CHEMISTRY 302 ASSIGNMENT 4 DUE 9 FEBRUARY 2007

1. Consider the following stratospheric reactions:

$$O_3 + h\nu \rightarrow O_2 + O$$
 (1) $O_2 + h\nu \rightarrow 2O$

$$O_2 + O + M \rightarrow O_3 + M$$
 (3) $O_3 + O \rightarrow 2O_2$ (4)

$$H + O_3 \rightarrow HO + O_2$$
 (5) $HO + O \rightarrow H + O_2$ (6)

$$HO + O_3 \rightarrow HO_2 + O_2$$
 (7) $HO_2 + O \rightarrow HO + O_2$ (8)

$$Cl + O_3 \rightarrow ClO + O_2$$
 (9) $ClO + O \rightarrow Cl + O_2$ (10)

$$NO + O_3 \rightarrow NO_2 + O_2$$
 (11) $NO_2 + O \rightarrow NO + O_2$ (12)

- (a) For each chemical species, write the expression for the change in concentration with respect to time, assuming that all reactions are elementary processes.
- (b) If the concentrations of Cl and ClO are at a steady state, write the expressions for the ratio of their concentrations in terms of rate coefficients and the concentrations of the other species.
- (c) Write an expression for the stratospheric lifetime of O_3 in terms of the reactions which consume O_3 .
 - 2.The globally averaged concentration of OH is 5×10^5 molec cm⁻³ and the total mass of the atmosphere is 5×10^{15} t.
 - (a)Calculate the concentration of OH in pptv.
 - (b)Estimate the number of moles of gases in the atmosphere, assuming an average $M(air) = 30 \text{ g mol}^{-1}$.
 - (c)Estimate the mass of OH in the atmosphere, assuming that its concentration in pptv is constant throughout the atmosphere.
 - (d)Estimate the global rate of formation of OH in the atmosphere in tonnes per hour, under conditions where the residence time of OH in the atmosphere is 1.1 s.
 - 3. Do Problem 30, Chapter 2, page 66.