
Elementary Processes and Rate Theories

• An elementary process cannot be determined
from the net stoichiometry of a reaction.

• For example, the combustion of octane is:

2C8H18 + 25O2 −→ 16CO2 + 18H2O

but the reaction does not proceed by 25 oxygen
molecules interacting simultaneously with two
octane molecules.

• Statistics works against this.

• Instead the reaction proceeds by a sequence
of elementary processes involving interac-
tions of a small number of species at a time.

• BUT not all stoichiometric reactions that are
bimolecular are elementary reactions.

Elementary Processes

• Elementary Processes may be categorized as:

• Unimolecular

• Bimolecular

• Termolecular

• Photochemical

• See table 27.1 on page 1041 of Winn.



Unimolecular Processes

• Isomerization and elimination are examples of
unimolecular reactions.

• The rate of isomerization depends on tempera-
ture through the activation energy due to the
intramolecular energy barrier.

• If the activation energy is low (as in the
case for conformal isomers such as boat and
crown or staggered and eclipse), the rate of
isomerization is rapid and is not strongly
temperature dependent.

• If the activation energy is high (as in the
case of interconversion of optical isomers)
then the rate of isomerization tends to be
low at room temperature.

• In the case of an elimination reaction, the acti-
vation energy is related to the height of the po-
tential energy barrier between isolated ground
state reactants and isolated products.

• Excitation of reactants can increase the
rate of reaction.



Bimolecular Processes

• There are many types of elementary bimolecular
processes.

• Recombination cannot occur solely by a bi-
molecular collision due to conservation of mo-
mentum and energy.

• An additional collision is required to carry
off excess energy and momentum.

• Therefore many recombination processes
are density dependent.

• Recombination may also occur by radiative as-
sociation where a photon is emitted to remove
the excess energy.

• This is an example of where the bimolecular
process has at least two products. In this
case one of the products is a photon.

• Whether a bimolecular reaction leads to prod-
ucts depends on the potential energy surface
which describes the energy interaction of all the
atoms involved in the system.

• If there are large energy barriers between
reactants and products then the reaction
does not occur at an appreciable rate.



Termolecular Reactions

• Pathways not accessible through bimolecular re-
actions may be accessed by termolecular reac-
tions.

• Termolecular reactions require the simultane-
ous or nearly simultaneous interaction of three
molecules.

• The rate of reaction is often strongly pres-
sure dependent.

• Consider recombination of I in Ar:

I + I −→ I · · · I

• If I · · · I collision pair can interact with Ar be-
fore it fall apart, then energy may be transferred
to or from the Ar atom.

• If Ar takes away energy, I · · · I is stabilized
to I2.

• If Ar delivers energy, I · · · I is further desta-
bilized.

• Because termolecular reactions require the si-
multaneous or nearly simultaneous interaction
of three molecules, the rate may increase as the
speed of the interacting species is slowed down.



• Termolecular reactions may be faster at
lower temperatures.

• Consider a termolecular reaction as occurring in
two stages:

• transient association:

A+A
k2⇀↽
k−1

A · · ·A

• collisional stabilization:

A · · ·A+M
k′2→A2 +M

• If the second process occurs immediately
upon the first occurring, the interaction of
three bodies may be regarded as simulta-
neous.

• The chaperone mechanism is a variant of this:

• chaperone complex foundation:

A+M
k2⇀↽
k−1

A · · ·M

• bimolecular atom transfer:

A · · ·M + A
k′2→A2 +M



• Both mechanisms give the same rate law.

• Which one is preferred depends on the sta-
bility of the complex formed.

• The more stable the complex formed in the
first step, the more likely the second step
will occur.

Photochemical Processes

• Light must be absorbed to cause a chemical
change.

• Each photon absorbed leads to one photo-
chemically active molecule.

• The rate of reaction depends on the availability
of photons:

HI + hν → H + I

• One mole of photons is an einstein.

• However the intensity of the light and the
duration of irradiation must be considered.



• The Beer-Lambert Law is:

Ia = I0(1− e−abc)

where:

• a is the absorbance coefficient

• b is the optical path length of the sample

• c is the concentration of the absorbing
species.

• The product abc is dimensionless and there are
a number of choices.

• If c is in units of molecules per unit volume,
b is in units of distance, then a has units of
area and is known as the absorbance cross
section.

• Not every photon absorbed leads to the photo-
chemical product of interest.

• Photochemical product quantum yield Φ is:

Φ =
number of molecules produced

number of photons absorbed

• If competing processes may occur, then
Φ < 1.



• Photochemical processes include:

• Excitation of the molecule vibrationally, ro-
tationally, and/or electronically.

• Dissociation

• Ionization

• Isomerization

• Energy from absorbed photons may also be lost
photophysically.

• Fluorescence

• Phosphorescence

• Collisional Quenching

Simple Collision Theories of Reactions

• Can be used to predict rate coefficients for sim-
ple bimolecular processes.

• Must take into account

• Collision or encounter rate

• Probability of reactive collision.



• Collision or encounter rate determined from:

• Relative collision velocity

• Collision cross section

• Number densities of colliding species

• Probability of a reactive collision takes into ac-
count:

• Energy requirements

• Quantum mechanical (spin) requirements

• Collision geometry requirements (steric fac-
tor).

Gas Phase Reactions

• Consider the associative detachment reaction:

H + H− → H2 + e−

• Well-studied both experimentally and the-
oretically.

• Observed rate coefficient at 300 K is 1.17×
1012 M−1 s−1.



• Compare the rate coefficient with the collision
rate.

• Recall that:

Z12 =< gσ > nHnH−

therefore

k = NA < gσ > .

• and recall that:

< g >=

(
8kBT

πµ

)1/2

• The hard-sphere cross section is:

σ12 = π(r1 + r2)2

• Assuming that the radii of each of H and
H− are approximated by the bohr radius a0

of 5.3 × 10−11 m gives:

σ12 = 3.5× 10−20 m2



• This gives a bimolecular collision rate of

k =
Z12

nHnH−
= 7.5× 1010 M s−1

at 300 K.

• Why is this less than the observed rate?

• Is the hard-sphere cross section a reasonable es-
timate?

• What value of the collision cross section
would be consistent with the observed rate
coefficient?

k

< g >
= 5.5× 10−19 m2

• How do you explain this?

• Is the bohr radius a reasonable estimate of
the radius of H−?

• The rate coefficient is observed to be nearly in-
dependent of temperature.

• No activation energy is apparent.

• This is typical of ion-molecule reactions.



• Consider a reaction that does have an activation
energy:

Cl + H2 → HCl + H

• Observed rate coefficient at 300 K is 9.4×
106 M−1 s−1.

• Observed Arrhenius activation energy is
∼ 18.3 kJ mol−1.

• From the observed rate coefficient, a hard-
sphere cross section is estimated to be
8.6 × 10−24 m2, which is absurdly small.

• Probability of reaction must be considered.

• Fraction of collisions with energy in excess
of cross section is 6.5 ×10−4.

• This appears to be sufficient to account for
the difference between the collisional rate
and the reaction rate.

• For other reactions, this is not sufficient.

• Directness of collision may matter.

• Usually accounted for by the “steric fac-
tor”.



Solution Reactions

• Differs from gas phase reactions in that reac-
tants must diffuse toward each other.

• Concepts from gas phase such as activation en-
ergy is still valid.

• In solution, molecules are always interacting
with the solvent molecules.

• As reactant molecules diffuse toward each other,
the molecules of solvent can form a “cage”
around them.

• This means that the reactant molecules will
be in proximity for a long time.

• Energy can be rearranged within the reac-
tants and gained or lost from the solvent
molecules.

• Reactions in solution can fall into two classes in
accordance with the activation energy.

• Reactions with low activation energy take place
in the diffusion limited regime.

• The rate of reaction is controlled by the
rate of diffusion of reactants toward each
other.



• Reactions with high activation energy take place
in the activation limited regime.

• Reaction depends on fluctuations within
the solvent cage that are occasionally large
enough to provide the activation energy.

• The reaction sequence may be represented
as:

A + B ⇀↽ A· · ·B
which represents reactant diffusion in the
forward direction and dissociation of the
encounter pair in the reverse direction and:

A· · ·B → C + D
which represents reaction of the encounter
pair.

• Applying steady state analysis to A· · ·B
leads to the overall rate law:

< =
d[C]

dt
= k′1[A · · ·B] =

k2k
′
1

k−1 + k′1
[A][B]

with

kexp =
k2k
′
1

k−1 + k′1



• This expression allows us to assess the relative
roles of diffusion and dissociation of the
encounter pair,

• In the diffusion controlled regime,

k′1 >> k−1 and kexp = k2

• In the activation limited regime,

k′1 << k−1 and kexp =
k2k
′
1

k−1
= k′1Keq

where Keq is for the diffusive formation of
the encounter pair.

• Keq is usually small because:

• The entropy of formation of the encounter
pair is negative.

• The enthalpy of formation of the encounter
pair is positive or slightly negative.

• Thus ∆rG
◦

is usually positive.

• The diffusion rate coefficient k2 may be esti-
mated from the diffusion transport equation.



• The diffusion coefficients DA and DB are im-
portant.

• These are functions of temperature, the vis-
cosity of the solvent, and molecular radii
since:

D =
kBT

6πηR

• If either A or B are ions, then electrostatic forces
play a role.

• Also to be considered is detailed balance.

• Detailed balance uses concentrations, not
activities.

• Connected to thermodynamic equilibrium
by fugacity, activity, and other corrections
for nonideality.

• Initially consider uncharged reactants.

• A is a spherical molecule with characteristic
radius RA.

• Spherical molecules of B diffuse around A
in a structureless continuous solvent.

• An encounter complex A· · ·B forms when
A and B are separated by R∗.



• Because B is now part of A· · ·B, [B] = 0 at R∗.

• This gives a radial concentration gradient which
drives the diffusion of B towards A.

• This described by Fick’s First Law:

JB,r = −DB
∂nb
∂r

= −DB
d[B]

dr
NA(1000 L m

−3
)

where:

• JB,r is the radial flux,

• DB is the diffusion coefficient for B in that
solvent system

• nB is B number density

• NA and (1000 L m−3) convert from con-
centration in moles L−1 to number density
in molec m−3.

• This may be diffentiated to give an expression
for ∂2nB/∂r

2 which can be substituted into
Fick’s Second Law:

∂nB(r, t)

∂t
= D

∂2nB
∂r2

• Thus:
∂nB(r, t)

∂t
= −∂JB

∂r



• But if there is a steady state, ∂nB/∂t = 0,
then ∂JB/∂r = 0 and the flux is the same
through a spherical shell at any distance r
about A.

• Total radial flow through a sphere of radius
r is the radial flux times the surface area
4πr2

• Thus the inward flow is:

Ir = −4πr2JB,r = 4πr2DBNA(1000 L m−3)
d[B]

dr
)

• Because the number of B molecules is conserved,
Ir must be a constant and independent of r.
Therefore:

r2 d[B]

dr
=

Ir

4πDBNA(1000 L m
−3

)

which has the solution:

[B] = [B]∞ −
Ir

4πrDBNA(1000 L m−3)

where [B]∞ is the bulk concentration of B in
the large distance limit.



• Since [B] = 0 at r = R∗,

[B]∞ =
Ir

4πR∗DBNA(1000 L m−3)

or

Ir = [B]∞4πR∗DBNA(1000 L m−3)

• Thus for r > R∗, the concentration profile for
[B] becomes:

[B] = [B]∞

(
1− R∗

r

)

• As indicated in figure 27.3, the gradient can be
quite long range.

• Recall that all of the above is with respect to B
diffusing toward A.

• Now consider the diffusion of A and B toward
each other:

• This entails replacing DB with DA +DB.

• The total radial flow is the rate of formation of
A · · ·B per A molecule.



• Thus the reaction rate is:

< =
d[A · · ·B]

dt
= −d[B]

dt
= k2[A][B]

• Recalling that [B] in the above refers the bulk
concentration, called [B]∞ in the derivation of
radial diffusion, the rate becomes:

< = [A]Ir

• With the correct diffusion coefficient, this
becomes:

< = k2[A][B]

=
[
4πR∗(DA +DB)NA(1000 L m

−3
)
]

[A][B]

and the diffusion rate coefficient k2 can be
identified:

k2 =
[
4πR∗(DA +DB)NA(1000 L m−3)

]

• Thus a maximum rate of reaction is solution
in the diffusion controlled regime may be esti-
mated.



• Assuming that R∗ = 5 Å and DA +DB =
10−9 m2 s−1 yields a rate coefficient k2 =
4× 109 M−1 s−1.

• When this is compared with the gas phase bi-
molecular rate coefficient, it may be noted that:

• The gas phase rate coefficient is propor-
tional to the relative speed times a cross
section.

• The solution rate coefficient is proportional
to a diffusion coefficient times a length.

• The gas phase rate coefficient is propor-
tional to the square of a characteristic re-
action radius.

• The solution rate coefficient appears as a
linear function of a characteristic reaction
radius.

• But the diffusion coefficient depends on vis-
cosity and molecular size.

• The dependence of the solution rate coefficient
on molecular size can be further explored by the
consideration of viscosity.



• Recall the Stokes-Einstein relation:

D =
kBT

6πηR

• Applying this to DA +DB gives:

DA +DB =
kBT

6πη

(
1

RA
+

1

RB

)

• If it is assumed that R∗ = RA + RB, the
sum of the hydrodynamic radii of A and B,
then

k2 =
2kBT

3η

(RA +RB)2

RARB
NA(1000 L m

−3
)

• If it is further assumed that RA = RB and
noting that the universal gas constant is
R = kNA then:

k2 =
8RT

3η
(1000 L m

−3
)

• Thus k2 is independent of the size of the
molecule.



• Two effects cancel each other out.

• Large molecules diffuse more slowly.

• Large molecules present a larger target.

• A value for k2 may be estimated based on vis-
cosity.

• Water has a viscosity of 10−3 Pa s at 300
K.

• This predicts k2 = 7×109 M−1 s−1 which is
in reasonable agreement with the previous
estimate.

• The viscosity dependence of diffusion con-
trolled rate coefficients has been confirmed
by studies of mixed solvent systems of vary-
ing viscosity.

• The above expressions apply to neutral-neutral
interactions and were first derived by Smolu-
chowski in the context of colloidal particle
growth.

• Additional factors must be considered in the
case of ionic reactants.

• Electrostatic interactions, whether ion-ion
or ion-neutral, are longer ranged than
neutral-neutral interactions.



• Ion-ion interactions of like charge will diffuse
more slowly than neutral-neutral.

• Ion-ion interactions of unlike charge will diffuse
more quickly than neutral-neutral.

• Therefore, Fick’s First Law needs to be
modified to account for the electrostatic poten-
tial energy gradient in addition to the concen-
tration gradient, since the chemical potential
gradients will be a function of the two gradi-
ents.

• Thus the rate coefficient becomes:

k2 = 4πR∗(DA +DB)NA(1000 L m
−3

)f

where f is the electrostatic factor:

f =
R0

R∗(eR0/R∗ − 1)

and R0 is the distance at which the electrostatic
energy is kBT , the characteristic thermal en-
ergy.

• Recall that the Colomb energy is:

E =
zAzBe

2

4πε0εrR



where

• zA and zB are the charge numbers of A and
B

• ε0 is the permittivity of free space

• εr is the relative permittivity of the solvent.

• Since this energy is equal to kBT at R0,

R0 =
zAzBe

2

4πε0εrkBT

• For water at 25◦C:

• εr = 78.3

• R0 = zAzB(7.16× 10−10) m.

Thus at R∗ = 5 Å:

• f = 1.88 for zAzB = -1.

• f = 0.45 for zAzB = 1.

• f = 5.7 for zAzB = -4.

• f = 0.019 for zAzB = 4.

• This does not take into account the possibility
of other ions affecting A and B as they diffuse
toward each other.



• If the total ion concentration is 10−4 M or
greater, then corrections must be applied
to account for the primary salt effect.

• The Debye-Hückel expression for ionic ac-
tivity coefficients are useful.

The Transition State

• Consider the potential energy surface for the re-
action

• in particular, the forces among the atoms
at various geometries along the way from
reactants to products.

• Rigourously, one should consider all spatial
coordinates

• In practice only a few geometric variables
change as the reaction proceeds.

• Consider a case with only three spatial vari-
ables, the H + H2 → H2 + H reaction.

• May be studied through isotopic substitu-
tion, D + H2 → HD + H



• Only three geometric parameters need to
be considered, either three atom-atom sep-
arations or two atom-atom separations and
an angle.

• If one of these is fixed, then there are only
two coordinates required.

• If the angle is fixed, then the distances from
one atom to each of the other atoms are all
that is required to completely describe the
system.

• The full dimensional potential energy surface for
H + H2 is very well known.

• In the ground electronic state, H3 is not a
stable electronic species.

• In the course of the exchange reaction, the
three atoms will be close together.

• The forces are such as to push the atoms
toward a linear conformation.

• The transition state of a reaction is ill-defined
in terms of configuration.

• Represents an arrangement of atoms that is
neither isolated reactants nor isolated prod-
ucts.



• The concept of transition state is widely
used in interpreting reactions.

• Accurate chemical potentials may be
determined quantum mechanically for systems
with few electrons.

• It is difficult to perform accurate calcula-
tions for many electron systems.

• Therefore approximate methods are used.

• These approximate methods includes.

• LEPS (London, Eyring, Polanyi, and Sato,
1928) combines diatomic Morse potentials
with adjustable “interaction terms” which
match empirical energies.

• The existence of a potential energy barrier along
the path from reactants to product suggests the
microscopic origin of activation energy.

• Barrier height is not equal to the activation
energy.

• The classical reaction coordinate may be defined
by the minimum energy path between reactants
and products.



• This path will go through the saddle point,
if it exists for that potential.

• It is classical in that it does not take into
account quantum effects such as tunnelling
or zero point energy.

• Consider the saddle point, which is sometimes
identified as the transition state.

• A saddle point, by definition, is a maxi-
mum in one direction and a minimum in
the other.

• It sits on the classical reaction coordinate.

• Motion along q1, a line tangential to the
classical reaction coordinate corresponds
assymmetric stretch ( R1 + R2 = constant).

• Motion perpendicular to the reaction coor-
dinate along q2 (i.e. along the R1 = R2

line) corresponds to symmetric stretch.

• Motion in the q1 direction is not bound.

• Because the potential has a maximum
along q1, the second derivative is negative.

∂2U

∂q2
1

< 0



• This means that the corresponding
harmonic force constant is negative, which
in turn corresponds to a negative force con-
stant.

• This means that the harmonic oscillator (or
normal mode) frequency is an imaginary
number.

ωi =

√
normal mode force constant

normal mode reduced mass

• Note that the potential energy surface is specific
to the atoms and the electronic state involved.

• For example the H+ + H2 → H2 + H+

potential has a local minimum when the
three atoms are close together.

• The energy of the “transition state” is at
the local minimum when the atoms are in
a triangular configuration.

• The existence of a local minimum is associated
with a potentially stable intermediate that can
exist as a distinct species.

• Examples include O + CO→ CO + O (sta-
ble CO2), O + N2 + ON + N (stable N2O).



• Potential energy surfaces for different electronic
configurations of the same atoms are not always
well separated.

• Each potential energy surface will have its
own transition state and reaction coordi-
nate.

• Surfaces can intersect and a reaction can
cross intersections of the potentials.

• It is the intersections of these potential en-
ergy surfaces that gives rise to branching of
chemical reactions.

• Minima associated with transition states can-
not be the absolute minimum of the potential
energy surface.

• If it were, it would be a stable compound
and would be classified as an intermediate
rather than a transition state.

Activated Complex Theory

• A transition state is often identified as an acti-
vated complex.



• In 1935, Eyring and, independently Evans and
Polanyi, published theory about bimolecular
rate coefficients.

• This theory is known as:

• Transition state theory

• Absolute rate theory

• Activated complex theory

• This theory considers

• the reaction potential energy surface

• the transition state

• the thermal distribution of collision ener-
gies.

• statistical mechanics and partition
functions

• Results have

• reasonable accuracy

• important physical insights

• opportunities for improvement



• Consider activated complex theory (ACT) in
the context of the exchange reaction A + BC
→ AB + C.

• The activated complex is ABC†.
• The rate coefficient is k2 at temperature T.

• Assume classical mechanics describes the
reaction.

• Quantum effects will be considered later.

• The assumption of constant T allows the use of
equilibrium distribution functions for reactants
and activated complex.

• Assume that every activated complex goes to
products.

• This violates microscopic reversibility so
this will have to be reexamined later.

• Start with the system’s Hamiltonian, H, which
describes the total kinetic and potential energy
of the system.

• The potential energy may be considered in
terms of the intermolecular potential for
the system and the intramolecular poten-
tial within the molecules.



• The Hamiltonian is written in terms of co-
ordinates qi and momenta pi.

• The potential energy depends on the coor-
dinates qi.

• The kinetic energy depends on the
momenta pi.

• For a three atom system there will be 18
variables, 9 momenta pi and 9 coordinates
qi.

• Imagine the associated 18 dimensional cartesian
space:

• Coordinates and momenta selected to be
orthogonal

• This 18 dimensional cartesian space is
known as phase space.

• A volume element, dτ , in phase space is 18
dimensional:

dτ = dq1 . . . dq9dp1 . . . dp9

• Generally for N particles, the associated
phase space is 6N dimensional.



• The reaction coordinate is denoted q1.

• A surface perpendicular to this coordinate
is constructed in phase space.

• This surface is known as a dividing surface.

• At this point your text, like many other
treatments of transition state theory, stops
referring to the momenta and continues to
refer to coordinates.

• All coordinates far to one side of the divid-
ing surface are clearly reactants.

• All coordinates far to the other side of the
dividing surface are clearly products.

• The dividing surface is through the transi-
tion state on the potential.

• Consider the fraction of the total of N systems
in a volume element dτ :

d18N

N
=

(Boltzmann Factor)(Volume Element)

Partition Function

=
e−βHdτ/h9

∫
e−βHdτ/h9



where β = 1/kT .

• This is exact at equilibrium.

• It is assumed that the reacting system does
not deviate significantly from equilibrium.

• h9 may be thought of as a scaling factor for
the volume element since dqidpi has units
of kg m2 s−1 or J s.

• The expression is now integrated over the pos-
itive values of pi to find the rate at which sys-
tems cross the dividing surface from reactants
to products.

• When integrating the denominator, take
note that most of the time A is far from BC
and thus their interaction potential may be
ignored. Thus the demoninator may be
treated as the product of the partition func-
tions for A and for BC.

• When integrating the numerator, integrate
over all the coordinates and momenta, ex-
cept the reaction coordinate.

• The numerator is in the form of a partition

function for the activated complex, ABC†,



corrected for the fact that the internal en-
ergy of ABC† is measured from the energy
at the barrier height.

• This yields:

where q† is the partition function for the acti-
vated complex with the reaction coordinate re-
moved.

• This represents the rate at which reactants
approach the dividing surface.

• Since it is assumed that all systems which
reach the dividing surface go on to prod-
ucts, this leads directly to the rate of reac-
tion:

< = k2[A][BC] = d
[ABC†]
dt

=
dN

dt

1

V NA(1000 L m−3)

where V is the volume of the system.

• Must now consider exactly what N means in
these equations.

• In this context, let the number of A atoms
be represented by NA and the number of



BC molecules be represented by NBC .

d18N

N
=
d6NA
NA

d12NBC
NBC

Thus N = NANBC and is the number of
ABC complexes possible.

• Expressing N’s in terms of concentration:

< = k2[A][BC] =

[A][BC]
kBT

h

(
q†

qAqBC
e−U
†/kBT

)
V NA(103 L m−3)

where NA now represents Avogadro’s number.

• Thus the rate coefficient is:

k2 =
kBT

h

(
q†

qAqBC
e−U
†/kBT

)
V NA(103 L m−3)


