
Conditions for Stable Equilibrium

• Consider the conditions for spontaneity:

• Isolated system

dSsys > 0

• Nonisolated system

dStot = dSsys + dSsurr > 0

or
dSsys > −dSsurr

or

dSsys >
dqrev
Tsurr

• Since dq = dU − dw

dSsys >
dUsys
Tsurr

+
Pext dV

Tsurr

(This assumes that only pressure-volume work
is involved.)

• Rewriting:

TsurrdS > dU + PextdV

gives an expression for a system moving spon-
taneously to a new equilibrium.



• Note that anything without a subscript ap-
plies to the system.

• If the system is at equilibrium then Tsurr = T
and Pext = P and the equation becomes:

TdS = dU + PdV

which is the Master Equation.

• Different constraints (or different ways of being
in contact with the surroundings) give rise to
different conditions for equilibrium.

• Consider the case of constant volume and con-
stant entropy:

dV = 0; dS = 0

Then:

dSsys >
dUsys
Tsurr

+
Pext dV

Tsurr

becomes:

0 > dUV,S

or

dUV,S < 0



• Consider another (different) case where U and
V are constant.

dU = 0; dV = 0

• Then the condition for spontaneous change
becomes:

dSU,V > 0

• The constraints of constant entropy and volume
correspond to those of:

• a closed isolated system.

• a system undergoing an adiabatic reversible
process at constant volume.

• Systems of chemical interest are couple to their
surroundings by one of the following:

• external forces (pressure or external field).

• thermal contact (constant T reservoir)

• material contact (such that the system ex-
changes matter with the surroundings)

• reactive contact (in which an exchange of
matter influences chemical reactions with-
ing the system).



• Now consider enthalpy:

H ≡ U + PV

or in differential form:

dH = dU + d(PV ) = dU + PdV + V dP

or
dU = dH − PdV − V dP

• Substituting into the condition for spon-
taneity:

TsurrdS > dH − PdV − V dP + PextdV

• Under the constraints of constant P and
S, dP = 0, dS = 0 and Pext = P , the
condition for spontaneity becomes:

dHP,S < 0

and the enthalpy decreases as much as pos-
sible during the process.

• What about other constraints, such as dV =
0, dT = 0 or dP = 0, dT = 0?

• We need to have thermodynamic functions
which include entropy and have (V, T ) or
(P, T ) as their natural variables.

• Also the thermodynamic function should
decrease during the spontaneous process.



Helmholtz Free Energy, A

• Consider first constant T and V .

• Define A = U − TS.

• Then:

dA = dU − SdT − TdS
or

dU = dA+ SdT + TdS

• Thus the condition for spontaneity becomes:

TsurrdS > dA+ TdS + SdT + PextdV

• Applying the conditions of constant T (dT = 0
and Tsurr = T ) and constant V (dV = 0) yields:

0 > dAT,V

Gibbs Free Energy, G

• Consider constant T and P .

• Define G = H − TS.

• Then

dG = dH − SdT − TdS



or

dG = dU + PdV + V dP − SdT − TdS
or

dU = dG− PdV − V dP + SdT + TdS

• Thus the condition for spontaneity becomes:

TsurrdS > dG−PdV −V dP +TdS+SdT +PextdV

• Applying the conditions of constant T (dT =
0 and Tsurr = T ) and constant P (P = Pext,
dP = 0) yields:

0 > dGT,P

• In summary, the condition for spontaneity is
that entropy is maximized and under various
constraints, this becomes:

dUV,S < 0

dHP,S < 0

dAT,V < 0

dGT,P < 0



Legendre Transforms

• U , H, A, and G are thermodynamic potential
energy functions and are Legendre Transforms
of each other.

• S and T are a pair of conjugate variables.

• P and V are pair of conjugate variables.

• Start with the Master Equation:

dU = TdS − PdV

• Each of the other thermodynamic poten-
tials is a transform of one of the others:

H = U + PV

A = U − TS
G = H − TS

• Each transformation involves the addition
or subtraction of a pair of conjugate vari-
ables.

• Spontaneous processes minimize potential.



A Closer Look at Stability

• Recall the case of two identical metal cubes (a
and b) at different temperatures which are al-
lowed to equilibrate under the constraints of
constant U and P .

• Change the constraints to constant S and P .

• Does a new spontaneous process occur?

• Use a engine to transfer energy form one cube
to another (Figure 5.1).

• Energy can be transferred as heat or as adi-
abatic work.

• Energy can be transferred to or from the
surroundings.

• The constraint of constant S means that
Sa + Sb is constant.

• Allow the temperatures of the cubes to change,
but keep the volumes of the cubes constant.

• What is dHS,P ?

• If dHS,P < 0, then a spontaneous process
will occur as a result of changing the con-
straints from dU = 0; dP = 0 to dS =
0; dP = 0.



• If dHS,P = 0, then the system is at equi-
librium under the new constraints. Equi-
librium under the new constraints requires
no work.

• If dHS,P > 0, then the system is stable un-
der the new constraints and no spontaneous
process may occur.

• If S is constant then

0 = dS = dSa + dSb =
CP
Ta

dTa +
CP
Tb
dTb

• Thus the temperature changes are not in-
dependent:

dTa = −Ta
Tb
dTb

• But

dH = dHa + dHb = CP (dTa + dTb)

• Substituting for dTa gives:

dH = CP

(
1− Ta

Tb

)
dTb

• At equilibrium at constant U and P ,

T = Ta = Tb



• Suppose that the new constraints led to an in-
crease in Tb.

• Then Ta/Tb < 1, dTb > 0 and dHS,P > 0
and the system was already stable.

• Suppose that the new constraints led to an in-
crease in Ta.

• Then Ta/Tb > 1, dTa > 0, dTb < 0 and
dHS,P > 0 and the system was already sta-
ble.

• When a system in stable equilibrium requires
work to move to another state, the reverse pro-
cess is spontaneous and can do work on the sur-
roundings.

Free Energy

• Can be defined as the maximum amount of work
that can be associated with a constant T pro-
cess.

• Consider the condition for equilibrium or spon-
taneity:

TsurrdS ≥ dU − dw
where the equal sign applies to equilibrium and
Tsurr = T .



• Consider work having two components:

dw = −PextdV + dw′

• −PextdV represents the work done in mov-
ing the boundaries of the system.

• dw′ is all other forms of work.

• Thus the condition for spontaneity may be writ-
ten:

TsurrdS − dU ≥ PextdV − dw′

where

• the left hand side depends only on state
variables

• The equality holds for reversible processes

• The inequality holds for irreversible pro-
cesses

• the right hand side is work done by the sys-
tem.

• The reversible isothermal process will maximize
the work done by the system.

• This is known as the Free Energy



Constraints on Free Energy

• All cases considered are reversible processes.

• Consider the case of constant S and constant V :

−∆US,V = −w′S,V
• −w′S,V is the maximum work done by the

system, only under the constraints of con-
stant S and constant V

• Consider the case of constant T and constant
V :

T∆SV,T −∆UV,T = −w′V,T
• Recall that the definition of Helmholtz Free

Energy, A
A = U − TS

• Therefore

−∆AV,T = −w′V,T
• Similarly it may be shown:

• At constant S and P :

−∆HS,P = −w′S,P
• At constant T and P :

−∆GT,P = −w′T,P



• Consider further A the Helmholtz free energy:

A = U − TS
dA = dU − TdS

But
dU = TdS − PdV

and if PdV is along a reversible path, then

dw = −PdV
and

dA = dw

∆A = −
∫ Vf

Vi

P (V )dV = w

• This means that the Helmholtz Free Energy in-
corporates both internal energy and entropy ef-
fects.

A Closer Look at Work

• How can there be any work under the constraint
of constant V ?

• Consider a variant of the Joule apparatus.

• The total system is divided into two sub-
volumes VI and VII by a frictionless sliding
partition.



• The total volume is fixed.

V = VI + VII

• The system is adiabatically isolated.

• The partition is withdrawn reversibly.

• A reversible adiabatic process is isentropic.

• The system will perform work w′.

• Since the partition is moved internally,
there is no PV work transferred to or from
the surroundings.

• But w′ can be calculated from
∫
PdV

• Since the process was carried out at constant S
and V ,

∆US,V = w′S,V

• If the system is put in contact with a thermal
reservoir, then the constraints become T and V .

• If the internal partition is moved reversibly,
then

∆AT,V = w′T,V



• Consider now the constraints of constant S and
P .

• Two thermal reservoirs at different temper-
atures Ta and Tb drive a Carnot engine.

• Run the engine until the temperatures are
equal.

• Work w′ will be produced. Therefore:

Tf 6=
(
Ta + Tb

2

)

• Under the constraints of constant S and P ,
∆HS,P = w′S,P

• Need to find Tf

• From the constraint of constant S:

0 = dS = dSa + dSb =
CP
Ta

dTa +
CP
Tb

dTb

dTa
Ta

= −dTb
Tb

ln

(
Tf
Ta

)
= − ln

(
Tf
Tb

)

and
Tf = (TaTb)

1/2

• It can be shown that Tf < (Ta + Tb)/2



• The total ∆H is:

∆H = ∆Ha+∆Hb = CP (Tf−Ta)+CP (Tf−Tb)

∆HS,P = CP ((TaTb)
1/2 − Ta) + CP ((TaTb)

1/2 − Tb)

= CP (2(TaTb)
1/2 − Ta − Tb)

• Because Tf < (Ta + Tb)/2, ∆H is negative
and the work is done on the surroundings.

• Consider now the constraints of constant T and
P

• An example is a chemical battery which pro-
duces work at constant T and P .

• The reactants in a battery are kept separate
until the electrical circuit is complete.

• When the circuit is complete, electrical
work is done on the surroundings.

• The energy released is the Gibb’s Free en-
ergy.

• Energy is released until the free energy is
minimized and the battery goes dead.



Multicomponent System and Chemical Potential

• Consider two systems at the same T and P and
allow them to interact by exchanging molecules.

• Some examples:

• Liquid water in contact with water vapour.
The boundary between the two phases is
the open surface of the liquid.

• A container of hydrogen in contact with a
container of deuterium. The two isotopes
will spontaneously mix.

• Cu(s) in contact with Ag(s). The two met-
als will spontaneously mix.

• Oil floating on water. Very little mixing
will occur.

• Consider the equilibration of hydrogen and deu-
terium at constant T and P .

• The appropriate thermodynamic potential
is G, which is extensive.

G(total) = GI +GII

where GI and GII are the Gibbs Free En-
ergy at any time in the process.



• What is going to change is the number of
moles of each species in each subsytem.

• Therefore GI and GII depend on n1 and
n2, the number of moles of each species in
each subsystem:

GI = GI(n1, n2);GII = GII(n1, n2)

• Spontaneous mixing occurs and thus
G(total) is expected to decrease:

dGI =

(
∂GI
∂n1

)

T,P,n2

dn1 +

(
∂GI
∂n2

)

T,P,n1

dn2

dGII =

(
∂GII
∂n1

)

T,P,n2

dn1 +

(
∂GII
∂n2

)

T,P,n1

dn2

• Conservation of mass means:

dn1(container 1) = −dn1(container 2)

dn2(container 1) = −dn2(container 2)



• Therefore:

dG(total) = dGI + dGII =
[(

∂GI
∂n1

)

T,P,n2

−
(
∂GII
∂n1

)

T,P,n2

]
dn1

+

[(
∂GI
∂n2

)

T,P,n1

−
(
∂GII
∂n2

)

T,P,n1

]
dn2

where dn1 and dn2 are with reference to
container I.

• The process occurs until dG = 0.

• This may occur in two ways. Either:

dn1 = dn2 = 0

or:
(
∂GI
∂n1

)

T,P,n2

=

(
∂GII
∂n1

)

T,P,n2

and
(
∂GI
∂n2

)

T,P,n1

=

(
∂GII
∂n2

)

T,P,n1

• Note that these partial derivatives have
units of molar energies.



• For a one component system:

G(T, P, n) = nG(T, P )

where

G(T, P ) =
G(T, P, n)

n
=

(
∂G

∂n

)

T,P

• For a system with more than one component:

G1 =

(
∂G

∂n1

)

T,P,n2

G2 =

(
∂G

∂n2

)

T,P,n1

• These partial molar quantities are also known
as chemical potentials:

µi = Gi

• Consider again, the mixing of H2 and D2:

• The process will continue until the chemical po-
tential of one component equals the chemical
potential of that component throughout the sys-
tem.



• For a one-component one-phase system at equi-
librium, T and P are required to be uniform
throughout the system.

• Uniform chemical potential for each component
in all phases is an additional requirement for
equilibrium in a many component or many
phase system.

• In the case of liquid water and vapour

• There are two phases

• At equilibrium the chemical potential of the
vapour is equal to that of the water.

• In the case of oil floating on water:

• Traces of oil dissolve into the water and wa-
ter dissolves into the oil until the chemical
potential of the oil in the oil phase is equiv-
alent to the chemical potential of the oil
dissolved in the water.

• The chemical potential of the water dis-
solved in oil and the chemical potential of
the water are equal.



More about Chemical Potential

• Recall the master equation:

dU = TdS − PdV
and the following definitions of the other ther-
modynamic potentials:

H = U + PV

A = U − TS
G = H − TS

which upon substitution in the master equation,
yield the following differentials:

dH = TdS + V dP

dA = −PdV − SdT
dG = V dP − SdT

• It can be shown

µi =

(
∂Ui
∂ni

)

S,V,nj

=

(
∂Hi

∂ni

)

S,P,nj

=

(
∂Ai
∂ni

)

V,T,nj

=

(
∂Gi
∂ni

)

T,P,nj

= −T
(
∂Si
∂ni

)

U,V,nj



Uniformity of Chemical Potential

• Consider a system with

• c components

• φ phases

• All phases in contact with each other (di-
rectly or indirectly).

• Assume system is closed.

• The master equation for a particular phase α is:

dUα = TαdSα − PαdV α +
c∑

i=1

µαi dn
α
i

• Consider now the total internal energy of the
system:

dU = dUα + dUβ + . . .+ dUφ

= TαdSα − PαdV α +
c∑

i=1

µαi dn
α
i

+T βdSβ − P βdV β +
c∑

i=1

µβi dn
β
i

+ . . .

+TφdSφ − PφdV φ +
c∑

i=1

µφi dn
φ
i



• The natural variables of U are (S, V, ni).

• If all these variables are maintained constant:

dS = dSα + dSβ + . . .+ dSφ = 0

dV = dV α + dV β + . . .+ dV φ = 0

dni = dnαi + dnβi + . . . dnφi = 0,

i = 1, 2, . . . , c

• If the system has reached equilibrium, then U
is minimized and

dUS,V,n1,n2,...,nc = 0

• This system has c + 2 variables for each phase
φ for a total of φ(c+ 2) variables.

• Equilibrium of the entire system imposes c + 2
constraints

• This reduces the number of independent
variables to (φ− 1)(c+ 2).

• For example, this could be used to elimi-
nate all the variables pertaining to phase
α. Thus:

dUS,V,n1,n2,...,nc = 0



= (T β − Tα)dSβ − (P β − Pα)dV β

+(µβ1 − µα1 )dnβ1 + . . .+ (µβc − µαc )dnβc + . . .

+(Tφ − Tα)dSφ − (Pφ − Pα)dV φ

+(µφ1 − µα1 )dnφ1 + . . .+ (µφc − µαc )dnφc

• Each of the variables in this equation are
independent.

• Therefore each of the coefficients of each of
these variables must be zero. i.e.

T β − Tα = 0

P β − Pα = 0

µβ1 − µα1 = 0

etc.

µφc − µαc = 0

• Thus, throughout the system:

• Temperature is uniform

Tα = T β = . . . = Tφ = T



• Pressure is uniform

Pα = P β = . . . = Pφ = P

• Chemical potential of each component is
uniform.

µα1 = µβ1 = . . . = µφ1

etc.

µαc = µβc = . . . = µφc

This is the condition for multiphase,
multicomponent equilibrium



The Phase Rule
(see Section 6.6)

• Consider the criterion for equilbrium of some
component, i, among the φ phases:

µαi = µβi = . . . = µφi

• This establishes a set of relationships (in
addition to those established from the mas-
ter equation) among nφi , such that these are
not independent of each other.

• These relationships provide (φ − 1) con-
straints on component i for a total of
c(φ− 1) constraints.

• In addition, the fact that T and P are constant
removes 2φ− 2 degrees of freedom.

• But T and P are just a specific instance of
external intensive variables.

• There are systems in which other exter-
nal intensive variables could be important
(such as surface energy, external magnetic
or electrical fields, external force, etc.)



• Therefore use I to describe the number of
external intensive variables and generally
the condition of uniformity of the external
intensive variables removes Iφ − I degrees
of freedom.

How many degrees of freedom are left?

• For c components, there are c − 1 independent
mole fractions

• Each of φ phases is described by c−1 + I inten-
sive variables for a total of φ(c−1+I) variables

• Because at equilibrium the external intensive
variables are uniform throughout the system,
this is reduced by φI − I.

• This leaves φ(c− 1) + I

• The uniformity of chemical potential through-
out the system gives φ − 1 constraints for each
of c components.

• Therefore the number of independent vari-
ables is:

φ(c− 1) + I − c(φ− 1)

c− φ+ I



• Thus the phase rule is:

“The number of truly independent intensive vari-
ables in a system composed of c independent compo-
nents among φ phases subject to I external intensive
variables is c− φ+ I”

Calculation of Chemical Potentials

• Consider the master equation for a one compo-
nent system

dU = TdS − PdV

• Add d(PV − TS) to both sides:

dU +d(PV −TS) = TdS−PdV +d(PV −TS)

= TdS − PdV + PdV + V dP − TdS − SdT
= V dP − SdT

• The Legendre transform of U with P and T as
the natural variables is G

dG = dU + d(PV − TS) = V dP − SdT

• But:

dG =

(
∂G

∂P

)

T

dP +

(
∂G

∂T

)

P

dT



• Therefore (
∂G

∂P

)

T

= V

and (
∂G

∂T

)

P

= −S

• Since S and V are always positive then (for a
one component system)

• G always increases with P at constant T

• G always decreases with T at constant P

• For each component of a multicomponent sys-
tem:

dµi = V idP − SidT

where

• V i is the partial molar volume

• Si is partial molar entropy.

• What is the physical significance of partial mo-
lar volume?

V i =

(
∂V

∂ni

)

T,P,nj



• Experimentally this can be determined through

V i =
V (after addition)− V (before addition)

# moles added

where the number of moles added is the small-
est amount possible that yields an observable
change.

• In a multicomponent system, the volume change
may be either positive or negative.

• This reflects that nature of molecular in-
teractions among the various components
in the system.

• If the interaction of the added molecules
with the molecules already in the mixture
is strongly attractive, then the volume will
tend to decrease.

• If the interaction of the added molecules
with the molecules already in the mixture
is strongly repulsive, then the volume will
tend to increase.



More about Chemical Potential and Free Energy

• For a system of c components:

G(total) = µ1n1 + µ2n2 + . . .+ µcnc =
c∑

i=1

µini

• In differential form

dG(total) =
c∑

i=1

(µidni + nidµi) =

c∑

i=1

µidni +

c∑

i=1

nidµi

• Substituting for dµi gives:

dG =

c∑

i=1

[
µidni + ni(V idP − SidT )

]

• Collecting terms:

dG =
c∑

i=1

µidni+

[
c∑

i=1

niV i

]
dP−

[
c∑

i=1

niSi

]
dT



• But:

[
c∑

i=1

niV i

]
= V and

[
c∑

i=1

niSi

]
= S

• Therefore:

dG =

c∑

i=1

µidni + V dP − SdT

and
c∑

i=1

nidµi = V dP − SdT

or

0 = V dP − SdT −
c∑

i=1

nidµi

• Thus if P and T are held constant then:

c∑

i=1

nidµi = 0

(This is the Gibbs-Duhem equation)



One component Ideal Gases

• Generally: µi = G = G/n. Thus:

∆µ =

∫
dµ =

∫ Pf

Pi

V (Ti, P )dP −
∫ Tf

Ti

S(T, Pf )dP

if we chose to change the T first then P .

• For an ideal gas, the first term is:

∫ Pf

Pi

V (T, P )dP =

∫ Pf

Pi

RTi
P

dP = RTi ln

(
Pf
Pi

)

• For the second term, first the definition of
entropy must be considered;

dS =
dqP
T

=
dHP

T
=

5

2

nR

T
dT

S(T, P )

R
=

5

2
ln(T ) + constant

= ln

[
T 5/2

P
(constant)

]



• Recall that entropy is on an absolute scale,
therefore the constant matters.

• Sackur (1911) showed that the constant depends
on the molecular mass:

S(T, P )

R
= ln

[
T 5/2M3/2

P
(another constant)

]

= ln

[
T 5/2M3/2

P
(0.311968 g−3/2K−5/2atm)

]

• This is the Sackur-Tetrode equation.

• Tetrode (1912) showed that the constant
was truly universal.

• Carrying out the integration:

−
∫ Tf

Ti

S(T, Pf )dP = −5

2
R(Ti − Tf )

−R
[
Tf ln

(
CM3/2T

5/2
f

Pf

)
− Ti ln

(
CM3/2T

5/2
i

Pf

)]

where C is the Sackur-Tetrode constant.



• Therefore:

∆µ = RTi ln

(
CM3/2T

5/2
i

Pi

)

−RTf ln

(
CM3/2T

5/2
f

Pf

)
+

5

2
R(Tf − Ti)

The Standard State

• Chemical potentials are not on an absolute
scale, but are with respect to an arbitrarily cho-
sen reference state.

• If the reference state is the ideal gas at a pres-
sure of 1 bar, then

µ(T, P ) = µ◦(T ) +RT ln

(
P

1 bar

)

• This definition of the standard state
requires that P be expressed in the units
of the reference state, bars.



Fugacity and the One-Component Real Gas

• The ideal gas law PV = RT allows the easy
integration of:

∫ P

1 bar

V (T, P )dP

• but equations of state that describe real
gases often do not have such a convenient
functional form.

• Numerical integration of tabulated data is
inconvenient.

• G. N. Lewis (1901) proposed that f , fugacity be
defined as:

dµ =
RT

f
df = RT d ln f ; constant T

• Fugacity has the units of pressure

• At low P , f → P . Therefore, integrating
from some low pressure P0 (such that the
ideal gas equation of state is valid) to a
higher pressure P gives:

µ(P, T )−µ(P0, T ) = RT ln f − RT lnP0

where f is the fugacity of the gas at pres-
sure P .



• Since the standard state is defined with respect
to 1 bar pressure:

µ(P0, T )− µ◦(1 bar, T ) = RT lnP0

• Therefore

µ(P, T )− µ◦(1 bar, T ) = RT ln f

and all the nonideal behaviour is described by
f . The standard state may be thought of as the
real gas behaving ideally at 1 bar pressure.

• Uniform chemical potential means uniform fu-
gacity.

• Fugacity may be considered a property of
all phases, not just gases.

Calculation of Fugacity

• For a pure compound at constant T :

dµT =

(
∂µ

∂P

)

T

dP = V dP =
RT

f
df

• Subtracting (RT/P )dP = RT d lnP from both
sides gives:

(
V − RT

P

)
dP = RT (d ln f − d lnP )



• Integrating from P = 0 to the P of interest
gives:

RT ln

(
f

P

)
=

∫ P

0

(
V − RT

P

)
dP

• V may be described through the compressibility
factor Z:

Z ≡ PV

RT

Z(P ) = 1 + A1(T )P +A2(T )P 2 + . . .

Z(V ) = 1 +
B(T )

V
+
C(T )

V
2

• Thus the integral becomes:

ln

(
f

P

)
=

∫ P

0

Z(P )− 1

P
dP

• At P sufficiently low for the virial expansion to
the second coefficient to be accurate this inte-
gral becomes:

∫ P

0

Z(P )− 1

P
dP ∼=

∫ P

0

B(T )

PV
dP



=
B(T )

RT

∫ P

0

RT

PV
dP

=
B(T )

RT

∫ P

0

1

Z
dP

∼= B(T )

RT

∫ P

0

1

1 +B(T )/V
dP

∼= B(T )

RT

∫ P

0

dP =
B(T )P

RT

ln

(
f

P

)
=
B(T )P

RT

Therefore

f ∼= P exp

[
B(T )P

RT

]

Recalling that expx ∼= 1 + x for small x:

f ∼= P

(
1 +

B(T )P

RT

)
∼= P

(
1 +

B(T )

V

)
= PZ

• Recalling that TB, the Boyle temperature, is
the temperature at which B(T ) = 0, it can be
shown:

• f < P when T < TB

• f > P when T > TB



Fugacity and Other Equations of State

• Consider the van der Waals equation of state:

P =
RT

V − b
− a

V
2

• In terms of dimensionless variables this is:

P̃ =
T̃

(Ṽ − 1)
− 1

Ṽ 2

• Where

Ṽ =
V

b

P̃ =
Pb2

a

T̃ =
T

TB

• It can be shown that

ln

(
f

P

)
= ln

[
T̃

P̃ (Ṽ − 1)

]
+

1

(Ṽ − 1)
− 2

T̃ Ṽ

• The quantity f/P is defined as the fugacity co-
efficient:

Φ =
f

P


