xi(µ
◦
i +RT lnP )

But Pi = xiP . Therefore

∆Gmix = n
∑

i

xi(µ
◦
i + RT lnP +RT lnxi)

−n
∑

i

xi(µ
◦
i +RT lnP )

∆Gmix = nRT
∑

i

xi lnxi

• For a two component system where x2 = 1− x1, this becomes:

∆Gmix(x1)

nRT
= x1 lnx1 + (1− x1) ln(1− x1)

• Since ∆Smix = −(∂∆Gmix/∂T )xi
∆Smix = −nR

∑

i

xi lnxi

• Similarly

∆Vmix = (∂∆Gmix/∂P )xi = 0

∆Hmix = ∆Gmix + T∆Smix = 0

∆Umix = ∆Hmix −∆(PV )mix = 0

∆Amix = ∆Umix − T∆Smix = ∆Gmix

• Spontaneous ideal mixing is accompanied by:

• An increase in entropy

• A decrease in Gibbs free energy

• A decrease in Helmholtz free energy

• No change in enthalpy or internal energy

Nonideal Mixing

• Use fugacity to describe nonideal behaviour.



• Define partial fugacity using Lewis-Randall Rule

fi = xif

where f is the fugacity of pure i at the T and P of the solution.

• Thus the chemical potential of component i becomes:

µi(T, xi) = µ◦(pure i, T ) +RT ln f +RT lnxi

• Implicit in this is the assumption that the solution obeys Amagat’s Law:

V =
∑

i

niV (pure i)

This is reasonable for gases, but must be examined carefully for condensed phases.

• Consider the fugacity of pure condensed phase:

RT ln

(
f

P

)
=

∫ P

0

(
V − RT

P

)
dP

• If there is a phase transition between 0 and P then the integral should be considered as two term, one
from 0 and PΦ, the other from PΦ to P :

RT ln

(
f

P

)
=

∫ PΦ

0

(
V − RT

P

)
dP

+

∫ P

PΦ

(
V − RT

P

)
dP

• Expanding the last integral into two terms:

RT ln

(
f

P

)
= RT ln

(
fΦ

PΦ

)

+

∫ P

PΦ

V (condensed phase)dP −RT ln

(
P

PΦ

)

• Assuming that the volume of the condensed phase is constant over the interval under consideration:

∫ P

PΦ

V (condensed phase)dP = V (P − PΦ)

• Thus:

RT ln

(
f

P

)
= RT ln

(
fΦ

P

)
+ V (P − PΦ)

or

f = fΦ exp

[
V (P − PΦ)

RT

]

which may be rewritten as:

f = PΦ

(
fΦ

PΦ

)
exp

[
V (P − PΦ)

RT

]



Excess Functions

• Excess functions describe deviations from ideal behaviour.

• Consider excess free energy:

GE = G(real : T, P, xi)−G(ideal : T, P, xi)

• If GE > 0 then deviations from ideality are positive.

• If GE < 0 then deviations from ideality are negative.

• A reference or standard state must be considered and f is defined with respect to that.

• G. N. Lewis defined activity ai as:

ai(T, P, x1, x2, . . .) =
fi(T, P, x1, x2, . . .)

f◦i (T, P ◦, x◦)

• If all species are referred to the same standard state, then the equilibrium requirement of equal fugacity
in any component can be replaced by a requirement of equal activity.

• The activity coefficient is defined as:

γi =
ai
xi

Therefore:
fi(T, P, x) = f◦i (T, P ◦, x◦)ai(T, P, x) = f◦i γixi

Ideal Solution

• Fugacity is directly proportional to mole fraction.

fi(ideal;T, P, xi) = Ki(T, P )xi

• The definition of Ki depends on the type of ideal solution.

• Consider excess free energy:

G
E

i = Gi(real)−Gi(ideal)

= µi(real)− µi(ideal)

= µ◦i (real) +RT ln fi(real)

−µ◦i (ideal)−RT ln fi(ideal)

= RT ln
fi(real)

fi(ideal)

since µ◦i (real) = µ◦i (ideal)

• Thus

G
E

i = RT ln
fi(real)

Kixi

• For an ideal solution Ki = f◦i and γi = 1

• The activity coefficient is defined by:

γi(real or ideal) =
fi(real or ideal)

f◦i xi



and

G
E

i = RT ln
f◦i γixi
f◦i xi

= RT ln γi

Thus
GE =

∑

i

niG
E

i = nRT
∑

i

xi ln γi

Phase Separation and Spontaneous Unmixing

(The physical chemistry of salad dressing)

• Separation of a one-phase liquid solution into two phases observed

• Extraction

• Salad Dressing

• Lava Lamps

• Often occurs as a result of a change in composition or temperature.

• Consider pure liquid of each component at standard T and P

P ◦ = P

x◦ = pure compound i

• Consider only a binary solution (x1 + x2 = 1)

• GE goes to zero as x1 or x2 goes to zero.

• The simplest empirical function that satisfies this is:

GE = nAx1x2

ln γ1 =
A

RT
x2

2

where A is empirically determined.

• What affects the value of A:

• Temperature

• Chemical nature of components 1 and 2 and their interaction.

• NOT the composition

• Since A contains information about non-ideal behaviour, it must be related to the activity of each
component.

• Recall that:
GE =

∑

i

niG
E

i = nRT
∑

i

xi ln γi

Therefore:
nRT

∑

i

xi ln γi = GE = nAx1x2

nRT (x1 ln γ1 + x2 ln γ2) = nAx1x2

nRT (x1 ln γ1 + x2 ln γ2) = nRT
A

RT
x1x2(x1 + x2)



= nRT (x1
A

RT
x2

2 + x2
A

RT
x1

2)

Thus:

ln γ1 =
A

RT
x2

2

ln γ2 =
A

RT
x1

2

• Spontaneous separation can occur only if it results in the lowering of the free energy at constant T and
P .

• But phase separation implies a decrease in entropy.

• Therefore a decrease in enthalpy is implied.

• Consider excess free energy.

G(real = GE +G(ideal)

= GE +
∑

i

niµi(ideal)

= GE +
∑

i

ni(µ
◦
i +RT ln fi)

= GE + n
∑

i

xi(µ
◦
i +RT ln f◦i xi)

= GE + n
∑

i

xi(µ
◦
i +RT ln f◦i )

+nRT
∑

i

xi lnxi)

= GE + n
∑

i

xiµi(pure i)

+nRT
∑

i

xi lnxi)

Therefore:
G(real) = Ax1x2 + x1µ1(pure) + x2µ2(pure)

+RT (x1 lnx1 + x2 lnx2)

• Recall
∆Gmix(real) = GE + ∆Gmix(ideal)

∆Gmix(x1)

RT
=

A

RT
x1(1− x1)

+x1 lnx1 + (1− x1) ln(1− x1)

• The larger the value of A/RT the more immiscible the mixture.

• For A/RT > 2, there exists a value for which ∆Gmix has a local maximum and two values which are
local minima, i.e. there exists a range of x1 such that

(
∂2∆Gmix
∂x1

2

)

T,P,n

< 0



• The solution will spontaneously separate into two layers, each with composition corresponding to
that of one of the local minima.

• The amount in each liquid phase will be determined by the lever rule.

• For A/RT < 2, there is one stable homogeneous phase.

• When A/RT =2, the solution is at the critical solution temperature (or the consolute temperature).

• Critical point for the mixture where the two phases are indistinguishable.

Activity in the Nonideal Solution

• Recall that
a1 = γ1x1

and that

ln γ1 =
A

RT
x2

2

Therefore

ln ai = ln γi + lnxi =
A

RT
(1− x1)2 + lnx1

• For A/RT < 2, a1 is a monotonic function of x1, but for A/RT > 2 the region of immiscibility
corresponds to physical separation of the solvent mixture.

Colligative Properties

• Vapour pressure over solutions

• Henry’s Law

• Freezing point depression

• Boiling point elevation

Vapour Pressure over Solutions

• Consider a solution of two volatile components in equilibrium with the gas phase.

• xi is the mole fraction of component i in the liquid phase.

• yi is the mole fraction of component i in the gas phase.

• For an ideal solution
Ki = f(i)

where f(i) is the fugacity of pure i at the temperature of the solution and the vapour pressure of i.

• Assume that the system is sufficiently ideal that fugacity may be replaced by pressure.

• Thus
Pi = P (i)xi

where Pi is the partial pressure of i above the solution, P (i) is the vapour pressure of pure liquid i
and xi is the mole fraction of i in the liquid solution.

This is Raoult’s Law

• The total pressure is a function of the solution composition. For a two component solution:

P (x1) = P1 + P2 = P (1)x1 + P (2)x2



= P (1)x1 + P (2)(1− x1)

= P (2) + [P (1)− P (2)]x1

• But, what is the composition of the gas phase?

• From definition of partial pressure:

y1 =
P1

P

• Therefore,

y1(x1) =
x1P (1)

P (2) + [P (1)− P (2)]x1

and the total pressure P becomes:

P [x1(y1)] = P (y1) =
P (1)P (2)

P (1) + [P (2)− P (1)]y1

as a function of gas phase composition.

• Raoult’s Law is not followed by all solutions at all compositions, but tends to work better when one
component is in considerable excess.

Henry’s Law and the Ideal Dilute Solution

• The ideal dilute solution consists of:

• A solvent (the compound in excess)

• A solute (the minor compound)

• For an ideal dilute solution of solute 2 in solvent 1, Raoult’s law gives:

P2 = K2,1x2

which is also known as Henry’s Law.

• The Henry’s Law coefficient K2,1 is specific to that solute in that solvent and may be interpreted
as the hypothetical vapour pressure of the pure solute.

• K2,1 is often larger than the actual vapour pressure of the pure solute.

• Recalling the definition of chemical potential:

µi = µ◦i +RT ln fi

and assuming that
fi = Pi = Ksolv,ixi

gives
µi(ideal) = µ◦i (ideal) +RT lnKi +RT lnxi

where the first two terms can be considered the definition of a new reference state.

• Often concentrations expressed in terms of other than mole fraction are more convenient.

• For example mole fraction can be related to molality by:

xi =
(10−3 kg g−1)M mi

1 + (10−3 kg g−1)M m



where M is the molar mass of solvent in g mol−1 and mi the molality of i.

• If the solution is infinitely dilute, this becomes:

xi = (10−3 kg g−1)M mi

xi = (10−3 kg g−1)M m◦
(mi

m◦

)

• Thus the chemical potential becomes:

µi(ideal) = µ◦i (ideal) +RT lnKi

+RT ln(10−3 kg g−1M m◦)

+RT ln
(mi

m◦

)

where the first three terms can be taken as a reference state.

Azeotropes

• A solution of azeotropic composition boils unchanged.

• Consider a mixture of two liquids with the following properties:

• Equal vapour pressures of pure liquids.

P (1) = P (2) = P ◦

• Equal Henry’s Law coefficients

K1,2 = K2,1 = K;
K

P ◦
= 2

• Partial pressure composition relation

Pi = Kxi + (P ◦ −K)x2
i

• This system

• Has two regions of two phase behaviour.

• Boils at a single pressure when x = .5

What is wrong with this hypothetical system?

• If one component follows Raoult’s Law, the other must follow Henry’s Law.

• For a binary system at equilibrium at constant T and P

• dG(total) = 0

• dn1 = dn2 = 0
n1dµ1 + n2dµ2 = 0

• From the definition of chemical potential for each component:

x1

(
∂ ln f1

∂x1

)

T,P

= x2

(
∂ ln f2

∂x2

)

T,P



• If component 1 follows Henry’s Law, f1 = Kx1, then:

(
∂ ln f1

∂x1

)

T,P

=

(
1

f1

)(
∂f1

∂x1

)

T,P

=
x1

f1
K =

x1

f1

(
f1

x1

)
= 1

• Similarly:
x2

f2

(
f2

x2

)
= 1

which can be rearranged to: ∫ x2

x2=1

dx2

x2
=

∫ f2

f◦2

df2

f2

or

lnx2 = ln

(
f2

f◦2

)

or
f2 = f◦2x2

which is Raoult’s Law.

• Now reconsider the hypothetical equation:

P1 = Kx1 + (P ◦ −K)x2
1

• For small x1, P1
∼= Kx1

• For large x1, P1
∼= P ◦x2

1, which is not Raoult’s Law!

Freezing Point Depression and Boiling Point Elevation

• Assume

• Solute 2 is not volatile.

• Solvent 1 is volatile.

• The solute does not dissolve in solid solvent.

• Therefore gas phase and solid phase are pure solvent.

• The effect of adding the solute is to increase the boiling point and lower the freezing point.

• Consider first the freezing point:

• Pure frozen solvent is in equilibrium with the solution:

µ1(Tfus, P, x1) = µ(Tfus, P, pure solid 1)

• Assuming the solution is ideal:

µ1(Tfus, P, x1) = µ◦1 +RTfus ln f◦1x1

• But:
µ◦1 +RTfus ln f◦1 = µ(pure liquid 1)



and

∆G
◦
fus = µ(pure liquid)− µ(pure solid)

(∆G
◦
fus 6= 0 if T 6= T ◦fus)

• Differentiating gives:

(
∂ lnx1

∂x1

)

T,P

=
1

x1

= − 1

R

[(
∂(∆G

◦
fus/T )

∂T

)

P

]

Tfus

(
∂T

∂x1

)

P

• But from the definition of G,

(
∂(G/T )

∂T

)

P

=
1

T

(
∂H

∂T

)

P

− H

T 2
−
(
∂S

∂T

)

P

(
∂(G/T )

∂T

)

P

= − H
T 2

• Therefore
1

x1
=

∆H
◦
fus(pure 1, Tfus < T ◦fus)

RT 2

(
∂T

∂x1

)

P

• Isolating the variables and integrating:

∫ x1

1

dx1

x1
=

∫ Tfus

T◦
fus

∆H
◦
fus

RT 2
dT

yields (assuming ∆H
◦
fus is a constant):

lnx1 =
∆H

◦
fus

R

(
1

T ◦fus
− 1

Tfus

)

• Defining freezing point depression as:

∆Tfus = T ◦fus(pure 1)− Tfus(solution)

• Using solute concentration in molality gives:

dTfus = −d(∆Tfus) =
RT 2

∆H
◦
fus

dx1

x1

=
RT 2

∆H
◦
fus

1

x1

(
dx1

dm2

)
dm2

• For a solution with 1 kg of solvent:

n1 =
1000

M1
;n2 = m2



and

x1 =
n1

n1 + n2
=

1

1 + M1m2

1000

• Therefore
1

x1

(
dx1

dm2

)
= −M1x1

1000

and
d(∆Tfus)

dm2
=

M1RT
2
fusx1

1000∆H
◦
fus(pure solvent)

• For a dilute solution x1
∼= 1 and Tfus ∼= T ◦fus, then:

d(∆Tfus)

dm2
=

M1RT
2
fus

1000∆H
◦
fus

= Kf

where m2 is the molality of the solute particles.

• For small m2

∆Tfus ∼=
d(∆Tfus)

dm2
m2 = Kfm2

• Similarly, it can be shown that the ebulliscopic constant may be derived:

∆Tvap =

(
M1RT

2
vap

1000∆H
◦
vap

)
m2 = Kbm2

Osmotic Pressure

• Consider the situation where the chemical potential of the solvent in a solution is less than the chemical
potential of pure solvent.

µ1(solution) < µ(pure liquid solvent)

• Consider an experimental setup consisting of two compartments.

• Compartment A contains the pure solvent in equilibrium with its vapour.

• Compartment B contains the solution in equilibrium with the vapour of the pure solvent.

• The two compartments are separated by a barrier, the lower portion of which is a semipermeable
membrane that is permeable only to the solvent.

• The system is allowed to reach equilibrium.

• The semipermeable membrane is invisible to the solvent.

• The semipermeable membrane confines the solute.

• Solvent molecules move through the membrane until the chemical potential of the solvent match on
both sides of the membrane.

• This means that solvent molecules move into the solution and the level of the solution rises higher than
that of the pure solvent.

• This means that there is a pressure imbalance of the liquid on both sides of the membrane.

PB > PA



This is the pressure of the liquid phase, which is affected by the column of liquid above it.

• At any point of the membrane, the chemical potential is the same on both sides.

µ(pure 1, PA) = µ1(x1, PB)

• Osmotic pressure, Π, is defined as:

Π = solution pressure− solvent pressure = PB − PA
Thus:

µ(pure 1, PA) = µi(xi, PA + Π)

= µ(pure 1, PA + Π) +RT lnx1

= µ(pure 1, PA) +

∫ PA+Π

PA

V (pure 1)dP +RT lnx1

and

−RT ln x1 =

∫ PA+Π

PA

V (pure 1)dP

If the osmotic pressure Π is small then the molar volume, V may be assumed to be constant, yielding:

− lnx1 =
ΠV

RT

• If the solution is dilute then x1, the mole fraction of the solvent, is close to 1. Therefore:

− lnx1 = ln

(
1

x1

)
= ln

(
n1 + n2

n1

)
= ln

(
1 +

n2

n1

)

• This may be expanded in a power series of the form:

ln (1 + x) = x− 1

2
x2 +

1

3
x3 + · · ·

where x = n2/n1 and n2 < n1 (which is true for solute 2 dilute in solvent 1).

• For a dilute solution, the power series may be truncated after one term giving:

− lnx1 =
ΠV

RT
∼= n2

n1

• Since V n1
∼= V , the equation becomes:

ΠV = n2RT

which is the van’t Hoof equation.

• Although the van’t Hoof equation is similar in form to the ideal gas law, it arises from very different
assumptions.

• Since osmotic pressure Π depends on the the number of solute particles rather than the identity of the
solute.

• Can be used to determine molar mass of biomolecules.

• Cell walls are semipermeable membranes.



• Intravenous solutions need to be “isotonic” which means that they have the same chemical potential
for water on both sides of the membrane.

Phase Diagrams

• Consider an experiment to determine the temperature of a phase transition for a pure compound at
some P .

• Need sample of pure substance

• Need an energy source that provides or removes energy at a constant rate. Thus, the elapsed time
is proportional to the heat transferred.

• Phase transition occurs while heat is delivered but no temperature change occurs.

• Consider the definition of heat capacity:

CP −
dqP
dT

where
dH = dqP

• It can be shown that:
dT

dt
=
dqP
dt

1

CP (T )
=
dH

dt

1

CP (T )

• Thus a slope of a temperature versus time curve is 1/CP

• dH/dt is a constant.

• Consider a cooling curve shown in Fig. 6.22.

• Liquid cools to the freezing point with slope 1/CP (l)

• Temperature plateaus at the freezing temperature. Heat transferred during this time is the enthalpy
of the phase transition.


