Phase Equilibria, Mixtures, and Solutions
e Properties of phase transitions
e Abrupt changes in physical properties under very specific conditions of P and T'.
e Not satisfactorily explained until the 20th century.

e Prior to that, there were many erroneous theories.

Why do phase transitions occur?
e Phase transitions are spontaneous processes.
e A spontaneous process occurs when it is possible to lower the chemical potential.
e But thermodynamics tells us nothing about when or how quickly a spontaneous process occurs.

e Thus is it possible to find substances in unstable, metastable, states.
e Supercooled
e Superheated
e Supersaturated

e Metastable states are important in metallurgy and material science.

Properties of Phases of Matter

e Thermodynamic properties may be found for any phase, regardless of whether it is thermodynamically
stable at that 7" and P.
e Extrapolate from observations in the absence of an established equation of state.
e The van der Waals equation of state can describe the properties of a gas and of a liquid.
e Properties of any phase can be described through fugacity.

w(P,T) = p°(1 bar,T) + RT In (P?f>

or

w(P,T) — p°(1 bar,T) = RTIn P+ RT In®

e Since we wish to connect this with the van der Waals equation, subtract RT In(a/b?) from both

sides: a
w(P,T) — [u" + RTIn (b—2)}
=RTInP+ RTIn® — RT In(a/b?)
2
= RTIn <&> + RTIn®
a
Ap = RT1n P®
e Thus: A
ol >
T = In PO

e Now examine Ayp/RT for three van der Waals isotherms:
e Above the critical temperature
e At the critical temperature
e Below the critical temperature

e Below the critical temperature, coexistence of liquid and vapour are possible.



e Coexistence shows up in Figure 6.1 (c) as an intersection of two curves.
e The stable phase is the one with the lower chemical potential.
e How does chemical potential relate to a van der Waals isotherm in PV space?

e Note unphysical region characterized by a negative isothermal bulk compressibility:
1 oV
k= —— | =—
V\OP /),

e Note also that there are regions with more than one value of V for a given value of P.

e While a phase transition is occurring, the isothermal bulk compressibility is infinite since a large volume
change is occurring at constant pressure.

e For the van der Waals gas, the coexistence line is constructed such that the area above and below the
line are equal.

Vi
PalVi= V) = [ P(V)av

e Integrating by parts (PdV = d(PV) — VdP) gives:

Vi

PuVi = Vo) = [ ld(PV) - vap)
Ve
- Rl — Vi) - | My (pyar
P(Ve)

e Thus

Some facts about phase transitions

e A spontaneous phase transition is possible when the chemical potential of an existing phase exceeds
that of another phase.

e If two phases have equal chemical potential, then they may coexist in any proportion.

Phase Transitions on Isobars
e Consider a pure substance at constant pressure of 1 atm.

e Assume that the substance has
e One solid phase
e A single liquid phase
e Gas phase

e Start with the substance in a solid phase and raise the temperature.
e Fusion occurs at normal melting point.

e Liquid becomes warmer.

e Vaporization occurs at normal boiling point.

e Vapour is warmed.

e This process for Zn is illustrated in Figure 6.4 as a function of u and T.



Behaviour of Chemical Potential
in Phase Transitions

e Consider a plot of chemical potential against temperature.

e Vertical axis is the chemical potential relative to that at 300 K.
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e Therefore the slope of each section of the graph corresponds to the molar entropy of that phase.

e Note that the slope becomes steeper as the system moves from solid to liquid to gas phase.
e Changes in slope mean changes in entropy.

(7)), 7

e Therefore the slope (in Figure 6.4) gives information the heat capacity for each phase.

e Recall that:

e Recall that:

e If the heat capacity is not a constant, then the pu vs T plot will be curved.

Construction of Phase Diagrams
e Phase diagrams are constructed in (P,T') space because they are the natural variables for G.

e Consider the phase diagram for the van der Waals gas.

Only liquid and/or vapour are possible.

e Only one phase can exist in any “area” of the diagram.

Above the critical point, the van der Waals gas can be described as being in a “fluid” state.

Phases are separated by a liquid-vapour coexistence curve. This means that P and T are constrained
by coexistence.

The Triple Point

e For a pure substance that can exist as a solid, a liquid, and a gas, there is one unique (P,T) for the

triple point.
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e Since V(g) >> V(1) ~ V(s), the chemical potential of a gas is very sensitive to pressure relative
to that of a condensed phase.

e Recall that:

e Reconsider figure 6.1: the slopes of the curves are proportional to the volume.

e A plot of u(T) against P will be steeper for a gas than for a condensed phase.

The Triple Point

e There exists some pressure P for which the p(7T') curves for gas, liquid, and solid intersect in a point.
This point is the triple point.

e Consider a pressure below the triple point
e The u(T) curve for the liquid phase will be above either the gas or the solid curve.

e Therefore the liquid phase will not be stable, either by itself or in coexistence with another phase.



e Therefore sublimation is the only phase transition possible
e Solids at pressures below the triple point pressure have vapour pressure.

e Since it is possible for substances to have more than one solid phase, it is possible for any three phases
to have a triple point, if each pair can coexist at some (T, P).

Coexistence Lines

e Consider two phases in equilibrium:

O (T, P) = ©4(T, P)
e Consider the infinitesimal change in chemical potential of each phase:
w (T +dT,P+dP) = u (T, P)+ duy
po(T +dT, P+ dP) = ux(T, P) + dus

Since the system is at equilibrium before and after the infinitesimal change, it can be shown that:

dpy = dus
e But
du=—-5dT'+VdP
e Therefore: B o B .
—S1dT +V1dP = —SodT + VodP
(S5 — S1)dT = (Vs — V1)dP
e Defining

A§q> = gg — gl
AV@ = Vg — Vl

Gives the slope of a two phase coexistence line on a phase diagram as:

(&), - ()
dl' )5 \AVs
This is the Clapeyron Equation

e Substituting AHg = TASg gives: o
(), = (7a7s)
AT )y  \TAVs

e Everything in this equation is a state function or a state variable and therefore is independent of the
path chosen for the phase transition.

e The coexistence curve between gas and liquid ends in a critical point.

e The properties of liquid and gas are indistinguishable at the critical point. Therefore

AVg =0

e But (dP/dT’) is not observed to be infinite.

e This is possible if only ASs approaches zero more quickly than AV g



Is this true for the van der Waals gas?

P:_R—T—_%
V—-b Vv
e Therefore:
(i), -7~ ()
dT' )y V—b \dV /),
e and _
V-0
ASg <ng)
=In|=
R Vi—=b
ASy Vy — 1
=In|[ =
R 1 —1

which approaches zero faster than AVg as illustrated in Fig 6.9.

Using the Clapeyron Equation

dP\ ([ AHs
dT' )5 \TAVg
Use AVg =V, —V; and find V = V(T P) using the equation of state for each phase.

Use AHg = Hy — Hy and find H = H(T, P) using (0H/OP)r =V — T(0V/OT)p and the equation of
state for each phase.

Starting with

and integrate:

Ty Ty H Py
/ (E) dl' = / ( AIEI) ) dTl' = / dP
. \dT /g . \TAVg P,

e This integration is nontrivial for most equations of state.
But what if one phase is an ideal gas?
Vapour-Liquid Coexistence and
Vapour-Solid Coexistence
Consider a gas far enough from the critical point that V', >> V(condensed phase) is a valid statement.

Therefore

AVy =V,

Thus the Clapeyron Equation becomes:

<d_P> _ AHs _ AHy AHeP
dT )y  TeAVe TsV,  RT:

which can be integrated if AHg is assumed constant:

[0 AT [
p P R [y, T2
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Coexistence of Condensed Phases

Consider Solid-Liquid (fusion) and Solid-Solid Coexistence
e Cannot assume that the volume of one phase is significantly greater than the other.
e Cannot assume an equation of state that is as convenient to work with as is that of the ideal gas.

Solid-Liquid Coexistence

dP\ _ AS
dT ) o AVe

Assume that AV is constant since both phases have low compressibility.

Start with the Clapeyron equation:

Assume that ASg is constant since the change in molecular order that occurs with fusion is not strongly
dependent on T and P.

These two assumptions imply that the coexistence line is a straight line.

Other treatments are semiempirical, such as that of Simon and Glatzel:

P (T “ 1

P, \Tp
where a and P, are determined empirically for the substance of interest and Ty is a reference temperature
(usually near the critical temperature).

(), = (722) (%)
dT ) ;s \Trus To

AFfus _ (POa) (Tfus)a
TfusAVfus B TfUS TO

e Differentiation gives:

which can be interpreted as

T a

(i.e.) the temperature of fusion corrected by an empirical factor.

Solid-Solid Coexistence
e Coexistence lines are usually observed to be straight.

e Sometimes nearly vertical which means that there is an entropy change with a negligible volume
change.

e Sometimes nearly horizontal which means that there is a volume change associations with a negli-
gible entropy change.

Thermodynamics of Phase Transitions



e For equilibrium between gas and a condensed phase, it can be shown:

d(ATs)

a ACra

e For vaporization

Aapcp = Up(g) *GP(Z) <0
since C'p(l) > Cp(g) and AH .4, decreases as T' increases.

e Trouton’s rule applies to vaporization and sublimation of simple condensed phase (weak intermolecular
forces, no H bonds, nonpolar):
AS,,, = 105R

)

AS. . ~11.5R

sub —
e Based on the observation of near constant entropy of vaporization or sublimation at pressure of 1
atm.

e Hildebrandt’s Rule is based on observations of entropy of vaporization at a constant vapour density of
22.414 L mol~!:
ASop E111R

e Guggenheim’s Rule is based on observation of entropy of vaporization at 1/50th of P;

AS,,, = 9.0R

e Any of these rules may be used to estimate the vapour pressure by replacing Aﬁmp with T, 5apA§zap
in the integrated Clapeyron equation.
Composition Variables in Mixtures
e Consider a closed system in two-phase equilibrium
e Below Ty all in one phase
e Above Ty all in other phase
e But how much is in each phase at Tg?

e Define mole fraction:
n(i)  amount in phase i

n  total amount
e Mole fractions must add up to 1:
Z z(i) =1

all phases

e Define molar volume of the system:

e But for two phase equilibrium:



which can be rearranged to: o _ _
)V =V@)] =2V (1) -V]

This is the Lever Rule

Isolating the mole fractions yields:

z(1) = VV — Vi?)
0 -7e)
“0) = v

Some points about notation:
e One component system: x(®) is the mole fraction in phase ®

e Multicomponent system: z;(®) is the mole fraction of compound ¢ in phase ®.

Solutions and Mixtures
A solution has atoms randomly dispersed throughout the phase at microscopic level and is homogeneous.
e Solutions may be solid or liquid

A mixture has macroscopic regions of the pure constituents and is inhomogeneous.

The Ideal Mixture

The ideal mixture consists of non-interacting components such as ideal gases that differ only mass.
Example: a mixture of isotopes of a rare gas 83Kr and 34Kr

e Initially separated in two containers of equal volume.

e The two containers are joined by a valve.

e Adiabatically isolated.

e Same T and P.

e Valve opened and mixing occurs.

e Equilibrium is recognized by equal amounts of each isotope in each container. T and P are un-
changed.

e Spontaneous change, therefore G has decreased.

At any point in the process:
G(total) = ping + pans

where
pi = pi + RTIn f;

Since Kr behaves nearly ideally, f; may be replaced with P;, the partial pressure of component i.
Therefore:
P=P+ P

which is known as Dalton’s Law.
But, we know pressures are intensive, not extensive.

Partial pressure can be defined as:

P; = x; P = partial pressure of component i.



This is valid if there are no strong interactions between molecules.

Partial Pressure and Thermodynamics
V' is one of the natural variables of U and A.

—P is the conjugate variable of V. Therefore:
oUN  _(9Ay  _ p
OV )sn oV ),

e Neither of these definitions rely on a particular equation of state.

Consider A (since it is easier to control T' than S) at constant T and P:

A 7

Assume that composition is constant (no chemical reactions, system closed) then:

0A 0A;
)T,n

OA;
P =—x;
xn(aV)T,n

Can partial pressure be measured?

P = —zi:xm (g@

and

Consider an apparatus with two compartments separated by a fixed, rigid semipermeable membrane.
e Hs on one side and Hy and N5 on the other side.
e The membrane(Pd foil) is perfectly permeable to Hy
e The membrane(Pd foil) is perfectly impermeable to N

At equlibrium, the chemical potential of Hy is the same on both sides of the membrane and the pressures
are different on both sides.

This method is accessible to very few combinations of membranes and gases.
Mixing
Consider the change in an extensive quantity such as G, V, S, etc. that accompanies mixing.

Using G as an example:
Aszz == G(Il,xg, .. )

— Z G(pure, isolated species )

2
where G(z1,x2,...) is:

G(x1,x9,...) = anzuz(zi)



= anZ(uf +RTInF)

Assume T, P, and n to be constant.

e For each pure component i:

G(pure i) = n;u;(z; = 1) = n;y(u; + RT In P)

e Therefore:
AGpmiz =nY_i(u; + RTIn ;)

3

-n Z z;(p; + RT In P)

But P, = x;P. Therefore
AGpiz =nY_zi(u; + RT'In P + RT Inx;)

3

-n Z z;(p; + RT In P)

AG i = nRT Z xz; Inx;

(2
e For a two component system where xo = 1 — 1, this becomes:

BT =z lnzy + (1 —21)In(l — 1)

e Since ASpiz = —(0AG iz /OT).,
ASpmiz =—nRY z;Inz;

e Similarly
AViiz = (OAGi5/OP)z, =0

AAmix = AUmzm - TAszx = Aszx

e Spontaneous ideal mixing is accompanied by:
e An increase in entropy
e A decrease in Gibbs free energy
e A decrease in Helmholtz free energy

e No change in enthalpy or internal energy

Nonideal Mixing

e Use fugacity to describe nonideal behaviour.



e Define partial fugacity using Lewis-Randall Rule
fi=xif

where f is the fugacity of pure ¢ at the T" and P of the solution.

e Thus the chemical potential of component i becomes:

wi(Tyx;) = p°(pure 4, T)+ RTIn f + RT Inz;
e Implicit in this is the assumption that the solution obeys Amagat’s Law:

V= ZmV(pure i)

This is reasonable for gases, but must be examined carefully for condensed phases.

e Consider the fugacity of pure condensed phase:

rn(f) - [ 5o

o If there is a phase transition between 0 and P then the integral should be considered as two term, one
from 0 and Pg, the other from Pg to P:

f /Hp — RT
RTIn( = | = V——|dP
dORV NS
P
+ / (V - E) dP
Pg P
e Expanding the last integral into two terms:
I\ fa
RTln<P = RTIn Pa
P

— P
+ V(condensed phase)dP — RT In (—)
Pg Po

e Assuming that the volume of the condensed phase is constant over the interval under consideration:

P

V (condensed phase)dP = V(P — Ps)
Pg

e Thus: s s
RTIn <F> = RTIn <F‘b> + V(P — Pyp)
or _
V(P - P
J = foexp {7( T q))]

which may be rewritten as:

r= o (42 ) oxp [0 L]



Excess Functions

Excess functions describe deviations from ideal behaviour.

Consider excess free energy:

G¥ = G(real : T, P,z;) — G(ideal : T, P, z;)

e If GF > 0 then deviations from ideality are positive.

o If G¥ < 0 then deviations from ideality are negative.

A reference or standard state must be considered and f is defined with respect to that.
e G. N. Lewis defined activity a; as:

fz(T, P,Z'l,ZL'Q, .. )
[T, Po,x°)

ai(TaPa'TlazQV' ) =

If all species are referred to the same standard state, then the equilibrium requirement of equal fugacity
in any component can be replaced by a requirement of equal activity.

The activity coeflicient is defined as:
a;
Yi = —
L
Therefore:
fz(Ta P’ ‘T) = fq,o(Tv Pov'ro)ai(Tv P7 l’) = fioryizi

Ideal Solution

Fugacity is directly proportional to mole fraction.

fi(ideal; T, P, z;) = Ky(T, P)x;

e The definition of K; depends on the type of ideal solution.

Consider excess free energy:
6Z-E = G(real) — G (ideal)

= p;(real) — p;(ideal)
= p7(real) + RT In f;(real)
—p5 (ideal) — RT In f;(ideal)

fi(real)
=RTIn-——+
1, (ideal)
since pf (real) = p? (ideal)
e Thus |
G’ =RTIn fi(real)
g

e For an ideal solution K; = f7 and v; =1
e The activity coefficient is defined by:

fi(real or ideal)
fLa

~vi(real or ideal) =



and .
@ = RT In~;

3

GF = ZRZEZE = nRTin In ~;

G’ =RTh

Thus

Phase Separation and Spontaneous Unmixing
(The physical chemistry of salad dressing)
e Separation of a one-phase liquid solution into two phases observed
e Extraction
e Salad Dressing
e Lava Lamps

e Often occurs as a result of a change in composition or temperature.

e Consider pure liquid of each component at standard 7" and P
P°=P

x° = pure compound 7

e Consider only a binary solution (x + 2o = 1)
e GE goes to zero as x1 or xa goes to zero.

e The simplest empirical function that satisfies this is:
GF = nAzizs

Invy = =152

RT

where A is empirically determined.
o What affects the value of A:
e Temperature
e Chemical nature of components 1 and 2 and their interaction.
e NOT the composition

e Since A contains information about non-ideal behaviour, it must be related to the activity of each
component.

e Recall that: s
GF = Z”iGz‘ = nRTZ:ci In ~;

Therefore:
nRTZ zilnvy; = GF = nAzz,

nRT (x1Inv; + 2 Invys) = ndAxi2

A
nRT(x1Iny; + 22 Invye) = nRTﬁxlxg(ml + x9)



A

A
= nRT(x1——12° + 29 ——11?)

RT RT
Thus:
Iy = —=x0°
ny RT.TQ
Invyy = ﬁ:ﬁ?

e Spontaneous separation can occur only if it results in the lowering of the free energy at constant 7" and
P.

e But phase separation implies a decrease in entropy.

e Therefore a decrease in enthalpy is implied.
e Consider excess free energy.

G(real = GF + G(ideal)

=GP + Z n; i (ideal)

=G+ ni(u + RTn f;)
= G”+nY (yi + RTn ;)
=G +n) wi(ui + RTIn f7)

+nRT Z x; In ;)

=GF 4+ ani,ui(pure i)

+nRT Z x; Inx;)
Therefore: o
G(real) = Axix9 + x1p1(pure) + zouz(pure)
+RT(x1Inx; + 2 Inxs)
e Recall

AG iz (real) = GF + AG iz (ideal)

rr ~ mrro(o o)

+rilnzy + (1 —z1) In(1 —21)

e The larger the value of A/RT the more immiscible the mixture.

e For A/RT > 2, there exists a value for which AG,,;, has a local maximum and two values which are
local minima, i.e. there exists a range of x; such that

P2AG miz
- <0
02 T,Pn



e The solution will spontaneously separate into two layers, each with composition corresponding to
that of one of the local minima.

e The amount in each liquid phase will be determined by the lever rule.

For A/RT < 2, there is one stable homogeneous phase.

When A/RT =2, the solution is at the critical solution temperature (or the consolute temperature).

e Critical point for the mixture where the two phases are indistinguishable.

Activity in the Nonideal Solution

Recall that
ap = 711

and that

Invy, = —z22

RT
Therefore

A
Ina; =Invy; +Inz; = ﬁ(l — 1) +1nx

For A/RT < 2, a; is a monotonic function of z1, but for A/RT > 2 the region of immiscibility
corresponds to physical separation of the solvent mixture.

Colligative Properties
Vapour pressure over solutions
e Henry’s Law
Freezing point depression

Boiling point elevation

Vapour Pressure over Solutions
Consider a solution of two volatile components in equilibrium with the gas phase.
e z; is the mole fraction of component ¢ in the liquid phase.
e y; is the mole fraction of component 7 in the gas phase.
For an ideal solution
K; = f(i)
where f(i) is the fugacity of pure i at the temperature of the solution and the vapour pressure of i.

Assume that the system is sufficiently ideal that fugacity may be replaced by pressure.

e Thus

where P; is the partial pressure of i above the solution, P(7) is the vapour pressure of pure liquid ¢
and x; is the mole fraction of ¢ in the liquid solution.

This is Raoult’s Law

The total pressure is a function of the solution composition. For a two component solution:

P(CI)l)ZPl—l—PQ:P(1)$1+P(2)1‘2



=Pz, + P2)(1 —z1)
= P(2)+ [P(1) — P(2)]z1

But, what is the composition of the gas phase?

From definition of partial pressure:

Therefore,

and the total pressure P becomes:

P(1)P(2)
P(1)+[P(2) = P(1)]n

Plri(y1)] = P(y1) =

as a function of gas phase composition.
Raoult’s Law is not followed by all solutions at all compositions, but tends to work better when one
component is in considerable excess.
Henry’s Law and the Ideal Dilute Solution
The ideal dilute solution consists of:
e A solvent (the compound in excess)
e A solute (the minor compound)

For an ideal dilute solution of solute 2 in solvent 1, Raoult’s law gives:
Py =Ky j12o

which is also known as Henry’s Law.

e The Henry’s Law coefficient K> 1 is specific to that solute in that solvent and may be interpreted
as the hypothetical vapour pressure of the pure solute.

e Ky is often larger than the actual vapour pressure of the pure solute.

Recalling the definition of chemical potential:
pi = pi + RTIn f;

and assuming that
fi = Py = Ksorv,i®;

gives
wi(ideal) = p? (ideal) + RT In K; + RT In x;

where the first two terms can be considered the definition of a new reference state.
Often concentrations expressed in terms of other than mole fraction are more convenient.
e For example mole fraction can be related to molality by:

(107 kg gTHYM my
T Iy (103kgg )M m




where M is the molar mass of solvent in g mol~! and m; the molality of i.

e If the solution is infinitely dilute, this becomes:

x; = (1073 kg g~ )M m;

w; = (1073 kg g~ )M m° (m)

mO

e Thus the chemical potential becomes:
wi(ideal) = p? (ideal) + RT In K;
+RTIn(1072 kg g~ ' M m®)

+RTIn (:Z)

[e]

where the first three terms can be taken as a reference state.

Azeotropes
e A solution of azeotropic composition boils unchanged.
e Consider a mixture of two liquids with the following properties:

e Equal vapour pressures of pure liquids.

P(1) = P(2) = P°

e Equal Henry’s Law coefficients

K
K1,2=K2,1=K;ﬁ=2

e Partial pressure composition relation

P, = Kz; + (P° — K)x?

K2

e This system

e Has two regions of two phase behaviour.

e Boils at a single pressure when x = .5

What is wrong with this hypothetical system?

e If one component follows Raoult’s Law, the other must follow Henry’s Law.
e For a binary system at equilibrium at constant T" and P

e dG(total) =0

e dni =dns =0

nldul + ngd‘LLQ =0

e From the definition of chemical potential for each component:

- <81Hf1> — <8lnf2>
! Oxq TP ? Oy TP




e If component 1 follows Henry’s Law, f; = Kx1, then:
(%), - () G2)
91 ) pp fr) N0z ) rp
_ g o (ﬁ) _1
1 J1 \ 7

22 [ f2 -
ﬁ(a)‘l

[

e Similarly:

which can be rearranged to:

o=1 X2 N fo f2
or
Inze =1In (é)
I3
or
f2= fsx2

which is Raoult’s Law.

e Now reconsider the hypothetical equation:

P, = Kzy + (P° — K)a?

e For small z1, P, =2 Kx;

e For large w1, Py & P°z?, which is not Raoult’s Law!

Freezing Point Depression and Boiling Point Elevation

e Assume

e Solute 2 is not volatile.

e Solvent 1 is volatile.

e The solute does not dissolve in solid solvent.

e Therefore gas phase and solid phase are pure solvent.
e The effect of adding the solute is to increase the boiling point and lower the freezing point.
e Consider first the freezing point:

e Pure frozen solvent is in equilibrium with the solution:

w1 (Tus, Pyx1) = p(Tyus, P, pure solid 1)

e Assuming the solution is ideal:

Ml(Tfus; P; 1'1) = ,LLT + RTfus In flozl

e But:
py + RTpys In f7 = p(pure liquid 1)



and
Aa;us = p(pure liquid) — p(pure solid)
(AG}, # 0if T # T7,,)

e Differentiating gives:

(3lnx1) 1
81‘1 T,P X1

1
R

O(AGY,,/T)
or P

or
81'1 P

Trus
e But from the definition of G,

(), (), (),

oT
o(G/T) . E
oT P T2
e Therefore

1 Aﬁ;us(pure L Tpus <T}ys)
T RT2

ar
81'1 P

e Isolating the variables and integrating:

/;m ﬁ :/Tfus AHfU5dT
1 X1 Tf RT2

o
us

yields (assuming Aﬁ;us is a constant):

: AHg,, [ 1 1
nry = 5 —
R \Tp, Trus

e Defining freezing point depression as:

ATpys = T, s(pure 1) — Ty, s(solution)

e Using solute concentration in molality gives:

RT? d
deus = _d(ATfus) = Toﬂ
AHfus T

RT? 1 ( dz >
= —o - dm?
AHg,, 71 dms

1000
ng=——;Ng=m
1 My 2 2

e For a solution with 1 kg of solvent:



and

ni1 1
T = =
Ponitng 14 M
Therefore
1 dry _ Myn
zy \dmy/ 1000
and )
d(ATpus) M\ RT7, s
dms 1000Aﬁ;u5(pure solvent)

For a dilute solution x1 = 1 and T'fys = T}’us, then:

d(ATfus) . MlRT)%us

— e ¢
dmy 1000AH 4, d
where mo is the molality of the solute particles.
e For small mo
d(ATyys)
ATfys 2 ————mg =K
f de 2 Fme

Similarly, it can be shown that the ebulliscopic constant may be derived:

2
AT’vap = % ma = Kbm2
1000AH,,,

Osmotic Pressure

Consider the situation where the chemical potential of the solvent in a solution is less than the chemical
potential of pure solvent.
1 (solution) < p(pure liquid solvent)
Consider an experimental setup consisting of two compartments.
e Compartment A contains the pure solvent in equilibrium with its vapour.
e Compartment B contains the solution in equilibrium with the vapour of the pure solvent.

e The two compartments are separated by a barrier, the lower portion of which is a semipermeable
membrane that is permeable only to the solvent.

The system is allowed to reach equilibrium.
e The semipermeable membrane is invisible to the solvent.
e The semipermeable membrane confines the solute.

Solvent molecules move through the membrane until the chemical potential of the solvent match on
both sides of the membrane.

This means that solvent molecules move into the solution and the level of the solution rises higher than
that of the pure solvent.

e This means that there is a pressure imbalance of the liquid on both sides of the membrane.

PB>PA



This is the pressure of the liquid phase, which is affected by the column of liquid above it.

e At any point of the membrane, the chemical potential is the same on both sides.
p(pure 1, Pa) = 1 (1, Pp)
e Osmotic pressure, 11, is defined as:

II = solution pressure — solvent pressure = Pg — Py

Thus:
p(pure 1, Pa) = pi(xi, Pa + 1)
= pu(pure 1, P4 + 1I) + RT In a4
PA+H_
= u(pure 1, Py) +/ V(pure 1)dP + RT Inz;
Py
and

PA+H_
—RTInxz; :/ V(pure 1)dP

Pa
If the osmotic pressure II is small then the molar volume, V' may be assumed to be constant, yielding:
nv
RT

—1nl‘1 =

e If the solution is dilute then z1, the mole fraction of the solvent, is close to 1. Therefore:

1
—Inz; =In (—) =In (m —|—n2) =1In (1+ @)
T ni ni

e This may be expanded in a power series of the form:

1 1
ln(1+m):x—§x2+§x3+---

where = ny/n1 and ne < ny (which is true for solute 2 dilute in solvent 1).

e For a dilute solution, the power series may be truncated after one term giving:

1 HV ~ N2
—Ingpy = —2~—
Y"RT T m
e Since Vn; = V, the equation becomes:
IV = nyRT

which is the van’t Hoof equation.

e Although the van’t Hoof equation is similar in form to the ideal gas law, it arises from very different
assumptions.

e Since osmotic pressure IT depends on the the number of solute particles rather than the identity of the
solute.

e Can be used to determine molar mass of biomolecules.

e Cell walls are semipermeable membranes.



e Intravenous solutions need to be “isotonic” which means that they have the same chemical potential
for water on both sides of the membrane.

Phase Diagrams
Consider an experiment to determine the temperature of a phase transition for a pure compound at
some P.

e Need sample of pure substance

e Need an energy source that provides or removes energy at a constant rate. Thus, the elapsed time
is proportional to the heat transferred.

e Phase transition occurs while heat is delivered but no temperature change occurs.

Consider the definition of heat capacity:

dgp
Cp — 22
Par
where
dH = qu
It can be shown that:
dl'  dqp 1 dH 1

dt — dt Cp(T)  dt Cp(T)

e Thus a slope of a temperature versus time curve is 1/Cp

e dH/dt is a constant.

Consider a cooling curve shown in Fig. 6.22.
e Liquid cools to the freezing point with slope 1/Cp(1)

e Temperature plateaus at the freezing temperature. Heat transferred during this time is the enthalpy
of the phase transition.



