
MOLECULES AND RADIATION

What is electromagnetic radiation?

• Radiation consists of photons which have both
particle and wave properties.
• In vacuum, travels in a constant direction

with constant speed (c ∼= 3× 108 m s−1).
• Has energy E = hν.
• Has wavelength λ = c/ν.
• Has wavenumber ν = 1/λ (usually with

units cm−1; note that wavenumbers are di-
rectly proportional to energy.)

An electomagnetic waves has two components:
• Electric field
• Magnetic field

which are right angles to each other and the direction
of propagation (z) of the photon. The amplitude
of the electric and magnetic fields fluctuates as the
photon propagates.

Since from the perspective of a photon, all a chemical
species is is an electrical field, we will be interested
only in the electrical component.



If the direction of propagation is the z direction, then
the electric field vector has only x and y components.

E = xEx + yEy

.
At any one frequency ν the amplitudes Ex and Ey
are:

Ex(z, t) = E◦xsin(kz − ωt+ δx)

Ey(z, t) = E◦ysin(kz − ωt+ δy)

where

k =
2π

λ
=

2πν

c
=
ω

c

and δx and δy are arbitrary phase constants.

The above equations hold for electromagnetic radi-
ation in a vacuum. If the medium is not a vacuum,
then the relative electric permittivity (εr) and the
relative magnetic permittivity (µr) must be consid-
ered. For a vacuum εr = 1 and µr = 1.



Polarization of light

If δx = δy + nπ, then light is polarized.

• For light polarized in the x=y plane, E◦x = E◦y .

• x-polarized light, E◦y = 0.

• y-polarized light, E◦x = 0.

The most general form of polarization is elliptical:

E± = xE◦xcos(kx− ωt)± yE◦ysin(kx− ωt)

where the + sign indicates right elliptical polarized
light and the - sign left elliptical polarized light with
reference to the rotation of E.

• E◦x = E◦y : circularly polarized light



Measures of Intensity of Radiation

• Considered either in terms of the number of
photons at each frequency or in terms of the
intensity of the electric field.

• For a monochromatic radiation field (all pho-
tons have the same energy), the energy density
ρ is:

ρ =
1

2
ε0(E◦)2

where ε0 is the permittivity of free space.

• Radiation intensity is defined as the flux of ra-
diant energy.

I = energy per unit area per unit time = ρc

• Power of radiation field (relevant for lasers) is
product of I and area illuminated.



Blackbody Radiation

• Blackbody curve long observed and character-
ized, but could not be accounted for by classical
physics.

• A blackbody is an idealized absorber and emit-
ter, in which the interior walls of a cavity are
in thermal equilibrium with the radiation inside
the cavity.
• The experimental approximation to a

blackbody is an aperture of a cavity. All
radiation that escapes the aperture was in
equilibrium with the walls of the cavity and
all radiation that strikes the aperture is ab-
sorbed by the cavity.

• Satisfactorily explained for the first time in 1901
by Planck, who postulated the existence of a
quantum of light.
• Classically, energy of a light source depends

on its intensity
• Planck postulated that E = hν and that

the radiation inside the cavity could be
treated as filled with oscillators.



Planck’s Treatment of Blackbody Radiation

• Assume set of quantized states of oscillators
• Frequency of emitted light must correspond

to an oscillator frequency, therefore assume
allowed frequencies are integer multiples of
some ν: εn = nhν.
• Assume distribution of oscillators over en-

ergies described by the Maxwell-Boltzmann
distribution:

N(n) = N0e
−εn/kT

• Now consider average energy of an oscillator:

ε̄ =

∞∑
n=0

N(n)εn

∞∑
n=0

N(n)

ε̄ =

∞∑
n=0

N0e
−nhν/kTnhν

∞∑
n=0

N0e−nhν/kT

ε̄ =
0 + hνe−hν/kT + 2hνe−2hν/kT+...

1 + e−hν/kT + e−2hν/kT + . . .



Let x = e−hν/kT , then:

ε̄ = hνx

(
1 + 2x+ 3x2 + 4x3 + . . .

1 + x+ x2 + x3 + . . .

)

But

1 + 2x+ 3x2 + 4x3 + . . . = (1− x)−2

and
1 + x+ x2 + x3 + . . . = (1− x)−1

Therefore:

ε̄ = hνx
(1− x)−2

(1− x)−1
=

hνx

(1− x)

ε̄ =
hνx

(1− x)
=

hν
1
x − 1

=
hν

ehν/kT − 1

The Jean’s number, n(λ) = 8π/λ4 gives the number
density of oscillators of wavelength λ. Therefore the
energy density per wavelength is:

ρ(λ;T ) = n(λ)ε̄ =
8πhc

λ5

1

ehc/λkT − 1



To determine the total energy density of the radia-
tion, this distribution function needs to be integrated
over wavelength.

ρ(T ) =

∫ ∞

0

8πhc

λ5

1

ehc/λkT − 1
dλ

(The integrand is denoted ρλ(λ;T ).)

This distribution may be written in terms of fre-
quency instead of wavelength. Recalling that
ν = c/λ; dν = −c dλ/λ2:

ρ(T ) = −
∫ 0

∞

8πhν3

c3
1

ehν/kT − 1
dν

=

∫ ∞

0

8πhν3

c3
1

ehν/kT − 1
dν

(This integrand is denoted ρ(ν;T ).)

Also of interest is the photon density in terms of
either wavelength:

ρλφ(λ;T ) dλ =
ρλ(λ;T )

hc/λ
dλ =

8π

λ4

1

ehc/λkT − 1
dλ

or of the frequency:

ρφ(ν;T ) dν =
ρ(ν;T )

hν
dν =

8πν2

c3
1

ehν/kT − 1
dν



Integration of the blackbody distribution

• Consider the energy distribution function in
terms of λ
• Use a substitution of variable, x = hc/λkT

• dx = −hc/(λ2kT )dλ
• The integral becomes:

ρ(T ) =

∫ ∞

0

8πhc

λ5

1

ehc/λkT − 1
dλ

= −kT
∫ ∞

0

8π

λ3

1

ehc/λkT − 1

(
− hc

λ2kT

)
dλ

= −kT
∫ 0

∞

8π(kT )3

(hc)3
x3 1

ex − 1
dx

=
8π(kT )4

(hc)3

∫ ∞

0

x3 1

ex − 1
dx

• The integral in x is a definite integral found in
standard tables of integrals:

∫ ∞

0

x3 1

ex − 1
dx =

π4

15

• Thus:

ρ(T ) =
8π5(kT )4

15(hc)3
= ηT 4 =

4σ

c
T 4

where σ is the Stephan-Boltzmann constant.



Fundamental Interactions of Matter and Radiation

• Absorption
atom + photon → energized atom

• Spontaneous emission
energized atom → de-energized atom + photon

• Stimulated emission
energized atom + photon →

de-energized atom + two identical photons
• LASER is the acronym for Light

Amplification by Stimulated Emission of
Radiation
• MASER is the acronym for Microwave

Amplification by Stimulated Emission of
Radiation
• The identical photons are said to be coher-

ent.

• What are the probabilities of theses processes?



Probability of interaction of atoms and radiation

• Laid out by Einstein in 1917.
• Assume a sample of atoms (all of one type) at

thermal equilbrium.
• Therefore described by the Boltzmann dis-

tribution
• Consider two energy levels, 1 and 2, of an atom

with energy E2 > E1.
• The ratio of the populations of these energy

levels is:

N2

N1
=
g2

g1
e−(E2−E1)/kBT =

g2

g1
e−hν12/kBT

where ν12 = (E2 −E1)/h
• Absorption increases the number of molecules in

level 2 and decreases the number of molecules
in level 1
• Emission decreases the number of molecules in

level 2 and increases the number of molecules in
level 1
• If the system is at equilibrium then:

dN2

dt
= 0 = absorption rate

−spontaneous emission rate

−stimulated emission rate



• The rate of absorption may be written as:

absorption rate = N1B12ρ(ν12)

where ρ(ν12) is the radiation density at ν12.

• Similary the rate of emission may be written as:

spontaneous emission rate = N2A21

stimulated emission rate = N2B21ρ(ν12)

where A21 is the spontaneous emission coeffi-
cient and B21 is the stimulated emission coeffi-
cient.

Thus:

N2

N1
=

B12ρ(ν12)

B21ρ(ν12) +A21

Therefore:

ρ(ν12) =
A21

(
g2

g1

)
e−hν12/kBT

B12 −B21

(
g2

g1

)
e−hν12/kBT



• From quantum mechanics, it can be shown:

B12 =
g2

g1
B21

Therefore

A21 =

(
8πhν3

c3

)
B21

A non-zero value of A21 is necessary to maintain
equilibrium in a non-zero radiation field.

Beer Lambert Law

• Recall:
I(ν) = I0(ν)e−abc

where
• a is the absorbance coefficient

(which depends on ν),
• b is breadth or optical path length
• c is concentration.

a is related to B12



More about the Beer-Lambert Law

• Often written in logarithmic form:

ln

(
I0
I

)
= abc

where ln (I0/I) is absorbance (base e).

Transmittance is defined as I/I0.

Many combinations of units are encountered for a,
b, and c

• if c is number density in units of m−3, b is length
in units of m, then a has units of m2 and is the
absorption cross section.
• The absorption cross section is not to be in-

terpreted as a physical area associated with
the molecule.

• if c is concentration in mol L−1, b is in cm, then
a has units of L mol−1 cm−1 and is known as
molar absorptivity or molar absorption
coefficient or molar extinction coefficient.

• In using data from literature sources, it is neces-
sary to ascertain whether absorbance is defined
with respect to base e or base 10 and what units
are appropriate for a.



Atomic Spectroscopy and Selection Rules

• Are transitions among all energy levels of an
atom allowed?
• Why or why not?

• Must first consider electronic configuration of
the atom.
• Each electron is represented by a unique set

of quantum numbers (n, l, ml, ms)
• These quantum numbers are associated

with the corresponding wavefunction.
• Wavefunctions have symmetry properties.

• The interaction of a photon with an atom is a
time dependent perturbation.
• The effect of the perturbation is described

mathematically as an “operator”. An oper-
ator when applied to a function, performs
an operation on the function.



• To determine the probability of a photon being
absorbed
• Take the wavefunction for the initial (un-

perturbed) state
• Operate on that wavefunction with the op-

erator corresponding to the photon
• Multiply by the complex conjugate of the

wavefunction for the final state
• Integrate over all space

• Whether a nonzero number results from this de-
pends on the symmetry of the overall function
to be integrated.
• Can set up a matrix of these integrals with one

index corresponding to the initial state and the
other index corresponding to the final state.
• Each integral is a matrix element.
• If the value of the integral is zero, then the

transition does not occur.
• If the value of the integral is non-zero, then

the transition does occur. The Einstein
absorption coefficient B12 is related to the
square of the value of the integral.
• From this it is possible to infer subsets of

the quantum states among which transi-
tions are allowed. This is described in
terms of the selection rules.



More about selection rules

• Consider first some atomic quantum numbers:
• S - total spin angular momentum
• L - total orbital angular momentum
• J - total angular momentum (vector sum

of L and S)

• The selection rules for transition due to dipole
interaction (i.e. a photon) are:

∆L = −1, 0, 1

∆S = 0

Thus:
∆J = −1, 0, 1

with the exclusion of transitions of the type:

L = 0 → L = 0 and J = 0 → J = 0

What is the physical significance of this?



Physical significance of selection rules?

• First consider ∆S:
• If ∆S = 0, then spin multiplicity is main-

tained. This means that singlet states go to
singlet states, triplet state to triplet states,
etc.

• Now consider ∆L:
• The selection rule ∆L = −1, 0, 1 is a con-

sequence of the conservation of momentum.
|∆L| = 1 is due to the angular momentum
of the photon.
• The value of L contains information about

the parity of the wavefunction. Therefore
if ∆L = ±1 (e.g. dipole allowed transi-
tions), then the transition changes the par-
ity of the wavefunction.

• Now consider ∆J :
• The ∆J = −1, 0, 1 (exclusive of J = 0 →
J = 0) reflects spin-orbit coupling.

Selection rules allow us to predict spectra.



Spontaneous Emission

• Described by A21.

• Often follows an absorption event.

• If spontaneous emission occurs, then how can
an excited state be a stationary state?
• A stationary state is regarded as having a

fixed energy.
• But the Heisenburg uncertainty principle

states ∆E∆t ≥ h̄/2
• ∆t may be regarded as the lifetime of the

higher energy state.
• ∆E is the uncertainty in the energy of the

excited state. (This is why spectroscopic
lines have Lorentzian line shapes.)



Photodissociation and Photoionization

• Represent irreversible chemical changes:

AB + hν → A + B

C + hν → C+ + e−

• Consider first photodissociation:
• Recall (from first year) molecular orbitals.
• Bonding orbitals are attractive
• Antibonding orbitals are repulsive

• Consider absorption of photon that excites from
a bonding orbital to an antibonding orbital in a
transition allowed by the selection rules.
• The antibonding orbital has no miniumum,

so the molecule is now dissociated.



Predissociation

• Another way for photodissociation to occur
• Energy curves corresponding to molecular

orbitals can cross each other.
• Therefore an excitation from one bonding

orbital to another (higher energy) bonding
orbital can lead to dissociation if the latter
curve crosses another curve which is due to
antibonding orbital, dissociation may oc-
cur.

AB + hν → AB∗(bound) → AB∗∗(unbound)

→ A + B

• The first step is absorption of a photon

• Followed by a nonradiative transition

• Followed by dissociation



Photoionization

• Consider a transition between atomic orbitals of
an oxygen atom.

• Ground state configuration is 1s22s22p4

• First excitation allowed by selection rules
is to 1s22s22p33s1 where one of the un-
paired 2p electrons has been excited to the
3s state.

• Also allowed are transitions to any ns state.

• Recall that the energy of atomic orbitals
(relative to the ionization limit) are pro-
portional to 1/n2.

• Ionization corresponds to n → ∞, leaving
O+ in the ground state (1s22s22p3).

• Ionization occurs from states other than
the atomic ground state to states other
than the ionic ground state.


