Global Cycles

- Your package includes diagrams from:
 - Brasseur
 - Manahan
 - Safe (unpublished)
- Will consider global cycles for:
 - Energy
 - Water (Hydrologic cycle)
 - Carbon
 - Nitrogen
 - Oxygen
 - Phosphorous
 - Sulphur
- All these cycles are coupled:
 - To each other
 - To anthropogenic impacts
 - To climatic impacts

Energy Cycle

- The two main sources of energy are:
 - The Sun
 - The Earth
- Each of these may be treated as a blackbody radiator:

$$\rho(\lambda;T)d\lambda = \frac{8\pi hc}{\lambda^5} \frac{1}{e^{hc/\lambda kT} - 1} d\lambda$$

• This integrates to:

$$\int_{0}^{\infty} \rho(\lambda; T) d\lambda = \frac{8\pi^{5}}{15} \frac{(kT^{4})}{(hc)^{3}} = \eta T^{4}$$

- Radiation from the sun that reaches the earth is insolation and is expressed as radiative flux in units of W m⁻² where 1 W = 1 J s⁻¹
 - Energy flux intercepted by the earth is 1370 W m⁻²
 - $\bullet\,$ Energy flux captured by the earth is 342 W m $^{-2}$
- The energy cycle is coupled to the hydrologic cycle by the thermal properties of water.
 - Water requires energy to undergo phase transitions.

$$\Delta H_{fus} = 6.008 \text{ kJ mol}^{-1}$$
$$\frac{C_p(l)}{R} = 12.16 - 1.943 \times 10^{-2}T + 3.042 \times 10^{-5}T^2$$

 $\Delta H_{vap} = 40.66 \text{ kJ mol}^{-1}$ $C_p(g) = 33.59 \text{ J mol}^{-1} \text{ K}^{-1}$

- The energy cycle is coupled to the carbon cycle by:
 - Photosynthesis (which is also essential for nitrogen and phosphorous fixation.
 - Burning of fossil fuels.
- Sources of energy are well-defined
 - $\bullet\,$ Sun and earth
- Sinks of energy include:
 - Photosynthesis
 - Thermal absorption
 - \bullet Chemical
 - Mechanical
 - Reflection
 - Scattering
- The atmosphere has a significant role in the energy cycle because it is where absorption and scattering occur.

Water Cycle (or Hydrologic cycle)

- In the energy cycle we have already discussed the thermodynamic properties of water.
 - Because of these thermodynamic properties, water acts as a thermal buffer, especially at temperatures near the freezing point.
- Examination of a phase diagram for water indicates the temperature and pressure for coexistence of phases.
 - It is from this diagram that relative humidity, dew point and frost point may be determined.
 - For a given T, the relative humidity is:

$$\frac{P_{actual}(H_2O)}{P_{equilibirum}(H_2O)}$$

- The dew point or the frost point is the temperature at which the ambient $P(H_2O)$ becomes the $P_{equilibirum}(H_2O)$
- As a saturated air mass cools it must lose water by precipitation.
- Reservoirs and fluxes for the hydrologic cycle include:

Reservoir	$10^{6} \rm ~km^{+3}$	Fluxes
Ground water	8	precipitation
Surface water	0.1 (Lakes) 0.1 (Salt lakes)	evaporation

0.001 (Rivers)

Snow & Ice		transpiration.
Clouds & Vapour	0.013	cloud momentum
Oceans	1350	run off
Glaciers & icecaps	29	movement of moist air

Soil Moisture 0.07

- The hydrosphere is defined as where water is found.
- The lithosphere is defined as the portion of the geosphere that is accessible to water.
- Water is a significant factor in human history.
 - Denial of access to water is a tool of war, siege, and oppression.
 - Movement of nomadic peoples often correlated with the availability of water.
 - Presence of water is a significant factor in human settlement patterns.
 - Increasing important issue in international trade.
- Water is an economic factor for:
 - Transport
 - Coolant
 - Raw Material
- Anthropogenic impacts on water include:
 - Contamination
 - Warming
 - Salinization

Impact of Water Usage

- For the United States of America
 - Precipitation is $1.48 \times 10^{13} \text{ L day}^{-1}$
 - Evaporation is $1.02 \times 10^{13} \text{ L day}^{-1}$
 - which leaves $4.6 \times 10^{12} \text{ L day}^{-1}$
- Daily usage in the USA has evolved with time:

Usage	$L day^{-1}$	$L day^{-1} capita^{-1}$ (Domestic Use)
2002		1200
1990	1.6×10^{12}	600
1900	1.7×10^{11}	40

- This usage breaks down as:
 - 46 % agricultural
 - 46% industrial
 - 8% municipal
- The impact of this usage has caused:
 - The depletion of the Ogallala aquifer
 - Salinization of irrigated soils
 - Desertification
 - Deterioration of water quality
- Precipitation is irregularly distributed.
 - Linked to terrain and energy transfer.
- The likelihood of precipitation is linked to the thermal lapse rate.

Lapse Rate =
$$\frac{\Delta T}{\Delta h}$$

where h is altitude.

- Warm air rises and cools.
- $\bullet\,$ For dry air undergoing an adiabatic expansion, the lapse rate is 10° C/km.
- $\bullet\,$ For moist air undergoing an adiabatic expansion, the lapse rate is 6° C/km.
- The difference is due to the heat capacity of water.
- The difference in lapse rates can contribute to the forming of thermal inversion as wet air moves over dry air.
- Inversions occur when warm air rest on top of cooler air.
 - Traps vertical circulation patterns.
 - Decreases mixing volumes for ground level emissions.
- Inversions can also be caused by the difference in the heat capacity of air and ground.
 - These are radiation inversions.
- Another type of inversion is a subsidence inversion when high air drops, compresses, and warms.
- Marine inversions are due to the difference in heat capacity of the ocean and land.
 - Land warms more rapidly than ocean.
 - Cool air from the ocean moves under the warmer air originally over the land mass.

The Carbon Cycle

- Consider the oxidation states of carbon.
 - The range of oxidation states is determined by the ground state electronic configuration of the C atom, $1s^22s^22p^2$.
 - Carbon must either gain four electrons or lose four electrons to have a closed shell configuration.
 - Range of oxidation states is therefore +4 to -4.

- Some examples of oxidation state of carbon:
 - CO_2 is in oxidation state +4.
 - CO is in oxidation state +2.
 - HCO is in oxidation state +1.
 - H₂CO, C(graphite), C(diamond) are in oxidation state 0.
 - C_2H_2 is in oxidation state -1.
 - C_2H_4 is oxidation state -2.
 - CH₃ is in oxidation state -3.
 - CH₄ is in oxidation state -4.
- Carbon fixation puts carbon into biologically available forms.
 - Photosynthesis uses 8 photons to drive the reaction:

$$8CO_2 + 6H_2O \rightarrow C_6H_{12}O_6 + 6O_2$$

which requires 2801.3 kJ per mole of glucose (467 kJ per mole of carbon).

- Photosynthesis is coupled to the energy cycle by the phosphorous cycle.
- The CO₂ cycle is coupled to the hydrologic and energy cycle.
 - Before 1800, the level of atmospheric CO₂ was about 280 ppm.
 - The 1800's saw the beginning of the industrial revolution and increased use of fossil fuel.
 - In 1994, atmospheric CO_2 was observed to be 358 ppm.
- The global budget of CO₂ has not been fully determined.

 $CO_2(atmospheric) + H_2O \rightarrow solubilized speciated C(IV)$

$$CO_{2}(g) \rightleftharpoons CO_{2}(aq)$$
$$CO_{2}(aq) + H_{2}O \rightleftharpoons H_{2}CO_{3}(aq)$$
$$H_{2}CO_{3}(aq) \rightleftharpoons HCO_{3}^{-}(aq) + H^{+}(aq)$$
$$HCO_{3}^{-} \rightleftharpoons CO_{3}^{2-} + H^{+}$$

- CO_3^{2-} precipitates and is incorporated into shells of aquatic animals such as coral.
- Organic carbon comprises oxidation states 0 to -4.
 - Living organic carbon may be represented as $\{CH_2O\}$
 - Fossil organic carbon is reduced and may be represented as $(CH_2)_n H_2$ and is produced by biogeochemical processes.
- Reservoirs of organic carbon include:
 - Oceans with 5.8×10^{14} moles of carbon in biomass, 5×10^{15} moles C as suspended {CH₂O} particles, 5.8×10^{16} moles C as dissolved organic carbon.
 - By comparison, oceans contain 3.2×10^{18} moles of C as C(IV).
 - On land, 4×10^{16} moles C is found in living biomass with a residence time of 16 years.
 - On land, living and dead biomass combined account for 1×10^{17} moles of C with a residence time of 40 years.

• The atmosphere provides a reservoir for a number of carbon containing species.

ppm	Species	mol C	au
1.7	CH_4	5.2×10^{14}	$3.6 \ \mathrm{yrs}$
0.1	СО	1.9×10^{13}	$0.1 { m yr}$
360	CO_2	5×10^{16}	$4 \mathrm{yr}$

- In addition the atmosphere contains smog (smoky fog) and carbon containing particulates (such as soot) which account for 2.9×10^{14} mol of C.
- The atmospheric reservoirs are coupled to the biomass cycle.
- Recent sediments under the ocean are also significant reservoirs for carbon.
 - 50.8 $\times 10^{20}$ mol of C as CO_3^{2-}
 - 10.4×10^{20} mol of C as {CH₂O}
 - Both of these have a lifetime 342 years.
- Sources for recent sediments are in the form of:
 - $6.1 \times 10^{12} \text{ mol C yr}^{-1}$ as {CH₂O}
 - $11.8 \times 10^{12} \text{ mol C yr}^{-1} \text{ as CO}_3^{2-}$
- Sinks for recent sediments consist of transfer to old sediments (burial):
 - $2.5 \times 10^{12} \text{ mol C yr}^{-1}$ as {CH₂O}
 - 15.4×10^{12} mol C yr⁻¹ as CO₃²⁻ in the form of CaCO₃ and MgCO₃
 - These sinks are balanced by transfer from old to recent sediments.
- Anthropogenic activity extracts 3.88×10^{12} mol C yr⁻¹ as fossil fuel.
 - This is a net loss.

Nitrogen Cycle

- Consider the oxidation states of nitrogen.
 - The range of oxidation states is determined by the ground state electronic configuration of the N atom, $1s^22s^22p^3$.
 - Nitrogen must either gain three electrons or lose five electrons to have a closed shell configuration.
 - Range of oxidation states is therefore +5 to -3.
- Some examples of oxidation state of nitrogen:
 - NO_3^- and N_2O_5 are in oxidation state +5.
 - NO₂ is in oxidation state +4.
 - N₂ is in oxidation state 0.
 - NH_3 and NH_4^+ are in oxidation state -3.
- Nitrogen is essential to amino acids.
- The atmosphere is the main reservoir of nitrogen:
 - Contains 3.9×10^{18} N

- 78% of the atmosphere
- $\tau \sim 10^7$ years
- In order to be biologically available, N must be fixed.
 - 2 \times 10^{11} kg N fixed a year.
 - Anthropogenic fixation accounts for 5 \times 10¹⁰ kg N y⁻¹.
- Biological fixation of nitrogen is coupled to the carbon cycle.

$$3 {CH_2O} + 2 N_2 + 3 H_2O + 4 H^+ \rightarrow 3 CO_2 + 4 NH_4^+$$

- If the pH is sufficiently high, NH₃ is released.
- Fixation of nitrogen may be considered from a redox perspective:

$$\begin{split} N_2 + 8 H^+ + 6 e^- &\rightarrow 2 N H_4^+ \\ \{ C H_2 O \} + H_2 O &\rightarrow C O_2 + 4 e^- \end{split}$$

• Biological fixation occurs with

• Aquatic	organism	such	as	Azobacter,
Clostridium,	and	C_{2}	yanobacter	(formerly
known as bluegree	n algae).			

- Terrestial organism Rhizobium in symbiosis with legumes (peas, beans, peanuts). The Rhizobium infect root hairs to draw on the legumes organic carbon from photosynthesis.
- Not enough nitrogen is fixed annually to satisfy the current biomass requirements.
- Anthropogenic fixation occurs by the Haber Process:

$$N_2 + 3H_2 \rightarrow 2NH_3$$

- The process is catalyzed by Fe, K_2O , and Al_2O_3
- The process is endothermic with $\Delta H = 92.6 \text{ kJ mol}^{-1} \text{ N}_2$.
- Used to form NH_4NO_3 for fertilizer and explosives.
- Organically bound N occurs in humus (N/C $\approx 1/10)$ and can be released on a time scale similar to that of plant growth.
- Nitrification is the process of transforming N(-3) to N(+5):
 - From a redox perspective:

$$\begin{aligned} \mathrm{NH}_4^+ &+ 3 \; \mathrm{H}_2\mathrm{O} \to \mathrm{NO}_3^- + 10 \; \mathrm{H}^+ + 8 \; \mathrm{e}^- \\ &4 \; \mathrm{H}^+ + 4 \; \mathrm{e}^- + \mathrm{O}_2 \to 2 \; \mathrm{H}_2\mathrm{O} \end{aligned}$$

$$NH_4^+ + 2 O_2 \rightarrow NO_3^- + H_2O + 2 H^+$$

- Nitrification is a thermodynamically favoured process with $K = 10^{60.72} = 5.25 \times 10^{60}$.
- NO_3^- may be absorbed by plants.
- Nitrification can occurs naturally as a two step process mediated by bacteria:
 - $\mathrm{NH}_4^+ \to \mathrm{NO}_2^-$ is mediated by nitrosomonas.
 - $\mathrm{NO}_2^- \to \mathrm{NO}_3^-$ is mediated by nitrobacter.
 - $\bullet\,$ Both are obligate aerobes that require ${\rm O}_2$ for the oxidation process.

- This is why aeration of soil is important.
- NO_3^- may act as an oxygen source for anaerobes.
 - Do not want nitrification to occur during sewage treatment because of subsequent denitrification.
- Thunderstorms may contribute to the production of NO₃⁻.

$$\begin{array}{ccc} N_2 + O_2 \rightarrow 2 NO \\ NO \rightarrow \cdots \rightarrow HNO_3 \end{array}$$
 is scavenged efficiently by cloud

- droplets.
 Decay of biomass leads to the mineralization of nitrogen in the form of NO₂⁻ and NO₃⁻.
- Denitrification is the removal of nitrogen from the biologically available forms.
 - Returns N₂ to the atmosphere.

• HNO₃

- Involves the reduction of NO₃⁻ and the oxidation of NH₃.
- Reduction of NO_3^- produces N_2O and NO, both of which are greenhouse gases.
- If reduction of NO₃⁻ occurs during sewage treatment, it is undesirable.
- Denitrification can also occur during sewage treatment: $4 \text{ NO}_3^- + 24 \text{ H}^+ + 20 \text{ e}^- \rightarrow 2 \text{ N}_2 + 12 \text{ H}_2\text{O}$

 $5 {CH_2O} + 5 H_2O \rightarrow 5 CO_2 + 20 H^+ + 20 e^-$

 $4 \text{ NO}_3^- + 5 \{\text{CH}_2\text{O}\} + 4 \text{ H}^+ \rightarrow 2 \text{ N}_2 + 5 \text{ CO}_2 + 2 \text{ H}_2\text{O}$

• N_2 and CO_2 bubbles are formed and prevent settling.

Phosphorous Cycle

- Consider the oxidation states of phosphorous.
 - The range of oxidation states is determined by the ground state electronic configuration of the P atom, $1s^22s^22p^63s^23p^3$.
 - Phosphorous must either gain three electrons or lose five electrons to have a closed shell configuration.
 - 3d orbitals available for contribution expanded octet configurations.
 - Range of oxidation states is therefore +5 to -3.
- Some examples of oxidation state of phosphorous:
 - PH_3 is in oxidation state +3
 - PO_4^{3-} , HPO_4^{2-} , $H_2PO_4^{-}$, H_3PO_4 and associated polyphosphates are in oxidation state +5.
- In many cases, P is the limiting element in biological uptake.
 - C:N:P are taken up in the ratio 100:15:1
 - P is essential to ADP and ATP in organisms.
- The primary reservoir is the geosphere as various forms of phosphate.
 - There is no gas phase reservoir for P.

- The solubility of phosphates is strongly pH dependent.
- Phosphates in the geosphere include insoluble mineral forms of phosphate:
 - Hydroxyapatite is very insoluble ($K_{sp} = 10^{-59} M^9$)

$$Ca_5(PO_4)_3OH \rightleftharpoons 5 Ca^{2+} + 3 PO_4^{-3} + OH^{-}$$

- Hydroxyapatite is also found in tooth enamel.
- Occluded phosphorous is not biologically available.
 - $\bullet\,$ Soil contains ${\rm Fe_2O_3}$ and ${\rm Al_2O_3}$ and aluminosilicates.
 - The associated hydrates form an amorphous matrix, with orthophosphate (monophosphate) contained within the matrix.
- Non-occluded phosphorous is primarily in the form of orthophosphate bound to surface silicate (SiO₂) or CaCO₃.
 - Depending on pH, this is more soluble than occluded phosphorous
- Anthropogenic environmental impact of phosphorous compounds is of most concern in aquatic reservoirs.
- Solubility of phosphates are closely connected to their speciation.
 - Consider rock phosphate, $Ca_3(PO_4)_2$, which has a $K_{sp} = 10^{-24} M^5$

$$Ca_3(PO_4)_2 \rightleftharpoons 3 Ca^{2+} + 2 PO_4^{2-}$$

• This equilibrates with HPO_4^{2-} and $\text{H}_2\text{PO}_4^{-}$ in according with pH, the above K_{sp} and K_{a1} , K_{a2} , and K_{a3} .

$$H_3PO_4 \rightleftharpoons H_2PO_4^- + H^+; K_{a1} = 7.5 \times 10^{-3} M$$

 $H_2PO_4^- \rightleftharpoons HPO_4^{2-} + H^+; K_{a2} = 6.2 \times 10^{-8} M$
 $HPO_4^- \rightleftharpoons PO_4^{3-} + H^+; K_{a3} = 4.8 \times 10^{-13} M$

- Solubility of CaHPO₄ and Ca(H₂PO₄)₂ can be calculated from the above reactions.
- It is the protonated forms that are effective for biological uptake.
- Phosphate for fertilizer is prepared by mixing sulphuric acid with rock phosphate.
- Anthropogenic impact on P levels is due to:
 - Phosphate fertilizers
 - sewage
 - detergents
- Phosphate in detergents was primarily in the form of sodium tripolyphosphate or STP, $Na_3H_2P_3O_{10}$.
 - STP was added as a "builder", or a source of hydroxide ion, but does not precipitate Ca²⁺
 - This keeps the pH high enough that the detergent molecules are in their ionic form.
 - The ionic form of a detergent or soap is active as a surfactant.

- In addition to detergent (or soap) and a builder, laundry detergent products may contain bleach, zeolites, non-ionic surfactants, and bluing or brightening agents.
- Use of STP in detergents has been restricted since the late 1970's. In Canada and Europe the sodium salt of nitrilotriacetic acid (NTA) is used as a builder instead of STP.
- Discharge of phosphates can lead to algal blooms in lakes and can promote eutrophication.
 - Treatment of sewage removes phosphates by precipitation with Ca²⁺ at high pH.
- Biologically, phosphate is found in:
 - Nucleic acids
 - ADP/ATP
 - bones and teeth

• Phosphorothionate and phosophorodithionate pesticides do not bioaccumulate.

Oxygen Cycle

- Electronic configuration of oxygen is $1s^22s^22p^4$.
 - Oxidation states are 0,-1, and -2.
- Some examples of oxidation states of oxygen are:
 - Oxidation state 0: O_2
 - Oxidation state -1: OH radical, peroxides HOOH, ROOH.
 - Oxidation state -2: H₂O, oxides, and organic compounds.
- Coupled to the energy cycle and the carbon cycle by photosynthesis.
 - All atmospheric O₂ comes from photosynthesis.
- Primary reservoir is the atmosphere.
 - \bullet O, O₂, and O₃ are involved in the Chapman Cycle and are found in the mesosphere, stratosphere, and troposphere.
- Many oxygen containing species in the atmosphere.
 - Nitrogen oxide species NO_x and NO_y include NO, NO_2 , NO_3 , and N_2O .
 - Sulphur containing species SO_x refers to SO_2 which can be further oxidized.
 - Hydrogen containing species HO_x refers to OH and HO_2 , which are important free radicals in atmospheric chemistry.
 - Oxygen is also found in atmospheric organic compounds, known as VOCs or volatile organic carbon
- Sinks for oxygen include weathering and the formation of metal oxides.
 - These processes are exothermic and spontaneous.
 - In constrast, the smelting of metals (reducing the oxide to the pure metal) is endothermic.
- Properties and reactivity of atmospheric oxygen have their origins in the electronic structure with unpaired electrons in both the atom and diatom.
 - Two common electronic states of the atom are the ground state (³P) and the excited state (¹D).

- Two common electronic states of the molecule are the ground state $({}^{3}\Pi)$ and the excited state $({}^{1}\Delta)$.
- The main source of atmospheric OH is:

$$O(^1D) + H_2O \rightarrow 2OH$$

• The source of $O(^1D)$ is the photolysis of ozone:

$$O_3 + h\nu \to O(^1D) + O_2(^1\Delta)$$

• Ozone also photolyzes to the ground states:

$$O_3 + h\nu \rightarrow O(^{3}P) + O_2(^{3}\Pi)$$

• Photons of wavelength 310 nm or shorter required.

Sulphur Cycle

- Electronic configuration of sulphur is $1s^22s^22p^63s^23p^4$.
 - Oxidation states range from +6 to -2.
- Some examples of the oxidation states of sulphur:
 - SO_3 , H_2SO_4 , HSO_4^- , and SO_4^{2-} are in oxidation state +6.
 - SO_2 , H_2SO_3 , HSO_3^- , and SO_3^{2-} are in oxidation state +4.
 - S_8 is in oxidation state 0.
 - S_2^{2-} and FeS₂ (pyrite) are in oxidation state -1.
 - H_2S and Fe_2S_3 contain S in oxidation state -2.
- The S cycle is coupled to the O cycle.
- The geosphere is an important reservoir with S found in:
 - Sulphate salts
 - Sulphite salts
 - metal disulfide ores
 - metal sulphide ores.
 - Since proteins contain S, fossil fuels will contain S.
- Anthropogenic impacts are most significant in the atmospheric reservoir.
- Atmospheric species include:
 - Sulphur dioxide, SO₂
 - Dimethyl sulphide or DMS, CH₃SCH₃
 - Dimethyl disulphide or DMDS, CH₃SSCH₃
 - Carbonyl sulphide or OCS, O=C=S
 - Carbon disulphide, S=C=S
 - Hydrogen sulphide or (H₂S)
- Anthropogenic emissions are three times natural emissions.
 - $\bullet\,$ Most anthropogenic emissions are as SO_2 from smelting of metals and combustion of fossil fuels.

- In contrast, most natural emissions are reduced forms of sulphur since anaerobic organisms use S(VI) as a source of oxygen.
- Natural emissions include DMS, CS₂, and OCS from the reduction of amino acids.
- With the exception of OCS, the reduced species can be oxidized in the troposphere.
- OCS is transported to the stratosphere where it is photolyzed.
- Volcanic emissions include SO₂, H₂S, and OCS.
 - May be injected directly into the stratosphere.
- Atmospheric oxidation of H_2S proceeds by the sequence:

$$\begin{array}{l} \mathrm{H_2S} + \mathrm{OH} \rightarrow \mathrm{HS} + \mathrm{H_2O} \\ \mathrm{HS} + \mathrm{O_2} \rightarrow \mathrm{OH} + \mathrm{SO} \\ \mathrm{SO} + \mathrm{O_2} \rightarrow \mathrm{SO_2} + \mathrm{O} \end{array}$$

- Atmospheric oxidation of SO₂ proceeds by several routes.
 - Direct gas phase oxidation is too slow to be significant.

$$SO_2 + O_2 \rightarrow SO_3 + O$$

- Gas phase oxidation can occur with photochemical oxidants formed in photochemical smog by nonmethane
 (NMHC). These oxidants includes
 OH,
 HO₂, O, O₃, NO₃, N₂O₅, ROO, and RO.
- Aqueous phase oxidation inside cloud droplets is the dominant route.
 - SO₂ is effectively scavenged by cloud droplets as are oxidants such as O₂, O₃, HO, H₂O₂, ROOH, CH₃OOH, and CH₃(CO)OOH (peroxyacetic acid or PAA).
 - Aqueous phase oxidation with O_2 is catalyzed by Fe^{2+} , Mn^{2+} and C.
 - Aqueous phase oxidation with O₃, OH, and H₂O₂ is pH sensitive and is connected with the S(IV) speciation. HSO₃⁻ is more easily oxidized than other species of S(IV).
- A major anthropogenic source of SO₂ is the roasting of metal ores. For example:

$$NiS + \frac{3}{2}O_2 \rightarrow NiO + SO_2$$