CHEMISTRY 302

ASSIGNMENT 1

DUE 4:30 PM, THURSDAY 11 JANUARY 2006

1. The composition of the atmosphere below 100 km is:

Constituent	Molecular Mass	Content (fraction
	(g mol ⁻¹)	of total molecules)
Nitrogen (N ₂)	28.016	0.7808
Oxygen (O ₂)	32.00	0.2095
Argon (Ar)	39.94	0.0093
Water Vapour (H ₂ O)	18.02	0 - 0.04
Carbon dioxide (CO ₂)	44.01	325 ppm
Neon (Ne)	20.18	18 ppm
Helium (He)	4.00	5 ppm
Krypton (Kr)	83.7	1 ppm
Hydrogen (H ₂)	2.02	0.5 ppm
Ozone (O ₃)	48.00	0-12 ppm

- (a) To the nearest milligram, what is the average molar mass of dry (i.e. no water vapour present) air with no ozone present?
- (b) Would an "ozone episode" (i.e. concentration of ozone at maximum) make a difference to the answer calculated in (a)?
- (c) At 50% relative humidity, the water content of air is 0.020 as a fraction of the total molecules. What is the molar mass of this air?
- (d) If the ozone concentration is 8.4 ppm at a pressure of 100 kPa at 19°C, what is the concentration of ozone in molecules cm⁻³?
- (e) The total mass of the atmosphere below 100 km is 5.0×10^{15} tonnes. Assuming uniform composition, what is the total mass of each of the first three constituents listed in the table?
- 2. Do question 3, page 27 Bunce.
- 3. Do question 3, page 128 Bunce.
- 4. Chlorine dioxide is prepared for water treatment by the reaction below.

$$10 \text{ NaClO}_2 + 5 \text{ H}_2\text{SO}_4 \rightarrow 8 \text{ ClO}_2 + 5 \text{ Na}_2\text{SO}_4 + 2 \text{ HCl} + 4 \text{ H}_2\text{O}$$

What mass of NaClO₂ is needed to generate enough ClO₂ to treat 3.8×10^5 m³ of water with 4.9 ppm of ClO₂ if the percent yield of the reaction is 86%?