Conditions for Stable Equilibrium

e Consider the conditions for spontaneity:

e Isolated system

dSsys > 0

e Nonisolated system

dStot — dSsys + dssurr >0

or
dSsys > _dssurr
or q
Qrev
dSsys >
Y Tsurr

e Since dq = dU — dw

dUgys  Peyr dV
Y 4+ 15

TS’U/’I”’T’ TS’U/I"’I"

(This assumes that only pressure-volume work
is involved.)

dS,ys >

e Rewriting:
TowrrdS > dU + Pyt dV

gives an expression for a system moving spon-
taneously to a new equilibrium.



e Note that anything without a subscript ap-
plies to the system.

e If the system is at equilibrium then Ty,,, = T
and P.,; = P and the equation becomes:

TdS = dU + PdV

which is the Master Equation.

e Different constraints (or different ways of being
in contact with the surroundings) give rise to
different conditions for equilibrium.

e Consider the case of constant volume and con-
stant entropy:

dV =0;dS =0
Then: ; ;
Usys Pe:nt V
dSSyS > TS’LL’I”’I” —|_ TS’U/I"’I"
becomes:
0> dUV,S
or

dUV,S <0



e Consider another (different) case where U and
V' are constant.

dU = 0:dV = 0

e Then the condition for spontaneous change
becomes:

dSU,V > 0
e The constraints of constant entropy and volume
correspond to those of:
e a closed isolated system.

e a system undergoing an adiabatic reversible
process at constant volume.

e Systems of chemical interest are couple to their
surroundings by one of the following:

e external forces (pressure or external field).
e thermal contact (constant T reservoir)

e material contact (such that the system ex-
changes matter with the surroundings)

e reactive contact (in which an exchange of
matter influences chemical reactions with-
ing the system).



e Now consider enthalpy:
H=U+ PV
or in differential form:
dH = dU 4+ d(PV) =dU + PdV + VdP
or

dU =dH — PdV — VdP

e Substituting into the condition for spon-
taneity:

TsurrdS > dH — PdV — VdP + Py dV

e Under the constraints of constant P and
S, dP =0, dS = 0 and P.;; = P, the
condition for spontaneity becomes:

dH ps < 0
and the enthalpy decreases as much as pos-

sible during the process.

e What about other constraints, such as dV =
0,dl'=0or dP =0,dI' =07

e We need to have thermodynamic functions
which include entropy and have (V,T) or
(P, T) as their natural variables.

e Also the thermodynamic function should
decrease during the spontaneous process.



Helmholtz Free Energy, A

Consider first constant 7" and V.
Define A=U —-TS.
e Then:

dA =dU — SdT'—TdS

or

dU = dA+ SdT +TdS

Thus the condition for spontaneity becomes:

TsyrrdS > dA+TdS + SdT + P, dV

Applying the conditions of constant T' (dT = 0
and T, = T) and constant V (dV = 0) yields:

0> dAT’V

Gibbs Free Energy, G

Consider constant 17" and P.
Define G =H —TS.
e Then
dG =dH — SdT' —TdS



or
dG = dU + PdV + VdP — SdT —TdS

or

dU = dG — PdV — VdP + SdT'+TdS

e Thus the condition for spontaneity becomes:

TsurrdS > dG — PdV —VdP +TdS + SdT' + P, dV

e Applying the conditions of constant T (d1T =
0 and Ty = T) and constant P (P = Py,

dP = 0) yields:
0> dGT, P
e In summary, the condition for spontaneity is

that entropy is maximized and under various
constraints, this becomes:

dUy s <0
dHp g < 0
dAryv <0
dGr.p <0



Legendre Transforms

e U, H, A, and G are thermodynamic potential
energy functions and are Legendre Transforms
of each other.

e S and 7' are a pair of conjugate variables.
e P and V are pair of conjugate variables.

e Start with the Master Equation:

dU =TdS — PdV

e Fach of the other thermodynamic poten-
tials is a transform of one of the others:

H=U+PV
A=U-TS
G=H-TS

e Each transformation involves the addition
or subtraction of a pair of conjugate vari-
ables.

e Spontaneous processes minimize potential.



A Closer Look at Stability

e Recall the case of two identical metal cubes (a
and b) at different temperatures which are al-

lowed to equilibrate under the constraints of
constant U and P.

e Change the constraints to constant S and P.
e Does a new spontaneous process occur?

e Use a engine to transfer energy form one cube
to another (Figure 5.1).

e Energy can be transferred as heat or as adi-
abatic work.

e Energy can be transferred to or from the
surroundings.

e The constraint of constant S means that
S, + Sy is constant.

e Allow the temperatures of the cubes to change,
but keep the volumes of the cubes constant.

e What is dHg p?

o If dHsp < 0, then a spontaneous process
will occur as a result of changing the con-
straints from dU = 0;dP = 0 to dS =
0;dP = 0.



o If dHsp = 0, then the system is at equi-
librium under the new constraints. Equi-
librium under the new constraints requires
no work.

o If dHg p > 0, then the system is stable un-
der the new constraints and no spontaneous
process may OCCUr.

e If S is constant then

C C
0 =dS = dS, + dSy, = —dT, + —dT,,
Ta Tb
e Thus the temperature changes are not in-
dependent:

T,

dT, = ——dT,
T, "

o But
dH = dH, + dHy, = Cp(dTa -+ dTb)

e Substituting for dT, gives:

T
dH = Cp (1——) dTy,
1

e At equilibrium at constant U and P,

=T, ="1T,



Suppose that the new constraints led to an in-
crease in 1y.

e Then 7,/1T, < 1, dI}, > 0 and dHg p > 0
and the system was already stable.

Suppose that the new constraints led to an in-
crease in 1,.

e Then T,/T, > 1, dT, > 0, dT, < 0 and
dHgs p > 0 and the system was already sta-
ble.

When a system in stable equilibrium requires
work to move to another state, the reverse pro-
cess is spontaneous and can do work on the sur-
roundings.

Free Energy

Can be defined as the maximum amount of work
that can be associated with a constant 1" pro-
cess.

Consider the condition for equilibrium or spon-
taneity:

TsyrrdS > dU — dw

where the equal sign applies to equilibrium and
Tourr =T



e Consider work having two components:

dw = —P.,..dV + dw’

o —P,_..dV represents the work done in mov-
ing the boundaries of the system.

e dw’ is all other forms of work.

e Thus the condition for spontaneity may be writ-

ten:
TewrrdS —dU > P..dV — dw’

where

e the left hand side depends only on state
variables

e The equality holds for reversible processes

e The inequality holds for irreversible pro-
cesses

e the right hand side is work done by the sys-
tem.

e The reversible isothermal process will maximize
the work done by the system.

e This is known as the Free Energy



Constraints on Free Energy

e All cases considered are reversible processes.
e (Consider the case of constant S and constant V':
_AUS,V — _w)/S"V
e —wygy is the maximum work done by the

system, only under the constraints of con-
stant S and constant V

e Consider the case of constant 7" and constant
V:
TASV’T — AUV,T — —’UJQ/’T

e Recall that the definition of Helmholtz Free

Energy, A
A=U-TS

e Therefore
—AAV’T — —’UJQ/’T

e Similarly it may be shown:

e At constant S and P:
_AHS’P — _w‘,s’P

e At constant T and P:

/
—AGT,p — —wT’p



e Consider further A the Helmholtz free energy:
A=U-TS
dA =dU —TdS

But
dU =TdS — PdV

and if PdV is along a reversible path, then
dw = —PdV
and
dA = dw
Vy
AA = _/ POV)AV = w
Vi

e This means that the Helmholtz Free Energy in-
corporates both internal energy and entropy ef-
fects.

A Closer Look at Work

e How can there be any work under the constraint
of constant V7

e Consider a variant of the Joule apparatus.

e The total system is divided into two sub-
volumes V; and V;r by a frictionless sliding
partition.



e The total volume is fixed.

V=Vi+V

e The system is adiabatically isolated.
The partition is withdrawn reversibly.

e A reversible adiabatic process is isentropic.
The system will perform work w’.

e Since the partition is moved internally,
there is no PV work transferred to or from
the surroundings.

e But w’ can be calculated from [ PdV

Since the process was carried out at constant S
and V,

/
AUsv = wgy

If the system is put in contact with a thermal
reservoir, then the constraints become 7' and V.

e If the internal partition is moved reversibly,
then

/
AAry = wry



e (Comnsider now the constraints of constant S and
P.

e Two thermal reservoirs at different temper-
atures T, and 1} drive a Carnot engine.

e Run the engine until the temperatures are
equal.

e Work w’ will be produced. Therefore:

ﬂ#(%;%)

e Under the constraints of constant S and P,
AHS’P — wg’P

e Need to find 17

e From the constraint of constant S

Cp Cp
0=dS =4dS,+dS, = —dT, + —dT,
+ addp T + T, b
AT, _ _dT;
T, T,

T T
n(=L)=-m(=L
Ta Tb

Tf — (TaTb) t/2

and

e It can be shown that Ty < (T, +13)/2



e The total AH is:

AH = AH,+AH, = Cp(Tf—Ta)+Cp(Tf—Tb)

AHgp = Cp((T,Ty)Y? = T,) + Cp((T,Ty)Y? — Ty)
= Cp (AT, T)V? - T, — Tp)

e Because Ty < (T, +1p)/2, AH is negative
and the work is done on the surroundings.

e (Consider now the constraints of constant 7" and
P

e An example is a chemical battery which pro-
duces work at constant 1" and P.

e The reactants in a battery are kept separate
until the electrical circuit is complete.

e When the circuit is complete, electrical
work is done on the surroundings.

e The energy released is the Gibb’s Free en-
ergy.

e Energy is released until the free energy is
minimized and the battery goes dead.



Multicomponent System and Chemical Potential

e Consider two systems at the same 1" and P and
allow them to interact by exchanging molecules.

e Some examples:

e Liquid water in contact with water vapour.
The boundary between the two phases is
the open surface of the liquid.

e A container of hydrogen in contact with a
container of deuterium. The two isotopes
will spontaneously mix.

e Cu(s) in contact with Ag(s). The two met-
als will spontaneously mix.

e Oil floating on water. Very little mixing
will occur.

e Consider the equilibration of hydrogen and deu-
terium at constant 7' and P.

e The appropriate thermodynamic potential
is (G, which is extensive.

G(total) = Gr + Gy

where GG; and G5 are the Gibbs Free En-
ergy at any time in the process.



e What is going to change is the number of
moles of each species in each subsytem.

e Therefore GG; and G5 depend on n; and
no, the number of moles of each species in
each subsystem:

Gr = Gf(n1,n2); Grr = Gll(nlanQ)

e Spontaneous mixing occurs and thus
G(total) is expected to decrease:

anl T,P,’I’LQ 8”2 T,P,’I’Ll

dG ;= (aG”> dnq + (aG”> dne
anl T,P,ng 8”2 T,P,’I’Ll

e Conservation of mass means:

dni(container 1) = —dnq(container 2)

dns(container 1) = —dns(container 2)



e Therefore:

dG(tOtCLl) = dG[ + dG[[ ==

), (), ]
ony T,P,ns ony T,P,ns

), (), ]
On T,P,n, ong T,P,n,

where dni and dno are with reference to
container 1.

e The process occurs until dG = 0.

e This may occur in two ways. Either:

dni = dng =0
Oor':
IG7 ([ 9G
(5—711)T,p,n2 B ( ony >T,P,n2
and
IGT ([ 90G
(5—77/2)T,p,n1 B ( ong >T,P,n1

e Note that these partial derivatives have
units of molar energies.



For a one component system:
G(T,P,n) = nG(T, P)

where

G p) — GTP) (aG)TP

n on

For a system with more than one component:

- ()
ony T,P,ns

.- (29)
On T,Pn,

These partial molar quantities are also known
as chemical potentials:

i :éz‘

Consider again, the mixing of Hy and Ds:

The process will continue until the chemical po-
tential of one component equals the chemical
potential of that component throughout the sys-
tem.



For a one-component one-phase system at equi-
librium, 7" and P are required to be uniform
throughout the system.

Uniform chemical potential for each component
in all phases is an additional requirement for
equilibrium in a many component or many
phase system.

In the case of liquid water and vapour
e There are two phases

e At equilibrium the chemical potential of the
vapour is equal to that of the water.

In the case of oil floating on water:

e Traces of oil dissolve into the water and wa-
ter dissolves into the oil until the chemical
potential of the oil in the oil phase is equiv-
alent to the chemical potential of the oil
dissolved in the water.

e The chemical potential of the water dis-
solved in oil and the chemical potential of
the water are equal.



More about Chemical Potential

e Recall the master equation:
aU =TdS — PdV

and the following definitions of the other ther-
modynamic potentials:

H=U+PV
A=U-TS
G=H-TS

which upon substitution in the master equation,
yield the following differentials:

dH =TdS + VdP
dA = —PdV — SdT
dG = VdP — S5dT

e It can be shown

[, ([ 8H,
ILLZ B anz S,V,'I’Lj B anz S,P,'I’Lj

[ 04; [ 0G;
-\ ony V,T,nj_ on; T,P,n,;




Uniformity of Chemical Potential
e Consider a system with

e C components

e ¢ phases

e All phases in contact with each other (di-
rectly or indirectly).

e Assume system is closed.
e The master equation for a particular phase « is:
C
dU* = T*dS™ — P*dV* + > pfdng
i=1

e Consider now the total internal energy of the
system:

dU = dU +dUP + ...+ dU?

= T*dS* — P*dV* + ) pdng
=1

+7PdS% — PPAVP + >yl dnl
1=1
+...

+T?dS? — PPAVe + )~ pldn?
1=1



The natural variables of U are (S,V, n;).

If all these variables are maintained constant:
dS =dS*+dS° +...+dS? =0
AV =dV® +dVP +...+dV? =0
dn; = dn; —l—dn?—l—...dn? =0,
1=1,2,...,c

If the system has reached equilibrium, then U
is minimized and

dUS,V,’I’Ll,TLQ,...,nC — O
This system has ¢ + 2 variables for each phase

¢ for a total of ¢(c + 2) variables.

Equilibrium of the entire system imposes ¢ + 2
constraints

e This reduces the number of independent
variables to (¢ — 1)(c + 2).

e For example, this could be used to elimi-

nate all the variables pertaining to phase
«. Thus:

dUS,V,’I’Ll,TLQ,...,nC — O



= (TP —T*)dSP — (PP — P*)dV"
+(uy = pS)dng + .+ (= p)dnfl + ..
+(T? —T*)dS? — (P? — P*)dV?

+(uf — uf)dnt + ...+ (ug — p)dng
e Fach of the variables in this equation are
independent.

e Therefore each of the coefficients of each of
these variables must be zero. i.e.

T° —T* =0

PP —_pa=0

pi — ps =0
etc.

pe —pg =0

e Thus, throughout the system:

e Temperature is uniform

T =TP = =T =T



e Pressure is uniform

pP*=—pf— =p¢=p

e Chemical potential of each component is

uniform.
pe = = ... =pg
etc.
pe = pl = ... = pg

This is the condition for multiphase,
multicomponent equilibrium



The Phase Rule
(see Section 6.6)

e Consider the criterion for equilbrium of some
component, ¢, among the ¢ phases:

e This establishes a set of relationships (in
addition to those established from the mas-
ter equation) among nf, such that these are
not independent of each other.

e These relationships provide (¢ — 1) con-
straints on component ¢ for a total of

c(¢ — 1) constraints.

e In addition, the fact that T" and P are constant
removes 2¢ — 2 degrees of freedom.

e But 7' and P are just a specific instance of
external intensive variables.

e There are systems in which other exter-
nal intensive variables could be important
(such as surface energy, external magnetic
or electrical fields, external force, etc.)



e Therefore use I to describe the number of
external intensive variables and generally
the condition of uniformity of the external
intensive variables removes I¢ — I degrees
of freedom.

How many degrees of freedom are left?

e For c components, there are ¢ — 1 independent
mole fractions

e Each of ¢ phases is described by ¢ — 1+ I inten-
sive variables for a total of ¢(c— 1+ 1) variables

e Because at equilibrium the ezxternal intensive
variables are uniform throughout the system,

this is reduced by ¢l — I.
e This leaves ¢(c — 1)+ 1

e The uniformity of chemical potential through-
out the system gives ¢ — 1 constraints for each
of ¢ components.

e Therefore the number of independent vari-
ables is:

dlc—1)+1—c(p—1)
c—o+1



e Thus the phase rule is:

“The number of truly independent intensive vari-
ables in a system composed of ¢ independent compo-
nents among ¢ phases subject to I external intensive

variables is ¢ — ¢ + I”

Calculation of Chemical Potentials

e Consider the master equation for a one compo-

nent system

dU =TdS — PdV

e Add d(PV —TS) to both sides:
dU +d(PV —TS) = TdS — PdV +d(PV —TS)
=1TdS — PdV + PdV +VdP —TdS — SdT
= VdP — SdT

e The Legendre transform of U with P and T as
the natural variables is G

dG = dU + d(PV — TS) = VdP — SdT

dG = (a_(;> dP + (8—G) dT
T or P

e But:

0P



e Therefore

0G
(EJT—V

0G
(ﬁﬁp—‘s

e Since S and V are always positive then (for a
one component system)

and

e (G always increases with P at constant 7T’
e (G always decreases with 1" at constant P

e For each component of a multicomponent sys-
tem:
d,LLZ' — VzdP — SZdT
where
e V, is the partial molar volume

e S, is partial molar entropy.

e What is the physical significance of partial mo-

lar volume?
— oV
7i= ()
on; T,Pn,;




e Lixperimentally this can be determined through

b # moles added

7 V (after addition) — V' (before addition)

where the number of moles added is the small-
est amount possible that yields an observable
change.

e In a multicomponent system, the volume change
may be either positive or negative.

e This reflects that nature of molecular in-
teractions among the various components
in the system.

e If the interaction of the added molecules
with the molecules already in the mixture
is strongly attractive, then the volume will
tend to decrease.

e If the interaction of the added molecules
with the molecules already in the mixture
is strongly repulsive, then the volume will
tend to increase.



More about Chemical Potential and Free Energy

e For a system of ¢ components:

G(total) = ping + pong + ...+ fene = Z LL; T

e In differential form

dG(total) = Z(,uz-dni + nidp;) =

i=1
Z pidn; + Z n;djL;
i=1 i=1
e Substituting for du; gives:

1=1

S;dT)]

e Collecting terms:

dP— arl

dG = i pidn;+
i=1

C
E n;V;
i—1

C
E niSi
i=1



e But:

[zc: n;V;| =V and [zc: nigi] =5
i=1 i=1

e Therefore:
dG = pidn; + VdP — SdT
i—1
and

> nidp; = VdP — SdT
1 =1

or

0=VdP - SdT - nidp;

1=1

e Thus if P and T are held constant then:

1=1

(This is the Gibbs-Duhem equation)



One component Ideal Gases

e Generally: u; = G = G/n. Thus:

Py Ty
Ap = /d,u:/ V(Ti,P)dP—/ S(T, Pf)dP
P;

T;

if we chose to change the 7' first then P.

e For an ideal gas, the first term is:

Py Pr pT. P
/ V (T, P)dP:/ RPZdP: RT;1n (Ff)

P; P; 2

e For the second term, first the definition of
entropy must be considered;

qu de SnRk
p p— = - — T
45 T T 2 T d

S(T,P) 5
(}% ) _ iln(T)—l—constant

T5/2
= ln[ 2 (Constant)]



e Recall that entropy is on an absolute scale,
therefore the constant matters.

e Sackur (1911) showed that the constant depends
on the molecular mass:

S(T, P T5/2M3/?

S( }% ) —In [ (another Constant)]
T5/2 ) f3/2

—In [ (0.311968 g~/ QK_5/2atm)]

e This is the Sackur-Tetrode equation.

e Tetrode (1912) showed that the constant
was truly universal.

e Carrying out the integration:

~ /. S(T, Py)dP = - R(T; — Ty)
CM3/2T3/? A3/2T5/2
—R |Tt1In / — T 1n ¢ :
Py Py

where (' is the Sackur-Tetrode constant.



e Therefore:

M3/2T.5/2
O M3/ 20/2 5
—RTf In < Pf / > + §R(Tf — Ti)

The Standard State

e Chemical potentials are not on an absolute
scale, but are with respect to an arbitrarily cho-
sen reference state.

e If the reference state is the ideal gas at a pres-
sure of 1 bar, then

(T, P) = p°(T) + RT In (1 ;J

e This definition of the standard state
requires that P be expressed in the units
of the reference state, bars.



Fugacity and the One-Component Real Gas

o The ideal gas law PV = RT allows the easy
integration of:

/1 i V(T,P)dP

bar

e but equations of state that describe real
gases often do not have such a convenient
functional form.

e Numerical integration of tabulated data is
inconvenient.

e G. N. Lewis (1901) proposed that f, fugacity be
defined as:

RT
duy = ——df = RT d In f; constant T’

f

e Fugacity has the units of pressure

o At low P, f — P. Therefore, integrating
from some low pressure Py (such that the
ideal gas equation of state is valid) to a
higher pressure P gives:

(P, T)—u(Py,T)=RT Inf — RT In P,

where f is the fugacity of the gas at pres-
sure P.



e Since the standard state is defined with respect
to 1 bar pressure:

w(Py,T) — p°(1 bar,T) = RT In Py

e Therefore
(P, T)— p’(1 bar,T) = RT In f

and all the nonideal behaviour is described by
f. The standard state may be thought of as the
real gas behaving ideally at 1 bar pressure.

e Uniform chemical potential means uniform fu-
gacity.

e Fugacity may be considered a property of
all phases, not just gases.
Calculation of Fugacity
e For a pure compound at constant T

ou RT

dhr (8P>Td var=—pd

e Subtracting (RT/P)dP = RT d In P from both
sides gives:

_ RT
(V— %) dP — RT(d In f — dln P)



Integrating from P = 0 to the P of interest
gives:

RTIn (%) :/OP (V— %) dP

V may be described through the compressibility
factor Z:

Z = £y
T
Z(P) =1+ A{(T)P + Ay(T)P? +
Z(V)=1+ B{T) + C_(?
4 v

Thus the integral becomes:

m(%) :/OP Z(P]l_ldp

At P sufficiently low for the virial expansion to
the second coeflicient to be accurate this inte-
gral becomes:

/OP Z(P]l_ldpg/op%;)dp




RT
. ( I ) _ B(T)P
P)  RT
Therefore
f= Pexp [B%TZZP]

Recalling that expz = 1+ x for small x:

pp (1 BDPY (1 D)

e Recalling that 1T, the Boyle temperature, is

the temperature at which B(T') = 0, it can be
shown:

o f<PwhenT <Tpg
o f>P whenT >1Tpg



Fugacity and Other Equations of State

e Consider the van der Waals equation of state:

T
p- @
V—-b Vv
e In terms of dimensionless variables this is:
- T 1
P = — —
(V—-1) V2
e Where o
~ V
V = —
b
_ b2
P=—
a
7oL
I'p
e It can be shown that
ln(i>:ln ~~T + ~1 —i
P PV —-1) (V-1 TV

e The quantity f/P is defined as the fugacity co-
efficient:
f

b ==
P



