
Phase Equilibria, Mixtures, and Solutions

• Properties of phase transitions

• Abrupt changes in physical properties un-
der very specific conditions of P and T .

• Not satisfactorily explained until the 20th cen-
tury.

• Prior to that, there were many erroneous
theories.

Why do phase transitions occur?

• Phase transitions are spontaneous processes.

• A spontaneous process occurs when it is
possible to lower the chemical potential.

• But thermodynamics tells us nothing
about when or how quickly a spontaneous pro-
cess occurs.

• Thus is it possible to find substances in unsta-
ble, metastable, states.
• Supercooled
• Superheated
• Supersaturated

• Metastable states are important in metallurgy
and material science.



Properties of Phases of Matter

• Thermodynamic properties may be found for
any phase, regardless of whether it is thermo-
dynamically stable at that T and P .
• Extrapolate from observations in the ab-

sence of an established equation of state.
• The van der Waals equation of state can

describe the properties of a gas and of a
liquid.

• Properties of any phase can be described
through fugacity.

µ(P, T ) = µ◦(1 bar, T ) +RT ln

(
Pf

P

)

or

µ(P, T )− µ◦(1 bar, T ) = RT lnP +RT ln Φ

• Since we wish to connect this with the van
der Waals equation, subtract RT ln(a/b2)
from both sides:

µ(P, T )−
[
µ◦ +RT ln

( a
b2

)]

= RT lnP +RT ln Φ−RT ln(a/b2)

= RT ln

(
Pb2

a

)
+RT ln Φ

∆µ = RT ln P̃Φ



• Thus:
∆µ

RT
= ln P̃Φ

• Now examine ∆µ/RT for three van der Waals
isotherms:

• Above the critical temperature

• At the critical temperature

• Below the critical temperature

• Below the critical temperature, coexistence of
liquid and vapour are possible.

• Coexistence shows up in Figure 6.1 (c) as
an intersection of two curves.

• The stable phase is the one with the lower
chemical potential.

• How does chemical potential relate to a van der
Waals isotherm in P̃ Ṽ space?

• Note unphysical region characterized by a
negative isothermal bulk compressibility:

κ ≡ − 1

V

(
∂V

∂P

)

T

• Note also that there are regions with more
than one value of V for a given value of P .



• While a phase transition is occurring, the
isothermal bulk compressibility is infinite since
a large volume change is occurring at constant
pressure.

• For the van der Waals gas, the coexistence line is
constructed such that the area above and below
the line are equal.

PΦ(Vb − Ve) =

∫ Vb

Ve

P (V )dV

• Integrating by parts (PdV = d(PV ) − V dP )
gives:

PΦ(Vb − Ve) =

∫ Vb

Ve

[d(PV )− V dP ]

= PΦ(Vb − Ve)−
∫ P (Vb)

P (Ve)

V (P )dP

• Thus ∫ P (Vb)

P (Ve)

V (P )dP = 0



Some facts about phase transitions

• A spontaneous phase transition is possible when
the chemical potential of an existing phase ex-
ceeds that of another phase.

• If two phases have equal chemical potential,
then they may coexist in any proportion.

Phase Transitions on Isobars

• Consider a pure substance at constant pressure
of 1 atm.

• Assume that the substance has
• One solid phase
• A single liquid phase
• Gas phase

• Start with the substance in a solid phase and
raise the temperature.

• Fusion occurs at normal melting point.

• Liquid becomes warmer.

• Vaporization occurs at normal boiling point.

• Vapour is warmed.

• This process for Zn is illustrated in Figure 6.4
as a function of µ and T .



Behaviour of Chemical Potential
in Phase Transitions

• Consider a plot of chemical potential against
temperature.

• Vertical axis is the chemical potential rela-
tive to that at 300 K.

• Recall that: (
∂µ

∂T

)

P

= −S

• Therefore the slope of each section of the
graph corresponds to the molar entropy of
that phase.
• Note that the slope becomes steeper as the

system moves from solid to liquid to gas
phase.
• Changes in slope mean changes in entropy.

• Recall that:(
∂2µ

∂T 2

)

P

= −
(
∂S

∂T

)

P

= −CP (T )

T

• Therefore the slope (in Figure 6.4) gives in-
formation the heat capacity for each phase.

• If the heat capacity is not a constant, then
the µ vs T plot will be curved.



Construction of Phase Diagrams

• Phase diagrams are constructed in (P, T ) space
because they are the natural variables for G.

• Consider the phase diagram for the van der
Waals gas.

• Only liquid and/or vapour are possible.

• Only one phase can exist in any “area” of
the diagram.

• Above the critical point, the van der Waals
gas can be described as being in a “fluid”
state.

• Phases are separated by a liquid-vapour co-
existence curve. This means that P and T
are constrained by coexistence.

The Triple Point

• For a pure substance that can exist as a solid, a
liquid, and a gas, there is one unique (P, T ) for
the triple point.

• Recall that: (
∂µ

∂P

)

T

= V



• Since V (g) >> V (l) ∼ V (s), the chemical
potential of a gas is very sensitive to pres-
sure relative to that of a condensed phase.

• Reconsider figure 6.1: the slopes of the
curves are proportional to the volume.

• A plot of µ(T ) against P will be steeper for
a gas than for a condensed phase.

The Triple Point

• There exists some pressure P for which the µ(T )
curves for gas, liquid, and solid intersect in a
point. This point is the triple point.

• Consider a pressure below the triple point

• The µ(T ) curve for the liquid phase will be
above either the gas or the solid curve.

• Therefore the liquid phase will not be sta-
ble, either by itself or in coexistence with
another phase.

• Therefore sublimation is the only phase
transition possible

• Solids at pressures below the triple point
pressure have vapour pressure.



• Since it is possible for substances to have more
than one solid phase, it is possible for any three
phases to have a triple point, if each pair can
coexist at some (T, P ).

Coexistence Lines

• Consider two phases in equilibrium:

Φ1(T, P ) ⇀↽ Φ2(T, P )

• Consider the infinitesimal change in chemical
potential of each phase:

µ1(T + dT, P + dP ) = µ1(T, P ) + dµ1

µ2(T + dT, P + dP ) = µ2(T, P ) + dµ2

• Since the system is at equilibrium before
and after the infinitesimal change, it can
be shown that:

dµ1 = dµ2

• But
dµ = −SdT + V dP

• Therefore:

−S1dT + V 1dP = −S2dT + V 2dP

(S2 − S1)dT = (V 2 − V 1)dP



• Defining
∆SΦ ≡ S2 − S1

∆V Φ ≡ V 2 − V 1

• Gives the slope of a two phase coexistence
line on a phase diagram as:

(
dP

dT

)

Φ

=

(
∆SΦ

∆V Φ

)

This is the Clapeyron Equation

• Substituting ∆HΦ = T∆SΦ gives:

(
dP

dT

)

Φ

=

(
∆HΦ

T∆V Φ

)

• Everything in this equation is a state function
or a state variable and therefore is independent
of the path chosen for the phase transition.

• The coexistence curve between gas and liquid
ends in a critical point.

• The properties of liquid and gas are indis-
tinguishable at the critical point. Therefore

∆V Φ = 0



• But (dP/dT )Φ is not observed to be infi-
nite.

• This is possible if only ∆SΦ approaches
zero more quickly than ∆V Φ

Is this true for the van der Waals gas?

P =
RT

V − b −
a

V
2

• Therefore:
(
dP

dT

)

V

=
R

V − b =

(
dS

dV

)

T

• and

dS =
RdV

V − b

∆SΦ

R
= ln

(
V 2 − b
V 1 − b

)

∆SΦ

R
= ln

(
Ṽ2 − 1

Ṽ1 − 1

)

which approaches zero faster than ∆V Φ as
illustrated in Fig 6.9.



Using the Clapeyron Equation

• Starting with

(
dP

dT

)

Φ

=

(
∆HΦ

T∆V Φ

)

• Use ∆V Φ ≡ V 2 − V 1 and find V = V (T, P )
using the equation of state for each phase.

• Use ∆HΦ ≡ H2 − H1 and find H = H(T, P )
using (∂H/∂P )T = V − T (∂V/∂T )P and the
equation of state for each phase.

• and integrate:

∫ Tf

Ti

(
dP

dT

)

Φ

dT =

∫ Tf

Ti

(
∆HΦ

T∆V Φ

)
dT =

∫ Pf

Pi

dP

• This integration is nontrivial for most equa-
tions of state.

• But what if one phase is an ideal gas?



Vapour-Liquid Coexistence and
Vapour-Solid Coexistence

• Consider a gas far enough from the critical point
that V g >> V (condensed phase) is a valid
statement.

• Therefore
∆V Φ = V g

• Thus the Clapeyron Equation becomes:

(
dP

dT

)

Φ

=
∆HΦ

TΦ∆V Φ

∼= ∆HΦ

TΦV g
=

∆HΦP

RT 2
φ

which can be integrated if ∆HΦ is assumed con-
stant: ∫ Pf

Pi

dP

P
∼= ∆HΦ

R

∫ Tf

Ti

dT

T 2

P (Tf ) = P (Ti) exp

[
−∆HΦ

R

(
1

Tf
− 1

Ti

)]



Coexistence of Condensed Phases

• Consider Solid-Liquid (fusion) and Solid-Solid
Coexistence

• Cannot assume that the volume of one
phase is significantly greater than the
other.

• Cannot assume an equation of state that is
as convenient to work with as is that of the
ideal gas.

Solid-Liquid Coexistence

• Start with the Clapeyron equation:

(
dP

dT

)

Φ

=
∆SΦ

∆VΦ

• Assume that ∆VΦ is constant since both phases
have low compressibility.

• Assume that ∆SΦ is constant since the change
in molecular order that occurs with fusion is not
strongly dependent on T and P .

• These two assumptions imply that the coexis-
tence line is a straight line.



• Other treatments are semiempirical, such as
that of Simon and Glatzel:

P

P0
=

(
T

T0

)a
− 1

where a and P0 are determined empirically for
the substance of interest and T0 is a reference
temperature (usually near the critical tempera-
ture).

• Differentiation gives:

(
dP

dT

)

fus

=

(
P0a

Tfus

)(
Tfus
T0

)a

∆Hfus

Tfus∆V fus
=

(
P0a

Tfus

)(
Tfus
T0

)a

which can be interpreted as

∆Hfus

∆V fus
∝ P0a

Tfus ∝ Tfus
(

T0

Tfus

)a

(i.e.) the temperature of fusion corrected
by an empirical factor.



Solid-Solid Coexistence

• Coexistence lines are usually observed to be
straight.

• Sometimes nearly vertical which means
that there is an entropy change with a neg-
ligible volume change.

• Sometimes nearly horizontal which means
that there is a volume change associations
with a negligible entropy change.

Thermodynamics of Phase Transitions

• For equilibrium between gas and a condensed
phase, it can be shown:

d(∆HΦ)

dT
∼= ∆CPΦ

• For vaporization

∆CPΦ = CP (g)− CP (l) < 0

since CP (l) > CP (g) and ∆Hvap decreases
as T increases.



• Trouton’s rule applies to vaporization and sub-
limation of simple condensed phase (weak inter-
molecular forces, no H bonds, nonpolar):

∆S
◦
vap
∼= 10.5R

∆S
◦
sub
∼= 11.5R

• Based on the observation of near constant
entropy of vaporization or sublimation at
pressure of 1 atm.

• Hildebrandt’s Rule is based on observations of
entropy of vaporization at a constant vapour
density of 22.414 L mol−1:

∆S
◦
vap
∼= 11.1R

• Guggenheim’s Rule is based on observation of
entropy of vaporization at 1/50th of Pc;

∆S
◦
vap
∼= 9.0R

• Any of these rules may be used to estimate the
vapour pressure by replacing ∆Hvap with

T ◦vap∆S
◦
vap in the integrated Clapeyron equa-

tion.



Composition Variables in Mixtures

• Consider a closed system in two-phase equilib-
rium

• Below TΦ all in one phase

• Above TΦ all in other phase

• But how much is in each phase at TΦ?

• Define mole fraction:

x(i) =
n(i)

n
=

amount in phase i

total amount

• Mole fractions must add up to 1:
∑

all phases

x(i) = 1

• Define molar volume of the system:

V ≡ V

n
=

∑

all phases

V (i) x(i)

• But for two phase equilibrium:

V = V [x(1) + x(2)] = V (1)x(1) + V (2)x(2)

which can be rearranged to:

x(2)[V − V (2)] = x(1)[V (1)− V ]

This is the Lever Rule



• Isolating the mole fractions yields:

x(1) =
V − V (2)

V (1)− V (2)

x(2) =
V − V (1)

V (2)− V (1)

• Some points about notation:

• One component system: x(Φ) is the mole
fraction in phase Φ

• Multicomponent system: xi(Φ) is the mole
fraction of compound i in phase Φ.

Solutions and Mixtures

• A solution has atoms randomly dispersed
throughout the phase at microscopic level and
is homogeneous.

• Solutions may be solid or liquid

• A mixture has macroscopic regions of the pure
constituents and is inhomogeneous.



The Ideal Mixture

• The ideal mixture consists of non-interacting
components such as ideal gases that differ only
mass.

• Example: a mixture of isotopes of a rare gas
83Kr and 84Kr

• Initially separated in two containers of
equal volume.

• The two containers are joined by a valve.

• Adiabatically isolated.

• Same T and P .

• Valve opened and mixing occurs.

• Equilibrium is recognized by equal amounts
of each isotope in each container. T and P
are unchanged.

• Spontaneous change, therefore G has de-
creased.

• At any point in the process:

G(total) = µ1n1 + µ2n2

where
µi = µ◦i +RT ln fi



• Since Kr behaves nearly ideally, fi may be re-
placed with Pi, the partial pressure of compo-
nent i. Therefore:

P = P1 + P2

which is known as Dalton’s Law.

• But, we know pressures are intensive, not ex-
tensive.

• Partial pressure can be defined as:

Pi = xiP = partial pressure of component i.

This is valid if there are no strong interactions
between molecules.

Partial Pressure and Thermodynamics

• V is one of the natural variables of U and A.

• −P is the conjugate variable of V . Therefore:

(
∂U

∂V

)

S,n

=

(
∂A

∂V

)

T,n

= −P

• Neither of these definitions rely on a par-
ticular equation of state.



• Consider A (since it is easier to control T than
S) at constant T and P :

A =
∑

i

niAi = n
∑

i

xiAi

• Assume that composition is constant (no chem-
ical reactions, system closed) then:

(
∂A

∂V

)

T,n

=
∑

i

xin

(
∂Ai
∂V

)

T,n

P = −
∑

i

xin

(
∂Ai
∂V

)

T,n

and

Pi = −xin
(
∂Ai
∂V

)

T,n

Can partial pressure be measured?

• Consider an apparatus with two compartments
separated by a fixed, rigid semipermeable mem-
brane.

• H2 on one side and H2 and N2 on the other
side.



• The membrane(Pd foil) is perfectly perme-
able to H2

• The membrane(Pd foil) is perfectly imper-
meable to N2

• At equlibrium, the chemical potential of H2 is
the same on both sides of the membrane and
the pressures are different on both sides.

• This method is accessible to very few combina-
tions of membranes and gases.

Mixing

• Consider the change in an extensive quantity
such as G, V , S, etc. that accompanies mixing.

• Using G as an example:

∆Gmix = G(x1, x2, . . .)

−
∑

i

G(pure, isolated species i)

where G(x1, x2, . . .) is:

G(x1, x2, . . .) = n
∑

i

xiµi(xi)

= n
∑

i

xi(µ
◦
i +RT lnPi)

Assume T , P , and n to be constant.



• For each pure component i:

G(pure i) = niµi(xi = 1) = ni(µ
◦
i +RT lnP )

• Therefore:

∆Gmix = n
∑

i

xi(µ
◦
i +RT lnPi)

−n
∑

i

xi(µ
◦
i +RT lnP )

But Pi = xiP . Therefore

∆Gmix = n
∑

i

xi(µ
◦
i +RT lnP +RT lnxi)

−n
∑

i

xi(µ
◦
i +RT lnP )

∆Gmix = nRT
∑

i

xi lnxi

• For a two component system where x2 = 1−x1,
this becomes:

∆Gmix(x1)

nRT
= x1 lnx1 + (1− x1) ln(1− x1)

• Since ∆Smix = −(∂∆Gmix/∂T )xi

∆Smix = −nR
∑

i

xi lnxi



• Similarly

∆Vmix = (∂∆Gmix/∂P )xi = 0

∆Hmix = ∆Gmix + T∆Smix = 0

∆Umix = ∆Hmix −∆(PV )mix = 0

∆Amix = ∆Umix − T∆Smix = ∆Gmix

• Spontaneous ideal mixing is accompanied by:

• An increase in entropy

• A decrease in Gibbs free energy

• A decrease in Helmholtz free energy

• No change in enthalpy or internal energy

Nonideal Mixing

• Use fugacity to describe nonideal behaviour.

• Define partial fugacity using Lewis-Randall
Rule

fi = xif

where f is the fugacity of pure i at the T and
P of the solution.



• Thus the chemical potential of component i be-
comes:

µi(T, xi) = µ◦(pure i, T ) +RT ln f +RT lnxi

• Implicit in this is the assumption that the
solution obeys Amagat’s Law:

V =
∑

i

niV (pure i)

This is reasonable for gases, but must be
examined carefully for condensed phases.

• Consider the fugacity of pure condensed phase:

RT ln

(
f

P

)
=

∫ P

0

(
V − RT

P

)
dP

• If there is a phase transition between 0 and P
then the integral should be considered as two
term, one from 0 and PΦ, the other from PΦ to
P :

RT ln

(
f

P

)
=

∫ PΦ

0

(
V − RT

P

)
dP

+

∫ P

PΦ

(
V − RT

P

)
dP



• Expanding the last integral into two terms:

RT ln

(
f

P

)
= RT ln

(
fΦ

PΦ

)

+

∫ P

PΦ

V (condensed phase)dP −RT ln

(
P

PΦ

)

• Assuming that the volume of the condensed
phase is constant over the interval under con-
sideration:
∫ P

PΦ

V (condensed phase)dP = V (P − PΦ)

• Thus:

RT ln

(
f

P

)
= RT ln

(
fΦ

P

)
+ V (P − PΦ)

or

f = fΦ exp

[
V (P − PΦ)

RT

]

which may be rewritten as:

f = PΦ

(
fΦ

PΦ

)
exp

[
V (P − PΦ)

RT

]



Excess Functions

• Excess functions describe deviations from ideal
behaviour.

• Consider excess free energy:

GE = G(real : T, P, xi)−G(ideal : T, P, xi)

• If GE > 0 then deviations from ideality are
positive.

• If GE < 0 then deviations from ideality are
negative.

• A reference or standard state must be consid-
ered and f is defined with respect to that.

• G. N. Lewis defined activity ai as:

ai(T, P, x1, x2, . . .) =
fi(T, P, x1, x2, . . .)

f◦i (T, P ◦, x◦)

• If all species are referred to the same standard
state, then the equilibrium requirement of equal
fugacity in any component can be replaced by a
requirement of equal activity.



• The activity coefficient is defined as:

γi =
ai
xi

Therefore:

fi(T, P, x) = f◦i (T, P ◦, x◦)ai(T, P, x) = f◦i γixi

Ideal Solution

• Fugacity is directly proportional to mole frac-
tion.

fi(ideal;T, P, xi) = Ki(T, P )xi

• The definition of Ki depends on the type
of ideal solution.

• Consider excess free energy:

G
E

i = Gi(real)−Gi(ideal)

= µi(real)− µi(ideal)

= µ◦i (real) +RT ln fi(real)

−µ◦i (ideal)−RT ln fi(ideal)

= RT ln
fi(real)

fi(ideal)

since µ◦i (real) = µ◦i (ideal)



• Thus

G
E

i = RT ln
fi(real)

Kixi

• For an ideal solution Ki = f◦i and γi = 1

• The activity coefficient is defined by:

γi(real or ideal) =
fi(real or ideal)

f◦i xi
and

G
E

i = RT ln
f◦i γixi
f◦i xi

= RT ln γi

Thus

GE =
∑

i

niG
E

i = nRT
∑

i

xi ln γi

Phase Separation and Spontaneous Unmixing

(The physical chemistry of salad dressing)

• Separation of a one-phase liquid solution into
two phases observed

• Extraction

• Salad Dressing

• Lava Lamps

• Often occurs as a result of a change in com-
position or temperature.



• Consider pure liquid of each component at stan-
dard T and P

P ◦ = P

x◦ = pure compound i

• Consider only a binary solution (x1 + x2 = 1)

• GE goes to zero as x1 or x2 goes to zero.

• The simplest empirical function that satis-
fies this is:

GE = nAx1x2

ln γ1 =
A

RT
x2

2

where A is empirically determined.

• What affects the value of A:

• Temperature

• Chemical nature of components 1 and 2 and
their interaction.

• NOT the composition

• Since A contains information about non-ideal
behaviour, it must be related to the activity of
each component.



• Recall that:

GE =
∑

i

niG
E

i = nRT
∑

i

xi ln γi

Therefore:

nRT
∑

i

xi ln γi = GE = nAx1x2

nRT (x1 ln γ1 + x2 ln γ2) = nAx1x2

nRT (x1 ln γ1 + x2 ln γ2) = nRT
A

RT
x1x2(x1 + x2)

= nRT (x1
A

RT
x2

2 + x2
A

RT
x1

2)

Thus:

ln γ1 =
A

RT
x2

2

ln γ2 =
A

RT
x1

2

• Spontaneous separation can occur only if it re-
sults in the lowering of the free energy at con-
stant T and P .

• But phase separation implies a decrease in
entropy.

• Therefore a decrease in enthalpy is implied.



• Consider excess free energy.

G(real = GE +G(ideal)

= GE +
∑

i

niµi(ideal)

= GE +
∑

i

ni(µ
◦
i +RT ln fi)

= GE + n
∑

i

xi(µ
◦
i +RT ln f◦i xi)

= GE + n
∑

i

xi(µ
◦
i +RT ln f◦i )

+nRT
∑

i

xi lnxi)

= GE + n
∑

i

xiµi(pure i)

+nRT
∑

i

xi lnxi)

Therefore:

G(real) = Ax1x2 + x1µ1(pure) + x2µ2(pure)

+RT (x1 lnx1 + x2 lnx2)



• Recall

∆Gmix(real) = GE + ∆Gmix(ideal)

∆Gmix(x1)

RT
=

A

RT
x1(1− x1)

+x1 lnx1 + (1− x1) ln(1− x1)

• The larger the value of A/RT the more immis-
cible the mixture.

• For A/RT > 2, there exists a value for which
∆Gmix has a local maximum and two values
which are local minima, i.e. there exists a range
of x1 such that

(
∂2∆Gmix
∂x1

2

)

T,P,n

< 0

• The solution will spontaneously separate
into two layers, each with composition cor-
responding to that of one of the local min-
ima.

• The amount in each liquid phase will be
determined by the lever rule.

• For A/RT < 2, there is one stable homogeneous
phase.



• When A/RT =2, the solution is at the critical
solution temperature (or the consolute temper-
ature).

• Critical point for the mixture where the two
phases are indistinguishable.

Activity in the Nonideal Solution

• Recall that
a1 = γ1x1

and that

ln γ1 =
A

RT
x2

2

Therefore

ln ai = ln γi + lnxi =
A

RT
(1− x1)2 + lnx1

• For A/RT < 2, a1 is a monotonic function of
x1, but for A/RT > 2 the region of immiscibility
corresponds to physical separation of the solvent
mixture.



Colligative Properties

• Vapour pressure over solutions

• Henry’s Law

• Freezing point depression

• Boiling point elevation

Vapour Pressure over Solutions

• Consider a solution of two volatile components
in equilibrium with the gas phase.

• xi is the mole fraction of component i in
the liquid phase.

• yi is the mole fraction of component i in
the gas phase.

• For an ideal solution

Ki = f(i)

where f(i) is the fugacity of pure i at the tem-
perature of the solution and the vapour pressure
of i.

• Assume that the system is sufficiently ideal that
fugacity may be replaced by pressure.



• Thus
Pi = P (i)xi

where Pi is the partial pressure of i above
the solution, P (i) is the vapour pressure of
pure liquid i and xi is the mole fraction of
i in the liquid solution.

This is Raoult’s Law

• The total pressure is a function of the solution
composition. For a two component solution:

P (x1) = P1 + P2 = P (1)x1 + P (2)x2

= P (1)x1 + P (2)(1− x1)

= P (2) + [P (1)− P (2)]x1

• But, what is the composition of the gas phase?

• From definition of partial pressure:

y1 =
P1

P

• Therefore,

y1(x1) =
x1P (1)

P (2) + [P (1)− P (2)]x1



and the total pressure P becomes:

P [x1(y1)] = P (y1) =
P (1)P (2)

P (1) + [P (2)− P (1)]y1

as a function of gas phase composition.

• Raoult’s Law is not followed by all solutions at
all compositions, but tends to work better when
one component is in considerable excess.

Henry’s Law and the Ideal Dilute Solution

• The ideal dilute solution consists of:

• A solvent (the compound in excess)

• A solute (the minor compound)

• For an ideal dilute solution of solute 2 in sol-
vent 1, Raoult’s law gives:

P2 = K2,1x2

which is also known as Henry’s Law.

• The Henry’s Law coefficient K2,1 is specific
to that solute in that solvent and may be in-
terpreted as the hypothetical vapour pres-
sure of the pure solute.

• K2,1 is often larger than the actual vapour
pressure of the pure solute.



• Recalling the definition of chemical potential:

µi = µ◦i +RT ln fi

and assuming that

fi = Pi = Ksolv,ixi

gives

µi(ideal) = µ◦i (ideal) +RT lnKi +RT lnxi

where the first two terms can be considered the
definition of a new reference state.

• Often concentrations expressed in terms of other
than mole fraction are more convenient.

• For example mole fraction can be related
to molality by:

xi =
(10−3 kg g−1)M mi

1 + (10−3 kg g−1)M m

where M is the molar mass of solvent in g
mol−1 and mi the molality of i.

• If the solution is infinitely dilute, this be-
comes:

xi = (10−3 kg g−1)M mi

xi = (10−3 kg g−1)M m◦
(mi

m◦

)



• Thus the chemical potential becomes:

µi(ideal) = µ◦i (ideal) +RT lnKi

+RT ln(10−3 kg g−1M m◦)

+RT ln
(mi

m◦

)

where the first three terms can be taken as a
reference state.

Azeotropes

• A solution of azeotropic composition boils un-
changed.

• Consider a mixture of two liquids with the fol-
lowing properties:

• Equal vapour pressures of pure liquids.

P (1) = P (2) = P ◦

• Equal Henry’s Law coefficients

K1,2 = K2,1 = K;
K

P ◦
= 2

• Partial pressure composition relation

Pi = Kxi + (P ◦ −K)x2
i



• This system

• Has two regions of two phase behaviour.

• Boils at a single pressure when x = .5

What is wrong with this hypothetical system?

• If one component follows Raoult’s Law, the
other must follow Henry’s Law.

• For a binary system at equilibrium at constant
T and P

• dG(total) = 0

• dn1 = dn2 = 0

n1dµ1 + n2dµ2 = 0

• From the definition of chemical potential
for each component:

x1

(
∂ ln f1

∂x1

)

T,P

= x2

(
∂ ln f2

∂x2

)

T,P

• If component 1 follows Henry’s Law, f1 = Kx1,
then: (

∂ ln f1

∂x1

)

T,P

=

(
1

f1

)(
∂f1

∂x1

)

T,P

=
x1

f1
K =

x1

f1

(
f1

x1

)
= 1



• Similarly:
x2

f2

(
f2

x2

)
= 1

which can be rearranged to:

∫ x2

x2=1

dx2

x2
=

∫ f2

f◦2

df2

f2

or

lnx2 = ln

(
f2

f◦2

)

or
f2 = f◦2x2

which is Raoult’s Law.

• Now reconsider the hypothetical equation:

P1 = Kx1 + (P ◦ −K)x2
1

• For small x1, P1
∼= Kx1

• For large x1, P1
∼= P ◦x2

1, which is not
Raoult’s Law!



Freezing Point Depression and Boiling Point Elevation

• Assume

• Solute 2 is not volatile.

• Solvent 1 is volatile.

• The solute does not dissolve in solid sol-
vent.

• Therefore gas phase and solid phase are
pure solvent.

• The effect of adding the solute is to increase the
boiling point and lower the freezing point.

• Consider first the freezing point:

• Pure frozen solvent is in equilibrium with
the solution:

µ1(Tfus, P, x1) = µ(Tfus, P, pure solid 1)

• Assuming the solution is ideal:

µ1(Tfus, P, x1) = µ◦1 +RTfus ln f◦1x1

• But:

µ◦1 +RTfus ln f◦1 = µ(pure liquid 1)



and

∆G
◦
fus = µ(pure liquid)− µ(pure solid)

(∆G
◦
fus 6= 0 if T 6= T ◦fus)

• Differentiating gives:

(
∂ lnx1

∂x1

)

T,P

=
1

x1

= − 1

R

[(
∂(∆G

◦
fus/T )

∂T

)

P

]

Tfus

(
∂T

∂x1

)

P

• But from the definition of G,

(
∂(G/T )

∂T

)

P

=
1

T

(
∂H

∂T

)

P

− H

T 2
−
(
∂S

∂T

)

P

(
∂(G/T )

∂T

)

P

= − H
T 2

• Therefore

1

x1
=

∆H
◦
fus(pure 1, Tfus < T ◦fus)

RT 2

(
∂T

∂x1

)

P



• Isolating the variables and integrating:

∫ x1

1

dx1

x1
=

∫ Tfus

T ◦
fus

∆H
◦
fus

RT 2
dT

yields (assuming ∆H
◦
fus is a constant):

lnx1 =
∆H

◦
fus

R

(
1

T ◦fus
− 1

Tfus

)

• Defining freezing point depression as:

∆Tfus = T ◦fus(pure 1)− Tfus(solution)

• Using solute concentration in molality gives:

dTfus = −d(∆Tfus) =
RT 2

∆H
◦
fus

dx1

x1

=
RT 2

∆H
◦
fus

1

x1

(
dx1

dm2

)
dm2

• For a solution with 1 kg of solvent:

n1 =
1000

M1
;n2 = m2



and

x1 =
n1

n1 + n2
=

1

1 + M1m2

1000

• Therefore

1

x1

(
dx1

dm2

)
= −M1x1

1000

and

d(∆Tfus)

dm2
=

M1RT
2
fusx1

1000∆H
◦
fus(pure solvent)

• For a dilute solution x1
∼= 1 and Tfus ∼= T ◦fus,

then:

d(∆Tfus)

dm2
=

M1RT
2
fus

1000∆H
◦
fus

= Kf

where m2 is the molality of the solute particles.

• For small m2

∆Tfus ∼=
d(∆Tfus)

dm2
m2 = Kfm2

• Similarly, it can be shown that the ebulliscopic
constant may be derived:

∆Tvap =

(
M1RT

2
vap

1000∆H
◦
vap

)
m2 = Kbm2



Osmotic Pressure

• Consider the situation where the chemical po-
tential of the solvent in a solution is less than
the chemical potential of pure solvent.

µ1(solution) < µ(pure liquid solvent)

• Consider an experimental setup consisting of
two compartments.

• Compartment A contains the pure solvent
in equilibrium with its vapour.

• Compartment B contains the solution in
equilibrium with the vapour of the pure sol-
vent.

• The two compartments are separated by
a barrier, the lower portion of which is a
semipermeable membrane that is perme-
able only to the solvent.

• The system is allowed to reach equilibrium.

• The semipermeable membrane is invisible
to the solvent.

• The semipermeable membrane confines the
solute.



• Solvent molecules move through the membrane
until the chemical potential of the solvent match
on both sides of the membrane.

• This means that solvent molecules move into
the solution and the level of the solution rises
higher than that of the pure solvent.

• This means that there is a pressure imbal-
ance of the liquid on both sides of the mem-
brane.

PB > PA

This is the pressure of the liquid phase,
which is affected by the column of liquid
above it.

• At any point of the membrane, the chemi-
cal potential is the same on both sides.

µ(pure 1, PA) = µ1(x1, PB)

• Osmotic pressure, Π, is defined as:

Π = solution pressure− solvent pressure = PB −PA

Thus:
µ(pure 1, PA) = µi(xi, PA + Π)



= µ(pure 1, PA + Π) +RT lnx1

= µ(pure 1, PA) +

∫ PA+Π

PA

V (pure 1)dP +RT lnx1

and

−RT lnx1 =

∫ PA+Π

PA

V (pure 1)dP

If the osmotic pressure Π is small then the molar
volume, V may be assumed to be constant, yielding:

− lnx1 =
ΠV

RT

• If the solution is dilute then x1, the mole frac-
tion of the solvent, is close to 1. Therefore:

− lnx1 = ln

(
1

x1

)
= ln

(
n1 + n2

n1

)
= ln

(
1 +

n2

n1

)

• This may be expanded in a power series of
the form:

ln (1 + x) = x− 1

2
x2 +

1

3
x3 + · · ·

where x = n2/n1 and n2 < n1 (which is
true for solute 2 dilute in solvent 1).



• For a dilute solution, the power series may be
truncated after one term giving:

− lnx1 =
ΠV

RT
∼= n2

n1

• Since V n1
∼= V , the equation becomes:

ΠV = n2RT

which is the van’t Hoof equation.

• Although the van’t Hoof equation is similar in
form to the ideal gas law, it arises from very
different assumptions.

• Since osmotic pressure Π depends on the the
number of solute particles rather than the iden-
tity of the solute.

• Can be used to determine molar mass of
biomolecules.

• Cell walls are semipermeable membranes.

• Intravenous solutions need to be “isotonic”
which means that they have the same
chemical potential for water on both sides
of the membrane.



Phase Diagrams

• Consider an experiment to determine the tem-
perature of a phase transition for a pure com-
pound at some P .

• Need sample of pure substance

• Need an energy source that provides or re-
moves energy at a constant rate. Thus,
the elapsed time is proportional to the heat
transferred.

• Phase transition occurs while heat is deliv-
ered but no temperature change occurs.

• Consider the definition of heat capacity:

CP −
dqP
dT

where
dH = dqP

• It can be shown that:
dT

dt
=
dqP
dt

1

CP (T )
=
dH

dt

1

CP (T )

• Thus a slope of a temperature versus time
curve is 1/CP

• dH/dt is a constant.



• Consider a cooling curve shown in Fig. 6.22.

• Liquid cools to the freezing point with slope
1/CP (l)

• Temperature plateaus at the freezing tem-
perature. Heat transferred during this time
is the enthalpy of the phase transition.


