ASSIGNMENT 4 CHEMISTRY 302 Due: 4:30 pm Friday 12 February 2010

1. Consider the following stratospheric reactions:

$O_3 + h\nu \rightarrow O_2 + O$	(1)
$O_2 + h\nu \rightarrow 2O$	(2)
$O_2 + O + M \rightarrow O_3 + M$	(3)
$O_3 + O \rightarrow 2O_2$	(4)
$\rm H + \rm O_3 \rightarrow \rm HO + \rm O_2$	(5)
$\rm HO + O \rightarrow \rm H + O_2$	(6)
$\rm HO + O_3 \rightarrow \rm HO_2 + O_2$	(7)
$\rm HO_2 + O \rightarrow \rm HO + O_2$	(8)
$Cl + O_3 \rightarrow ClO + O_2$	(9)
$ClO + O \rightarrow Cl + O_2$	(10)
$\rm NO + O_3 \rightarrow NO_2 + O_2$	(11)
$NO_2 + O \rightarrow NO + O_2$	(12)

- (a) For each chemical species, write the expression for the change in concentration with respect to time, assuming that all reactions are elementary processes.
- (b) If the concentrations of Cl and ClO are at a steady state, write the expressions for the ratio of their concentrations in terms of rate coefficients and the concentrations of the other species.
- (c) Write an expression for the stratospheric lifetime of O_3 in terms of the reactions which consume O_3 .
- 2. The globally averaged concentration of OH is 5×10^5 molec cm⁻³ and the total mass of the atmosphere is 5×10^{15} t.
 - (a) Calculate the concentration of OH in pptv.
 - (b) Estimate the number of moles of gases in the atmosphere, assuming an average $M(air) = 30 \text{ g mol}^{-1}$.
 - (c) Estimate the mass of OH in the atmosphere, assuming that its concentration in pptv is constant throughout the atmosphere.
 - (d) Estimate the global rate of formation of OH in the atmosphere in tonnes per hour, under conditions where the residence time of OH in the atmosphere is 1.1 s.
- 3. Do Problem 30, Chapter 2, page 66.