
Conditions for Stable Equilibrium

• Consider the conditions for spontaneity:

• Isolated system
dSsys > 0

• Nonisolated system
dStot = dSsys + dSsurr > 0

or
dSsys > −dSsurr

or

dSsys >
dqrev
Tsurr

• Since dq = dU − dw
dSsys >

dUsys
Tsurr

+
Pext dV

Tsurr

(This assumes that only pressure-volume work is involved.)

• Rewriting:
TsurrdS > dU + PextdV

gives an expression for a system moving spontaneously to a new equilibrium.

• Note that anything without a subscript applies to the system.

• If the system is at equilibrium then Tsurr = T and Pext = P and the equation becomes:

TdS = dU + PdV

which is the Master Equation.

• Different constraints (or different ways of being in contact with the surroundings) give rise to different
conditions for equilibrium.

• Consider the case of constant volume and constant entropy:

dV = 0; dS = 0

Then:

dSsys >
dUsys
Tsurr

+
Pext dV

Tsurr

becomes:
0 > dUV,S

or
dUV,S < 0

• Consider another (different) case where U and V are constant.

dU = 0; dV = 0

• Then the condition for spontaneous change becomes:

dSU,V > 0



• The constraints of constant entropy and volume correspond to those of:

• a closed isolated system.

• a system undergoing an adiabatic reversible process at constant volume.

• Systems of chemical interest are couple to their surroundings by one of the following:

• external forces (pressure or external field).

• thermal contact (constant T reservoir)

• material contact (such that the system exchanges matter with the surroundings)

• reactive contact (in which an exchange of matter influences chemical reactions withing the system).

• Now consider enthalpy:
H ≡ U + PV

or in differential form:
dH = dU + d(PV ) = dU + PdV + V dP

or
dU = dH − PdV − V dP

• Substituting into the condition for spontaneity:

TsurrdS > dH − PdV − V dP + PextdV

• Under the constraints of constant P and S, dP = 0, dS = 0 and Pext = P , the condition for
spontaneity becomes:

dHP,S < 0

and the enthalpy decreases as much as possible during the process.

• What about other constraints, such as dV = 0, dT = 0 or dP = 0, dT = 0?

• We need to have thermodynamic functions which include entropy and have (V, T ) or (P, T ) as their
natural variables.

• Also the thermodynamic function should decrease during the spontaneous process.

Helmholtz Free Energy, A

• Consider first constant T and V .

• Define A = U − TS.

• Then:
dA = dU − SdT − TdS

or
dU = dA+ SdT + TdS

• Thus the condition for spontaneity becomes:

TsurrdS > dA+ TdS + SdT + PextdV

• Applying the conditions of constant T (dT = 0 and Tsurr = T ) and constant V (dV = 0) yields:

0 > dAT,V



Gibbs Free Energy, G

• Consider constant T and P .

• Define G = H − TS.

• Then
dG = dH − SdT − TdS

or
dG = dU + PdV + V dP − SdT − TdS

or
dU = dG− PdV − V dP + SdT + TdS

• Thus the condition for spontaneity becomes:

TsurrdS > dG− PdV − V dP + TdS + SdT + PextdV

• Applying the conditions of constant T (dT = 0 and Tsurr = T ) and constant P (P = Pext, dP = 0)
yields:

0 > dGT,P

• In summary, the condition for spontaneity is that entropy is maximized and under various constraints,
this becomes:

dUV,S < 0

dHP,S < 0

dAT,V < 0

dGT,P < 0

Legendre Transforms

• U , H , A, and G are thermodynamic potential energy functions and are Legendre Transforms of each
other.

• S and T are a pair of conjugate variables.

• P and V are pair of conjugate variables.

• Start with the Master Equation:
dU = TdS − PdV

• Each of the other thermodynamic potentials is a transform of one of the others:

H = U + PV

A = U − TS
G = H − TS

• Each transformation involves the addition or subtraction of a pair of conjugate variables.

• Spontaneous processes minimize potential.

A Closer Look at Stability



• Recall the case of two identical metal cubes (a and b) at different temperatures which are allowed to
equilibrate under the constraints of constant U and P .

• Change the constraints to constant S and P .

• Does a new spontaneous process occur?

• Use a engine to transfer energy form one cube to another (Figure 5.1).

• Energy can be transferred as heat or as adiabatic work.

• Energy can be transferred to or from the surroundings.

• The constraint of constant S means that Sa + Sb is constant.

• Allow the temperatures of the cubes to change, but keep the volumes of the cubes constant.

• What is dHS,P ?

• If dHS,P < 0, then a spontaneous process will occur as a result of changing the constraints from
dU = 0; dP = 0 to dS = 0; dP = 0.

• If dHS,P = 0, then the system is at equilibrium under the new constraints. Equilibrium under the
new constraints requires no work.

• If dHS,P > 0, then the system is stable under the new constraints and no spontaneous process may
occur.

• If S is constant then

0 = dS = dSa + dSb =
CP
Ta

dTa +
CP
Tb

dTb

• Thus the temperature changes are not independent:

dTa = −Ta
Tb
dTb

• But
dH = dHa + dHb = CP (dTa + dTb)

• Substituting for dTa gives:

dH = CP

(
1− Ta

Tb

)
dTb

• At equilibrium at constant U and P ,
T = Ta = Tb

• Suppose that the new constraints led to an increase in Tb.

• Then Ta/Tb < 1, dTb > 0 and dHS,P > 0 and the system was already stable.

• Suppose that the new constraints led to an increase in Ta.

• Then Ta/Tb > 1, dTa > 0, dTb < 0 and dHS,P > 0 and the system was already stable.

• When a system in stable equilibrium requires work to move to another state, the reverse process is
spontaneous and can do work on the surroundings.

Free Energy

• Can be defined as the maximum amount of work that can be associated with a constant T process.



• Consider the condition for equilibrium or spontaneity:

TsurrdS ≥ dU − dw

where the equal sign applies to equilibrium and Tsurr = T .

• Consider work having two components:

dw = −PextdV + dw′

• −PextdV represents the work done in moving the boundaries of the system.

• dw′ is all other forms of work.

• Thus the condition for spontaneity may be written:

TsurrdS − dU ≥ PextdV − dw′

where

• the left hand side depends only on state variables

• The equality holds for reversible processes

• The inequality holds for irreversible processes

• the right hand side is work done by the system.

• The reversible isothermal process will maximize the work done by the system.

• This is known as the Free Energy

Constraints on Free Energy

• All cases considered are reversible processes.

• Consider the case of constant S and constant V :

−∆US,V = −w′S,V

• −w′S,V is the maximum work done by the system, only under the constraints of constant S and
constant V

• Consider the case of constant T and constant V :

T∆SV,T −∆UV,T = −w′V,T

• Recall that the definition of Helmholtz Free Energy, A

A = U − TS

• Therefore
−∆AV,T = −w′V,T

• Similarly it may be shown:

• At constant S and P :
−∆HS,P = −w′S,P



• At constant T and P :
−∆GT,P = −w′T,P

• Consider further A the Helmholtz free energy:

A = U − TS

dA = dU − TdS
But

dU = TdS − PdV
and if PdV is along a reversible path, then

dw = −PdV

and
dA = dw

∆A = −
∫ Vf

Vi

P (V )dV = w

• This means that the Helmholtz Free Energy incorporates both internal energy and entropy effects.

A Closer Look at Work

• How can there be any work under the constraint of constant V ?

• Consider a variant of the Joule apparatus.

• The total system is divided into two subvolumes VI and VII by a frictionless sliding partition.

• The total volume is fixed.
V = VI + VII

• The system is adiabatically isolated.

• The partition is withdrawn reversibly.

• A reversible adiabatic process is isentropic.

• The system will perform work w′.

• Since the partition is moved internally, there is no PV work transferred to or from the surroundings.

• But w′ can be calculated from
∫
PdV

• Since the process was carried out at constant S and V ,

∆US,V = w′S,V

• If the system is put in contact with a thermal reservoir, then the constraints become T and V .

• If the internal partition is moved reversibly, then

∆AT,V = w′T,V

• Consider now the constraints of constant S and P .



• Two thermal reservoirs at different temperatures Ta and Tb drive a Carnot engine.

• Run the engine until the temperatures are equal.

• Work w′ will be produced. Therefore:

Tf 6=
(
Ta + Tb

2

)

• Under the constraints of constant S and P , ∆HS,P = w′S,P

• Need to find Tf

• From the constraint of constant S:

0 = dS = dSa + dSb =
CP
Ta

dTa +
CP
Tb

dTb

dTa
Ta

= −dTb
Tb

ln

(
Tf
Ta

)
= − ln

(
Tf
Tb

)

and
Tf = (TaTb)

1/2

• It can be shown that Tf < (Ta + Tb)/2

• The total ∆H is:
∆H = ∆Ha + ∆Hb = CP (Tf − Ta) + CP (Tf − Tb)

∆HS,P = CP ((TaTb)
1/2 − Ta) + CP ((TaTb)

1/2 − Tb)

= CP (2(TaTb)
1/2 − Ta − Tb)

• Because Tf < (Ta + Tb)/2, ∆H is negative and the work is done on the surroundings.

• Consider now the constraints of constant T and P

• An example is a chemical battery which produces work at constant T and P .

• The reactants in a battery are kept separate until the electrical circuit is complete.

• When the circuit is complete, electrical work is done on the surroundings.

• The energy released is the Gibb’s Free energy.

• Energy is released until the free energy is minimized and the battery goes dead.

Multicomponent System and Chemical Potential

• Consider two systems at the same T and P and allow them to interact by exchanging molecules.

• Some examples:

• Liquid water in contact with water vapour. The boundary between the two phases is the open
surface of the liquid.

• A container of hydrogen in contact with a container of deuterium. The two isotopes will sponta-
neously mix.



• Cu(s) in contact with Ag(s). The two metals will spontaneously mix.

• Oil floating on water. Very little mixing will occur.

• Consider the equilibration of hydrogen and deuterium at constant T and P .

• The appropriate thermodynamic potential is G, which is extensive.

G(total) = GI +GII

where GI and GII are the Gibbs Free Energy at any time in the process.

• What is going to change is the number of moles of each species in each subsytem.

• Therefore GI and GII depend on n1 and n2, the number of moles of each species in each subsystem:

GI = GI(n1, n2);GII = GII(n1, n2)

• Spontaneous mixing occurs and thus G(total) is expected to decrease:

dGI =

(
∂GI
∂n1

)

T,P,n2

dn1 +

(
∂GI
∂n2

)

T,P,n1

dn2

dGII =

(
∂GII
∂n1

)

T,P,n2

dn1 +

(
∂GII
∂n2

)

T,P,n1

dn2

• Conservation of mass means:

dn1(container 1) = −dn1(container 2)

dn2(container 1) = −dn2(container 2)

• Therefore:
dG(total) = dGI + dGII =

[(
∂GI
∂n1

)

T,P,n2

−
(
∂GII
∂n1

)

T,P,n2

]
dn1

+

[(
∂GI
∂n2

)

T,P,n1

−
(
∂GII
∂n2

)

T,P,n1

]
dn2

where dn1 and dn2 are with reference to container I.

• The process occurs until dG = 0.

• This may occur in two ways. Either:
dn1 = dn2 = 0

or: (
∂GI
∂n1

)

T,P,n2

=

(
∂GII
∂n1

)

T,P,n2

and (
∂GI
∂n2

)

T,P,n1

=

(
∂GII
∂n2

)

T,P,n1

• Note that these partial derivatives have units of molar energies.

• For a one component system:
G(T, P, n) = nG(T, P )



where

G(T, P ) =
G(T, P, n)

n
=

(
∂G

∂n

)

T,P

• For a system with more than one component:

G1 =

(
∂G

∂n1

)

T,P,n2

G2 =

(
∂G

∂n2

)

T,P,n1

• These partial molar quantities are also known as chemical potentials:

µi = Gi

• Consider again, the mixing of H2 and D2:

• The process will continue until the chemical potential of one component equals the chemical potential
of that component throughout the system.

• For a one-component one-phase system at equilibrium, T and P are required to be uniform throughout
the system.

• Uniform chemical potential for each component in all phases is an additional requirement for equilibrium
in a many component or many phase system.

• In the case of liquid water and vapour

• There are two phases

• At equilibrium the chemical potential of the vapour is equal to that of the water.

• In the case of oil floating on water:

• Traces of oil dissolve into the water and water dissolves into the oil until the chemical potential of
the oil in the oil phase is equivalent to the chemical potential of the oil dissolved in the water.

• The chemical potential of the water dissolved in oil and the chemical potential of the water are
equal.

More about Chemical Potential

• Recall the master equation:
dU = TdS − PdV

and the following definitions of the other thermodynamic potentials:

H = U + PV

A = U − TS
G = H − TS

which upon substitution in the master equation, yield the following differentials:

dH = TdS + V dP

dA = −PdV − SdT



dG = V dP − SdT

• It can be shown

µi =

(
∂Ui
∂ni

)

S,V,nj

=

(
∂Hi

∂ni

)

S,P,nj

=

(
∂Ai
∂ni

)

V,T,nj

=

(
∂Gi
∂ni

)

T,P,nj

= −T
(
∂Si
∂ni

)

U,V,nj

Uniformity of Chemical Potential

• Consider a system with

• c components

• φ phases

• All phases in contact with each other (directly or indirectly).

• Assume system is closed.

• The master equation for a particular phase α is:

dUα = TαdSα − PαdV α +

c∑

i=1

µαi dn
α
i

• Consider now the total internal energy of the system:

dU = dUα + dUβ + . . .+ dUφ

= TαdSα − PαdV α +

c∑

i=1

µαi dn
α
i

+T βdSβ − P βdV β +

c∑

i=1

µβi dn
β
i

+ . . .

+T φdSφ − P φdV φ +

c∑

i=1

µφi dn
φ
i

• The natural variables of U are (S, V, ni).

• If all these variables are maintained constant:

dS = dSα + dSβ + . . .+ dSφ = 0

dV = dV α + dV β + . . .+ dV φ = 0

dni = dnαi + dnβi + . . . dnφi = 0,

i = 1, 2, . . . , c



• If the system has reached equilibrium, then U is minimized and

dUS,V,n1,n2,...,nc = 0

• This system has c+ 2 variables for each phase φ for a total of φ(c+ 2) variables.

• Equilibrium of the entire system imposes c+ 2 constraints

• This reduces the number of independent variables to (φ− 1)(c+ 2).

• For example, this could be used to eliminate all the variables pertaining to phase α. Thus:

dUS,V,n1,n2,...,nc = 0

= (T β − Tα)dSβ − (P β − Pα)dV β

+(µβ1 − µα1 )dnβ1 + . . .+ (µβc − µαc )dnβc + . . .

+(T φ − Tα)dSφ − (P φ − Pα)dV φ

+(µφ1 − µα1 )dnφ1 + . . .+ (µφc − µαc )dnφc

• Each of the variables in this equation are independent.

• Therefore each of the coefficients of each of these variables must be zero. i.e.

T β − Tα = 0

P β − Pα = 0

µβ1 − µα1 = 0

etc.

µφc − µαc = 0

• Thus, throughout the system:

• Temperature is uniform
Tα = T β = . . . = T φ = T

• Pressure is uniform
Pα = P β = . . . = P φ = P

• Chemical potential of each component is uniform.

µα1 = µβ1 = . . . = µφ1

etc.

µαc = µβc = . . . = µφc

This is the condition for multiphase,
multicomponent equilibrium

The Phase Rule
(see Section 6.6)



• Consider the criterion for equilbrium of some component, i, among the φ phases:

µαi = µβi = . . . = µφi

• This establishes a set of relationships (in addition to those established from the master equation)

among nφi , such that these are not independent of each other.

• These relationships provide (φ− 1) constraints on component i for a total of c(φ− 1) constraints.

• In addition, the fact that T and P are constant removes 2φ− 2 degrees of freedom.

• But T and P are just a specific instance of external intensive variables.

• There are systems in which other external intensive variables could be important (such as surface
energy, external magnetic or electrical fields, external force, etc.)

• Therefore use I to describe the number of external intensive variables and generally the condition
of uniformity of the external intensive variables removes Iφ− I degrees of freedom.

How many degrees of freedom are left?

• For c components, there are c− 1 independent mole fractions

• Each of φ phases is described by c− 1 + I intensive variables for a total of φ(c− 1 + I) variables

• Because at equilibrium the external intensive variables are uniform throughout the system, this is reduced
by φI − I .

• This leaves φ(c− 1) + I

• The uniformity of chemical potential throughout the system gives φ − 1 constraints for each of c com-
ponents.

• Therefore the number of independent variables is:

φ(c− 1) + I − c(φ− 1)

c− φ+ I

• Thus the phase rule is:

“The number of truly independent intensive variables in a system composed of c independent components
among φ phases subject to I external intensive variables is c− φ+ I”

Calculation of Chemical Potentials

• Consider the master equation for a one component system

dU = TdS − PdV

• Add d(PV − TS) to both sides:

dU + d(PV − TS) = TdS − PdV + d(PV − TS)

= TdS − PdV + PdV + V dP − TdS − SdT
= V dP − SdT



• The Legendre transform of U with P and T as the natural variables is G

dG = dU + d(PV − TS) = V dP − SdT

• But:

dG =

(
∂G

∂P

)

T

dP +

(
∂G

∂T

)

P

dT

• Therefore (
∂G

∂P

)

T

= V

and (
∂G

∂T

)

P

= −S

• Since S and V are always positive then (for a one component system)

• G always increases with P at constant T

• G always decreases with T at constant P

• For each component of a multicomponent system:

dµi = V idP − SidT

where

• V i is the partial molar volume

• Si is partial molar entropy.

• What is the physical significance of partial molar volume?

V i =

(
∂V

∂ni

)

T,P,nj

• Experimentally this can be determined through

V i =
V (after addition)− V (before addition)

# moles added

where the number of moles added is the smallest amount possible that yields an observable change.

• In a multicomponent system, the volume change may be either positive or negative.

• This reflects that nature of molecular interactions among the various components in the system.

• If the interaction of the added molecules with the molecules already in the mixture is strongly
attractive, then the volume will tend to decrease.

• If the interaction of the added molecules with the molecules already in the mixture is strongly
repulsive, then the volume will tend to increase.

More about Chemical Potential and Free Energy

• For a system of c components:

G(total) = µ1n1 + µ2n2 + . . .+ µcnc =

c∑

i=1

µini



• In differential form

dG(total) =
c∑

i=1

(µidni + nidµi) =

c∑

i=1

µidni +
c∑

i=1

nidµi

• Substituting for dµi gives:

dG =

c∑

i=1

[
µidni + ni(V idP − SidT )

]

• Collecting terms:

dG =

c∑

i=1

µidni +

[
c∑

i=1

niV i

]
dP −

[
c∑

i=1

niSi

]
dT

• But: [
c∑

i=1

niV i

]
= V and

[
c∑

i=1

niSi

]
= S

• Therefore:

dG =

c∑

i=1

µidni + V dP − SdT

and
c∑

i=1

nidµi = V dP − SdT

or

0 = V dP − SdT −
c∑

i=1

nidµi

• Thus if P and T are held constant then:

c∑

i=1

nidµi = 0

(This is the Gibbs-Duhem equation)

One component Ideal Gases

• Generally: µi = G = G/n. Thus:

∆µ =

∫
dµ =

∫ Pf

Pi

V (Ti, P )dP −
∫ Tf

Ti

S(T, Pf )dP

if we chose to change the T first then P .

• For an ideal gas, the first term is:

∫ Pf

Pi

V (T, P )dP =

∫ Pf

Pi

RTi
P

dP = RTi ln

(
Pf
Pi

)

• For the second term, first the definition of entropy must be considered;

dS =
dqP
T

=
dHP

T
=

5

2

nR

T
dT



S(T, P )

R
=

5

2
ln(T ) + constant

= ln

[
T 5/2

P
(constant)

]

• Recall that entropy is on an absolute scale, therefore the constant matters.

• Sackur (1911) showed that the constant depends on the molecular mass:

S(T, P )

R
= ln

[
T 5/2M3/2

P
(another constant)

]

= ln

[
T 5/2M3/2

P
(0.311968 g−3/2K−5/2atm)

]

• This is the Sackur-Tetrode equation.

• Tetrode (1912) showed that the constant was truly universal.

• Carrying out the integration:

−
∫ Tf

Ti

S(T, Pf )dP = −5

2
R(Ti − Tf )

−R
[
Tf ln

(
CM3/2T

5/2
f

Pf

)
− Ti ln

(
CM3/2T

5/2
i

Pf

)]

where C is the Sackur-Tetrode constant.

• Therefore:

∆µ = RTi ln

(
CM3/2T

5/2
i

Pi

)

−RTf ln

(
CM3/2T

5/2
f

Pf

)
+

5

2
R(Tf − Ti)

The Standard State

• Chemical potentials are not on an absolute scale, but are with respect to an arbitrarily chosen reference
state.

• If the reference state is the ideal gas at a pressure of 1 bar, then

µ(T, P ) = µ◦(T ) + RT ln

(
P

1 bar

)

• This definition of the standard state requires that P be expressed in the units of the reference
state, bars.

Fugacity and the One-Component Real Gas

• The ideal gas law PV = RT allows the easy integration of:

∫ P

1 bar

V (T, P )dP



• but equations of state that describe real gases often do not have such a convenient functional form.

• Numerical integration of tabulated data is inconvenient.

• G. N. Lewis (1901) proposed that f , fugacity be defined as:

dµ =
RT

f
df = RT d ln f ; constant T

• Fugacity has the units of pressure

• At low P , f → P . Therefore, integrating from some low pressure P0 (such that the ideal gas
equation of state is valid) to a higher pressure P gives:

µ(P, T )− µ(P0, T ) = RT ln f − RT lnP0

where f is the fugacity of the gas at pressure P .

• Since the standard state is defined with respect to 1 bar pressure:

µ(P0, T )− µ◦(1 bar, T ) = RT lnP0

• Therefore
µ(P, T )− µ◦(1 bar, T ) = RT ln f

and all the nonideal behaviour is described by f . The standard state may be thought of as the real gas
behaving ideally at 1 bar pressure.

• Uniform chemical potential means uniform fugacity.

• Fugacity may be considered a property of all phases, not just gases.

Calculation of Fugacity

• For a pure compound at constant T :

dµT =

(
∂µ

∂P

)

T

dP = V dP =
RT

f
df

• Subtracting (RT/P )dP = RT d lnP from both sides gives:

(
V − RT

P

)
dP = RT (d ln f − d lnP )

• Integrating from P = 0 to the P of interest gives:

RT ln

(
f

P

)
=

∫ P

0

(
V − RT

P

)
dP

• V may be described through the compressibility factor Z:

Z ≡ PV

RT

Z(P ) = 1 +A1(T )P +A2(T )P 2 + . . .



Z(V ) = 1 +
B(T )

V
+
C(T )

V
2

• Thus the integral becomes:

ln

(
f

P

)
=

∫ P

0

Z(P )− 1

P
dP

• At P sufficiently low for the virial expansion to the second coefficient to be accurate this integral
becomes: ∫ P

0

Z(P )− 1

P
dP ∼=

∫ P

0

B(T )

PV
dP

=
B(T )

RT

∫ P

0

RT

PV
dP

=
B(T )

RT

∫ P

0

1

Z
dP

∼= B(T )

RT

∫ P

0

1

1 +B(T )/V
dP

∼= B(T )

RT

∫ P

0

dP =
B(T )P

RT

ln

(
f

P

)
=
B(T )P

RT

Therefore

f ∼= P exp

[
B(T )P

RT

]

Recalling that expx ∼= 1 + x for small x:

f ∼= P

(
1 +

B(T )P

RT

)
∼= P

(
1 +

B(T )

V

)
= PZ

• Recalling that TB , the Boyle temperature, is the temperature at which B(T ) = 0, it can be shown:

• f < P when T < TB

• f > P when T > TB

Fugacity and Other Equations of State

• Consider the van der Waals equation of state:

P =
RT

V − b −
a

V
2

• In terms of dimensionless variables this is:

P̃ =
T̃

(Ṽ − 1)
− 1

Ṽ 2

• Where

Ṽ =
V

b



P̃ =
Pb2

a

T̃ =
T

TB

• It can be shown that

ln

(
f

P

)
= ln

[
T̃

P̃ (Ṽ − 1)

]
+

1

(Ṽ − 1)
− 2

T̃ Ṽ

• The quantity f/P is defined as the fugacity coefficient:

Φ =
f

P


