The Nonequilibrium Distribution function

e If a distribution changes with time, then it is an non-equilibrium distribution.
e Consider the following;:

e Gas confined to the center of a large container.

e The confining walls are removed.

e The gas expands to fill the container.

e The gas reaches equilibrium with the new volume.

e What are the properties of the distribution before equilibrium is reached?

e What role do collisions play in the evolution of the nonequilibrium distribution?
e Like the equilibrium distribution, the nonequilibrium distribution depends on:

e velocity

e position
e In addition the distribution depends on time.

e Thus the nonequilibrium distribution function, f* may be written as:
vy, vy, 05, 2,9, 2, t) dvg doy dv, do dy dz
which may be interpreted that a molecule at time ¢ is in the volume dz dy dz located at (z,y, z) with
velocity in the range dv, dvy dv, at (vg, vy, vs).

e Note that the nonequilibrium distribution function, f*, depends explicitly on ¢ as well as through
the coordinates (z,y, z) and velocities (vy, vy, v,).

e The derivative of f* with respect to time is:

df* _ 8f* dv, 9f*dv,  Of*dv.
dt — Ov, dt ~ Ov, dt = Ov, dt
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e Consider the three terms involving the coordinates:

ofrdz  Of*dy 0Of"dz
Oz dt Oy dt dz dt

e Note that dz/dt = v, dy/dt = vy, and dz/dt = v,
e Note that 9f*/0x, df*/dy, and f*/0z are the spatial gradients of f*.
e This can be written in vector short hand notation:

of*de  Of*dy Of"dz _
8zdt+8ydt+8zdt_vf M

where V = 9/0x + 0/0y + 0/0z, v is the velocity vector and - means the vector dot product. (V may
be read as “nabla” or “grad”.)

e Now consider:
of* dvy 8f*% of* dv,
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e Note that dvg/dt, dv,/dt, and dv,/dt are the components of acceleration vector a
and that Fex¢y = ma. Therefore:

Of dv,  Of dvy  Oftdv. o . Fex
Ovg dt Ovy dt Oov, dt m
Therefore:
When o
or 0

the system is in a steady state or at equilibrium.

e In a steady state, the properties of the system at a particular point in space do not change with

time.
When -
v'uf* . ext -0
m
There are no external forces on the system.
When something is being transported
Vf*v#0

The Molecular Basis of f*

Recall that f* is proportional to a probability.
e We are concerned with molecular concentrations or number density.

If the system is not at equilibrium, then we are concerned with number densities that depend on position
and N/V is an insufficient description.

dN = n(x,y, 2, t)(f* (v, vy, v, T, Y, 2, t)d>vdr

= F*(vg, vy, 0z, 7, y, 2, t)d°vd°r

where

e dN is the number of molecules at time ¢ in the six-dimensional volume element defined by the
velocity and position coordinates d3>vd®r = dv, dv, dv, dz dy dz.

e F* is the number density distribution function, F* = nf*.

e Consider the evolution of the number density distribution function through the time interval dt.
e Molecules move due to their velocity and any acceleration caused by external forces.

e Positions change from r to v’ =r + v dt

e Velocities change from v to v =v +a dt

e The number, dN’, in d®>v d°r at r’ and v’ is:

dN' = F*(v', v/t + dt)d*v d°r



e But collisions may cause molecules to enter or leave the volume element d3v d3r. The contribution
this makes is dN o1
dN' — dN = dN.oy

Therefore
dNeoy = [F*(V/,¥/,t +dt) — F*(v,r,t)] d®v d°r
But
dF*
[F*(v',x',t+dt) — F*(v,r,t)] = dF* = 7 dt
Therefore .
AN eou = ——dt d*v dr
Analogous to the treatment of f*:
dF* Fext oF™*
— VF*. JF*
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Now collisions must be considered explicitly.
e dN,.y; is the net change of molecules scattered in and out of d>v d°r in time dt.

e The rate of change of this with time is:

choll

pra (time rate of change of F*)d*v d°r

Finding the time rate of change is difficult. The result is the Boltzmann Transport Equation
which is difficult to solve.

e Need to use approximations instead.
Consider a system sufficiently close to equilibrium that F* = F.
e F' is the equilibrium number density distribution function N f/V.

o If the system is isolated, F should go
smoothly and quickly toward F'.

Consider Ar(g) at equilibrium at 300 K.

e Alter the equilibrium by taking half the molecules at v,=250 m s~! and reverse
their direction.

e The distribution will be the equilibrium

distribution except for spikes at v, = £250 m s~ .

e The system then relazes smoothly toward equilibrium.
Consider first the spike at v, =-250 m s~ 1.
e f*> for f*— f>0. Therefore df*/dt < 0.



e The spike drops until equilibrium is
reached.

e For the spike at v, =+250 m s~ 1.
o f*< for f*— f<0. Therefore df*/dt > 0.
e The spike rises until equilibrium is reached.

e Thus it can be shown that df*/dt dF*/dt, and dN,.;/dt have the same sign and that the sign is opposite
to that of (f*— f) or (F* — F).

e When F* is not far from F' it may be assumed that dN..;/dt is directly proportional to the difference
between F* and F'
(time rate of change of F*) & (F* — F)

e This is known as the linear response regime.

e What affects the proportionality factor?

e Since it is collisions that cause the relaxation, the average time between collisions 7., will be
involved. If it is assumed that this is the proportionality factor, then:

dN¢o F*—F
g d*v d*r
dt Teoll

e Thus, in the linear response regime, the Boltzmann transport equation become linearized:

Fex oF™* F*—F
VE* v+ V, F*. t - _
m ot Teoll

‘What is Teoll ?

e Consider A, the mean free path or the average distance travelled between collisions.
e Consider the cross section o
e A cross section may be determined for any type of interaction potential.

e For most potentials, the cross section varies with relative speed of the collision partners.

e Collision cross sections for slow speeds can be larger than those for faster speeds since the molecules
have more time to interact under the influence of the interaction potential.

e A velocity-specific free path needs to be considered.
/\(V) = UTCO”(V)

where:
e \(v) is the free path of a molecule with velocity v,
e v is the speed corresponding to velocity v,

o 7T.ou(Vv) is the time between collisions for a molecule with velocity v.

vTeou (V) is the distance travelled at speed v before the next collision.
e We must now get the average of 7.,;1(v) over all velocities.

e The collision rate is the reciprocal of 7.4, i.e. TC_Olll



e To determine the collision rate:
e Consider molecules with velocity v; colliding with molecules of velocity v.
e The relative speed of these molecules is g = |v1 — V]|
e The collision cross section is o(g)
e 1 is the number density of target molecules with velocity v.
e The flux of molecules with velocity v; toward the collision partners is gn.

e The collision rate for molecules with velocity vy is the product of flux and cross section.
—1
Tcoll (Vl) = gng(g)

e Consider (see Figure 25.2) a frame of reference in which the target molecules are still (i.e. both the
frame of reference and the target molecules are moving with velocity v).

The unit area holding the target molecules is considered as the end of a solid of length ¢ dt.
e The target molecules take up a fraction of this unit area.
e The solid defines a volume containing a flux of molecules that are moving with uniform speed g

e In the time, dt, all the molecules contained in the volume moving with speed g will move through
the unit area unless they collide with a target molecule.

We can find the average collision rate for one molecule of type 1:
=T = /g o(g) F*(v)d*v = n (go)

e If a system is at equilibrium, this is a constant.
e If a system is not at equilibrium, then n depends on time and space.

e Recall that:
)\(V) = UTCO”(V)

Thus at conditions of equilibrium:

e If o is independent of velocity then (go) = (g)o and (g) = V/2(v)
e At equilibrium n = N/V, therefore:

_ VvV
~ NV2(wo  V2No
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(which is the equation we previously derived).
e The mean collision rate gives an upper limit on reaction rates.

e Why don’t all collisions lead to reaction?

Collisions between Unlike Molecules

e The cross section for a collision depends specifically on the types of molecules undergoing collision.



e Consider a binary mixture of gases 1 and 2.
e 011 is the cross section for collision of a type 1 molecule with another molecule of type 1.
e 099 is the cross section for collision of a type 2 molecule with another molecule of type 2.

e 0o is the cross section for collision of a type 1 molecule with another molecule of type 2.

e With hard sphere molecular diameters of d; and d, the cross sections are:

011 :Wd%
0929 :Wd%
7T(d1 +d2)2
012 = #

e The mean collision rate for molecules of type 1 with molecules of type 2.

8kBT) 1/2
012

212 = n2(g>012 = N2 (
12

where p12 is the reduced mass of molecule 1 with molecule 2.

e Note the dependence of this rate on the number density of molecule 2, the target molecule.

Total Collision Rate per Unit Volume

e The total collision rate per unit volume is the collision rate per molecule times the number density for
that molecule.

e If there is one component in the gas:

1
2= s = glamn’ = S0’
where the factor of 1/2 ensures that collisions are not double counted.

e If there are two components in the gas, then:
Z12 = n1z12 = Naza1 = (go)ning

where (go) = (g)o12

e See the summary in table 25.1

Macroscopic Non-equilibrium Phenomena
e We will consider
e Diffusion
e Thermal conduction
e Electrical conduction
e Viscosity

e The evolution of nonequilibrium systems is governed by the Second Law of Thermodynamics.



e In an isolated system, a spontaneous process will continue until maximum entropy is reached subject
to the constraints of the system.

e Nonequilibrium thermodynamics may be
considered in terms of the time dependence of entropy.

Recall the formulation of chemical potential (1) in terms of the minimization of the potential and the
maximization of entropy.

e Chemical potential gradients will drive the system toward equilibrium.
e These gradients are of macroscopic parameters such as temperature, concentration, or density.

For a system at equilibrium:

(T, P) = u°(T) + RTIn (%)

Consider a closed system with a temperature gradient in the x direction and with uniform pressure.
e The chemical potential gradient is:

@ . %6_T _o(u° +RTlnP)8_T
dr 0T dx oT Ox

e The spatial derivative of thermodynamic potential (in this case 9T /Jz) act as the forces that drive
transport phenomena.

e The mathematical formulation of diffusion, thermal conduction, electrical conduction, and viscosity
are all similar.

Recall the wall collision rate, Jz, or flux of
molecules moving through a plane in the gas.

e All transport phenomena may be treated in terms of the vector flux of a transported quantity.

Flux = J(something)

amount of something moving in given direction

(unit area)(unit time)

This may be applied to:
e diffusion - transport of matter
e thermal conduction - transport of energy
e clectrical conduction - transport of charge

e viscosity - transport of linear momentum

Flux increases, the further a system is from
equilibrium.
e Distance from equilibrium may be

measured by the magnitude of simple gradients of macroscopic parameters.

J(something) = —(phenomenological coefficient)

x (gradient of a macroscopic parameter)



Diffusion

e Consider the diffusion of matter, where z is the direction of the flux of matter.

on
=-(5)

where:

e D is the diffusion coefficient

(On/0z) is the density gradient.
e The negative sign indicates that the flux is in the direction opposite that of the gradient.

e This equation is known as Fick’s first law.

This equation applies if the system is not far from equilibrium (i.e. in the linear response regime.)

If the system is far from equilibrium, then the situation is more complex.
e Consider binary diffusion:

e For example a drop of dye in water. The dye diffuses through the water until the
composition is uniform.

e Binary diffusion is defined in terms of two distinquishable species moving through
each other.

Self diffusion involves only one species.
e May be monitored experimentally by isotopic labelling.

e May be monitored by optical properties
such as light scattering.

e May be monitored by nuclear spin properties (NMR).

Consider a density gradient in the z direction:

e The flux into a region from z to z + dz is given by Fick’s first law evaluated at z:

e The flux out of this region is given by Fick’s first law evaluated at z 4 dz:

Jn,z+dz =-D (7671(2 + dZ))

0z
o[ (5)

n(z+dz) =n(z) +dn(z) = n(z) + <a7;(;)> dz

where:

e The difference between flux in and flux out, per unit distance, is:

Jn,z - Jn,z-i—dz _ an(z)
dz ot




e Substitution for J,, . and J, .44, gives:

which is Fick’s second law.
e Fick’s second law accounts for nonlinear concentration gradients.

e If a gradient were perfectly linear and stable in time, then

SSRCE

e Spontaneous fluctuations characterized by large values of (82n(z,t) /822) which
change rapidly with time.

Solutions to Fick’s second law depend strongly on the initial conditions.

An Example of Diffusion

Initially the solute is contained in a yz plane at x = 0 and t = 0.

Let it diffuse from £ = 0 to z = oo

Experimentally this may be achieved by coating a thin plate on both sides with the solute and inserting
it into the solvent.

The solution to Fick’s second law is:

Conservation of the number of molecules gives the normalization condition:

[ee) B NO
/ n(x,t)de = o

—00
e Note also that this solution of Fick’s second law is in the form of the Gaussian function, i.e.:
distance \ >
exp |— | ————
P width
e In this case width= (4Dt)'/2.
e Note the dependence on the square root of time.

e As the concentration gradients lessen, diffusion slows down.

e The solution to Fick’s second law may be
thought of in terms of a time dependent distribution function with the fraction of molecules at a
particular time and position given by:

1
flz,t) = 7TTDte_I2/4Dt



e The rms spread in x may be determined:

0o 2 ) 1/2
Lrms = |:/ —:C e ® /4Dtd.1‘:|
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Diffusion as a Stochastic Process

In 1905, Einstein and van Smoluchowski independently explained Brownian motion as a
stochastic or random process.

e Diffusion is one consequence of Brownian motion.
e Individual molecules collide and as a result the molecules change direction randomly.
e This may be simulated by a random walk.
e Consider a one dimensional random walk.
e The initial position is x = 0.

e The particle may move randomly by x = 41 each time step.

What is the probability that the particle has moved X units after N time steps?

Since there are two choices at each step, there are 27V possibilities.

Denote the number of steps in the positive direction as N.

Denote the number of steps in the negative direction as N_.
e The final position is:

X=N,—-N_

e Since the total number of steps taken is N = Ny + N_,

X=N,—(N-Ny)=2N,—N

or 1

e The number of ways, W, that Ny may be

achieved are:
N! N!

T NLIN_! T NN N

w

e In terms of position and total number of moves, this becomes:

N!
(3 (N+X)]'[3 (N -X)]!

e Therefore the probability of arriving X steps from the origin after N steps is:

w N!
PN oI v ]|

RESS)E



e Recall Stirling’s Approximation:

1
InN! = (N + 5) InN — N + In(27)'/?
e Rewriting the probability P in logarithmic form gives:

InP = InN! —N1n2—ln{ B (N—i—X)}!}

of [jor-] )

1
InP = <N+ 5) InN — N +1In(27)"/2 = NIn2

({B(NJrX)] +%}ln B(zwx)}

— B (N + X)] + 1n(27r)1/2>

—({B(N—X)] +%}1nB(N—X)}

_ B (N — X)] + ln(27r)1/2>

Therefore:

Rearranging gives:

1
InP= (N + §> In N — In(27)1/?

Further rearrangement gives:

1
InP = (N + 5) In N — In(27)%/2

- E(N+X+1)} ln%— B(NX+1)] m%

_ B(N+X+1)] mN - B(N—XJrl)} In N
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e This with the the power series for e* and the fact that X/N is smalll gives:

1/2
EAL
TN

which is an unnormalized Gaussian function.

which simplifies to:

e Normalization (i.e. integration over all space gives 1) yields:

1/2 1/2
l i / e—X2/2N _ 1 / 6—12/4Dt
2\ N 4 Dt

e If it is assumed that a random step covers the distance x, such that Xz, = x and the time between
steps is 7 (i.e.N =t/7) then:

X2 %7 x?
2N 222t 4Dt
Therefore:
D= zo _ X
2T 2T
e Recall that:
A
<Tcoll> = 7\

where (v) is the mean speed.

e Therefore:

e Therefore the diffusion is faster the larger the mean free path is.

e The diffusion coefficient, D, increases as the square of the mean free path.
e Random walks

may be studied by
simulation (Fig. 25.6).

computer
e The difference between the simulation and theory varies as v/ N where in this case IV is the number

of simulations.

Concentration Gradients

e What drives diffusion or any other transport process, are chemical potential gradients.



e A concentration gradient is just one example of a chemical potential gradient.

e Nonideal systems may have gradients in
chemical potential which give rise to concentration gradients.

Diffusion in Solids

Defects in the crystalline structure are important (See section 16.4 of Winn).
e Defects can affect how diffusion occurs in a solid.
e Defect sites themselves can diffuse through the solid.
e Annealing or tempering is a way to minimize defects in a solid.

Small molecules such as Hs or He can diffuse through the interstitial sites in a crystalline
solid.

e Reactions of the solid with the diffusing molecules can change the properties of the solid (i.e.
poisoning of a catalyst).

Consider two pure metals or alloys, A and B

A and B are a diffusion couple which initially have a distinct interface and diffuse into each other.

If one metal diffuses into the other much more rapidly, then the Hartley-Kirkendall may be observed.
Let B be the faster moving metal.

As diffusion proceeds, the interface of the AB region appears to move towards B.

Vacancies appear in B as the atoms move into A and diffusion may be interpreted as the movement of
the vacancies themselves.

The mutual diffusion coefficient, D45 is proportional to zaDp + xpD4 where x4 and xp are mole
fractions and D4 and Dp are the self- diffusion coefficients.

If B diffuses quickly then Dg >> D4 and as B moves into A, x4 >> zp.
e Then D & Dgp
A is moving slowly into B and from that perspective, Dap = Dy

The interface moves toward B and as B depletes, vacancies form.
Thermal Conduction

Encounter it frequently in our day-to-day life.
e Insulation of walls
e Heat loss through different types of windows
e Styrofoam food containers

Temperature gradient transports energy.

oT
P

where k is thermal conductivity (W m=! K~1)

e This equation is known as “Fourier’s Law”.

What affects the value of k?



For elements, k reflects periodic trends.

Metals typically have k between 10-300 W m~! K1 (for example Ag has k= 430 W m~! K~1) .
Diamond has k= 1370 W m~! K~

Graphite has k= 129 W m~! K—%.

e Molecular solids have lower k.
e Red phosphorous k= 13.2 W m~! K1,
e White phosphorous k= 0.44 W m~! K1,
e What affects the ability of of solids to conduct heat:

The physical state of the system (i.e. polycrystalline or single crystal)

Anisotropy of physical structure.

Lattice vibrations (phonons), especially insulating materials.

Electron mobility in metals and semiconductors (more important than phonons in conducting ma-
terials.

e How do liquids conduct heat?
e Liquids generally have lower conductivity than solids.
e k=0.03 Wm~! K~! for liquid He at 4.2 K.
e k= 0.10-0.15 W m~! K~! for most molecular liquids.
o k=0.61 Wm~! K~! for water.
e k> 10 Wm~! K~! for liquid metals.

e The mechanism for heat transfer is energy transfer in molecular collisions and is related to the speed of
sound in the liquid.

e Therefore thermal conductivity in a liquid is related to heat capacity.
e Thermal conductivity in gases is related to the pressure of the gas.

e Thermal conductivity usually increases with
temperature at temperatures above room temperature.

e The temperature dependence of thermal
conductivity in single crystal solids in very nonlinear at low temperature.

Electrical Conduction

e Metals conduct electricity well.
e Insulators do not conduct electricity.
e Semiconductors can conduct electricity, but not as well as metals.

e The high conductivity of metals can be interpreted in terms of the structure of the metals and the
mobility of the conduction elections in the conducting band.

e Ohm’s Law is the flux gradient equation for charge transport:

_ 99
Je,z = —0Oe¢ (&)



where:
e J. . is the electron flux in C m™2 s™% or A m™2

e 0. is the electical conductivity in S m~! or A2 s3 kg=! m~3. (S stands for siemens where 1 S = 1
A V~1 and is the reciprocal of the ohm.)

e ¢ is the potential difference in V or J C~*
e 2 is distance in m.
e A variant of Ohm’s Law is Y = I R where:
e F is the electomotive force or voltage.
e ] is the current
e R is the resistance (which is the reciprocal of the conductance.)

e The relationship between resistance and

conductivity is:
1 length

R area

Oe

e Thus the bulk resistance of something depends on its size.
e Consider a sample of area A

e The current [ is constant

The voltage difference over a distance Az (in the direction of the current flow) is Vo — V4.

Therefore the resistance is:

Vo—W
I

E
R="=
i

The flux of electrons J. . or the current density is:

J _£_0-6|VY2_‘/1|
“FT A Az

e Resistance R, resistivity pe, and conductivity o, are all related by:

Az peds

R:%A A

Electrical conductivities (S m~!) span over 24 orders of magnitude for ordinary substances
(not superconductors).

Metals have high values:
e Ag6.3x10" Sm™!
e Cub5.85x107 Sm!
e Stainless steel 0.14 x 107 S m~!

Conductivity of carbon depends on the form:
e Graphite 10> S m™!

e Diamond 1078 Sm™!

Semiconductors span several orders of magnitude:

e Si2.52x%x107*Sm!



e Gel1l45Sm™!
e “gray” Sn 136 S m~!
Other elements
e Todine 7.7 x 1078 S m™!
e Sulphur 5 x 107 S m~!
Polymers are often poor conductors:
e Polyethylene 1071 S m~!
e Polytetrafluoroethylene 1077 S m~!
Conductivities of solutions depend strongly on the composition (i.e. electrolytes) of the solution.

Conductivities of gases are extremely low unless the gas is subject to a high electric field that can ionize
atoms and molecules.

Conductivity and resistivity are temperature
dependent.

Viscosity

There are various types of viscosity. We will focus on shear viscosity.

Viscosity is related to the flux of momentum.

vy
va,zw =N ( 9z )

Flux, Jmy, 22, has units of momentum per unit time per unit area.

Newton’s viscous law is:

e However flux is easily interpreted as pressure because although momentum per unit time is a force,
the direction of the force is parallel to the area and not perpendicular to it.

Viscosity, 1, has units of Pa s or poise (1 P = 0.1 Pa s)

Hydrodynamics treats viscosity in great detail.
Consider shear viscosity (Figure 25.9).
e Consider an zz plane in a fluid.
e Move a large thin plate (zy plane) in the 2 direction with velocity v,.
e A thin layer of fluid in contact with the plate moves with velocity v,,.
The layer of fluid in contact with the fixed container is moving with zero velocity.
This produces a velocity gradient in the z direction.

If the container is not fixed and the fluid sufficiently viscous, then the motion of the plate will cause the
container to move.

This means that * momentum has been transferred along the z direction.
This is an example of a shear force.

This type of viscosity is called shear viscosity.

Some Representative Viscosities



Cold molasses ~ 1 Pa s

Gylcerol =~ 1.5 Pa s

Water =~ 1072 Pa s

Viscosity may also be expressed in units of poise (P).
e lPas=1kgm!s7!

e 1P =1gcm ! s™!, therefore 1 P =.1 Pas;1cP =10"2Pas;1uP =107 Pas.
Measuring Viscosity

The Ostwald viscosimeter is a convenient instrument for measuring the viscosity of a liquid.
Includes a vertical capillary tube.

e The flow of a fluid through a tube is subject to a radial velocity gradient and flows fastest in the
center.

e Flow through a capillary is subject to laminar (non-turbulent) flow.
e The viscous force is a friction.
e If this friction is balanced by a hydrostatic head providing pressure, then steady-state flow results.
The viscosity of the incompressible fluid is 7.
The tube is of length L and radius R.
AP is the pressure difference between the top and bottom of the tube.
r is the distance from the center of the tube.
e The force pushing the fluid at r is APmr?
The contact area is 27w Lr.

The force per unit contact area is given by
(AP7r?)/(2mrL) = (APr)/(2L)

This force is exactly balanced by radial flux of z momentum. Therefore:

APr v,

va rz — — =
’ o, Tor

Thus the velocity v may be found as a function of r:

e The flow rate per unit time for an incompressible fluid becomes:

dV _ APnR*

dt 8Ly

e The flow rate per unit time for a compressible fluid becomes:

dV.  ©R* P} — P}
dt ~ 16Ln Py




where
e P; is the pressure at the tube’s inlet,
e Py is the pressure at the tube’s outlet,
e Py is the pressure at which the volume is measured.
e The Ostwald viscometer is designed to exploit these equations.
e Fill viscometer bulb with fluid of interest.
e Draw fluid through capillary into calibrated bulb of volume V to above start mark.

e Measure the time between the start and finish mark.

Calculate viscosity from:

_ (TR pg{Ah)
”<8—L) yo At

where p is the density of the fluid, ¢ is gravitational acceleration, and (Ah) is the time average
height difference:

Ahstart - Ahfinish
Ah) =
< > In (Ahstm«t/Ahfinish)

Microscopic Transport Coefficients

e Recall the linearized Boltzmann transport equation.

e The solution gives the non-equilibrium
number density distribution function, F*.

e Of more interest are the transport coefficients.

e Consider flux:

quantity molecular

Aux — transported speed in
per transport

molecule direction

F*(v,r,t) dvydvydv,

e Applied to diffusion this becomes:

0
In,z = /UZF*(v,r,t) dvgdvydv, = —D (8_n)
z

e Applied to thermal conductivity this
becomes:

’ or
Jg,z = / %’UZF*(vJ‘,t) dvgzdvydv, = —k (E)

e Applied to electrical conductivity this becomes:

Je,z = /QUZF*(V,I‘,t) dvxdvydvz = —0O¢ (?)
z

e Applied to viscous flux of x momentum, this becomes:



I, zm = /mvmsz*(v,r,t) dvgydvoydv,

B vy
NG
e From each of these it is possible to derive the transport coefficient, since each flux expression imposes
constraints on the Boltzmann transport equation.

The Diffusion Coefficient

e Assumptions:

e Steady state, thus

e No external forces, thus

e The concentration gradient is only in the z direction, thus:

F*
VF*.v = (8 )’UZ

0z

e Under these conditions, the Boltzmann equation becomes:

OF* F*—F
—, = —
0z Teoll

e Further assume that F'* is close to F'. Define the difference F':

F*(r) = F(r) + F'(r)

e Also assume that the spatial derivative of F’ is negligible.
oF*\ _ (OF
0z ) \ oz

e With these further assumptions, the Boltzmann equation becomes:

OF o
v, =—
0z Teoll
e Isolating F’ gives:
I oF OF On
= —Tcoll 3 Vz = —TcollVz 3~ 57_
"oz " on 92

—Teon V2 F On

n 0z



e Substituting F' + F’ for F* gives:

Jn,z = /'UZF(V,I',t) dvmdvydvz

e Therefore:

since F = nf and (v,) = kgT/m.
e Recalling that 7.y = A/(v):

D Teoll /UiFdV _ Teoll (nkBT) _ TeottkBT
n

+ [ v, F'(v,r,t) dvgdv,dv,
s Ly y

=0+ — (M/vide) (%)
n 0z

n m

m

5 MeT 1 (kaT)l/Q

m{v)  4no

where o is the collision cross section and P is the pressure.

e Therefore:

m

1/2 (k, T)3/?
4Po

e Molecules with larger o diffuse more slowly than ones with smaller o.

e Diffusion slows as P increases

e Diffusion is faster at higher T'

o A temperature gradient

means that there is a density gradient.

where n is the density N/V

Thermal Conductivity

at constant pressure

P= nkBT

o If 9T'/0z # 0 then On/0z # 0 to maintain constant P.

e This means that the local equilibrium distribution function explicitly depends on z through n(z)
and T'(z):

F(z)

and

0z

() (#T()

Following the same procedure as we used for diffusion, the Boltzmann transport equation becomes:

F' = —VUzTeoll (aF(Z))

OF (2) g (

3
2
e—m(vi-ﬁ-vi-ﬁ-vi)/ﬂcBT(z)

0z
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2kpT 2 0z



e Thus J, . becomes:

2
Jos /<m” )sz’dv
2
2 2
| Teou muv 5 [ mu 7§ 8_T
- {T /< 2 )”Z(QkBT 2>de] <az>

- 5 Tcollnk?gT

2 m

e Integration yields:

e Using C, = 3N kp/2 for an ideal monatomic gas, this becomes:

k

CSMakRT 5Ky’ (g)w

T2 m) 240 \m

5 Cy (wksT\"?
120Ns \ m
e Thus thermal conductivity &
e decreases for heavier molecules
e increases with temperature

e is independent of pressure, but the expression breaks down at low pressures and extremely high
pressures.

e At intermediate pressures, the P dependence of A is cancelled out by the P dependence of n.

o If the pressure is so low that A is greater than the thickness of the gas layer through which the heat is
conducted, then k& becomes P dependent and the heat transfer does not depend on collisions.

e At high pressures, multiple collisions become an important means of heat transfer.
Electrical Conductivity

e Consider a weakly ionized gas (i.e. a plasma)

° n, is the number density of positively
charged ions, each with a charge of Q.

e Sufficient electrons or anions are present to balance the charge and assure that the plasma is
electrically neutral.

e While the net current is due to motion of all charged species, the movement of positive
charges will be initially considered.

e Impose on a plasma a small potential gradient,

%% _

_E.
0z

due to the z component of the external electric field.

e Thus the flux gradient equation becomes:

Je z = UeEz

)



e Assume that ions and neutrals have the same f*.
e This is reasonable because of collisions.

e Assume that ny <<n
e For the positive ions, F* = n f*.
e For the neutrals F* = nf*.

e Assume that the deviation, F’ from equilibrium is small.

F*=F+F

e The Boltzmann equation has no spatial gradient term (VF* = 0), but is subject to an external force
(Fezt,z = Q-l—Ez)-

e Thus: - SF* o
VF* v 4V F*. ==t S —
m ot Teoll
becomes:
oF Q E. F’
avz m B Teoll

which rearranges to:
_ TcollQ—i-Ez a_F

F =
m ov,
e Since F is the equilibrium distribution,

oF  mu,

81)2 o kBT

7-collc2-|-E‘z
Fl="""""2yF

kT

e Because [/ << F, the electric field, E, is small.
e The expression for flux becomes:
/ TcollQ%,- 2
JeZ:QJ’_/UZFdV: 7/szdV E.
' kT

where ) )
TcollQ+ 2 n+TcollQ+
Oe=——"" [ vFdv= —"-"=

kBT m

e If it is assumed that the ions have the same cross section as the neutrals, then a substitution may be
made for T.o:

_)‘n-i-Qi _n_-l-Q_i( T )1/2

e = m{v)  n 4o \mkpT

e Note that the charge term is squared so that o, is always positive.

e [t is necessary to consider other ions and other charges that are present in the solution.

e The concept of ion mobility u is useful.



e v is the ions’ drift velocity per unit electrical field or conductivity per unit of charge concentration.
conductivity _ 0e

Uy =

unit charge concentration 1, Q4

_ Teou@+ _ Q4 ( 7T )1/2

m  4no \mkgT

e For two species of opposite charge with ion mobilities of u4 and u_, the net conductivity is:
Oe=04r+0_ =nyQiuy +n_Q_u_

e The ratio of mobility to the diffusion coefficient is:

U_+ _ Teoll Q—i— m _ Q-l—
D m Teoll kBT kBT
Viscosity

e Consider a gas with a slow bulk flow in the = direction and a flow gradient in the z direction.

e The flow speed is u,, is additive to the velocity vectors of the molecule, yielding local velocity components
(U, Uy, U,) with respect to the flowing frame of reference:

U,=v,, Uy=wvy, Up=vs—uy
e Assume
o A steady state flow
e That the distribution is slightly perturbed from equilibrium such that:
F*=F+F'

e Thus, it can be shown that:

F' =—r va—F*fT v 8_F OUs
- collVZ EP - collVZ aUZ B

oF Oug
= —TcollV a
ez Ouy 0z
e The flux expression becomes:

T 2z = / (mU,)U.F'dU =m / Uy, F'dU

B oF 9 Ouyg
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e Thus:

> Upv2dU

kBT kBT m
- nTcollkBT
e And substituting for 7., yields:
nAkpT (7rl<:BTm)1/2
(v)y 4o

e Thus for a gas:
e 7 increases with temperature.

e 7) is independent of pressure.



