
The Nonequilibrium Distribution function

• If a distribution changes with time, then it is an non-equilibrium distribution.

• Consider the following:

• Gas confined to the center of a large container.

• The confining walls are removed.

• The gas expands to fill the container.

• The gas reaches equilibrium with the new volume.

• What are the properties of the distribution before equilibrium is reached?

• What role do collisions play in the evolution of the nonequilibrium distribution?

• Like the equilibrium distribution, the nonequilibrium distribution depends on:

• velocity

• position

• In addition the distribution depends on time.

• Thus the nonequilibrium distribution function, f∗ may be written as:

f∗(vx, vy, vz, x, y, z, t) dvx dvy dvz dx dy dz

which may be interpreted that a molecule at time t is in the volume dx dy dz located at (x, y, z) with
velocity in the range dvx dvy dvz at (vx, vy, vz).

• Note that the nonequilibrium distribution function, f ∗, depends explicitly on t as well as through
the coordinates (x, y, z) and velocities (vx, vy, vz).

• The derivative of f∗ with respect to time is:
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• Consider the three terms involving the coordinates:
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∂x
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• Note that dx/dt = vx, dy/dt = vy, and dz/dt = vz

• Note that ∂f∗/∂x, ∂f∗/∂y, and ∂f∗/∂z are the spatial gradients of f ∗.

• This can be written in vector short hand notation:
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where ∇ = ∂/∂x+ ∂/∂y + ∂/∂z, v is the velocity vector and · means the vector dot product. (∇ may
be read as “nabla” or “grad”.)

• Now consider:
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• Note that dvx/dt, dvy/dt, and dvx/dt are the components of acceleration vector a
and that Fext = ma. Therefore:
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+
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• Therefore:
df∗

dt
= ∇f∗ · v +∇vf∗ ·

Fext

m
+
∂f∗

∂t

• When
∂f∗

∂t
= 0

the system is in a steady state or at equilibrium.

• In a steady state, the properties of the system at a particular point in space do not change with
time.

• When

∇vf∗ ·
Fext

m
= 0

There are no external forces on the system.

• When something is being transported

∇f∗ · v 6= 0

The Molecular Basis of f∗

• Recall that f∗ is proportional to a probability.

• We are concerned with molecular concentrations or number density.

• If the system is not at equilibrium, then we are concerned with number densities that depend on position
and N/V is an insufficient description.

dN = n(x, y, z, t)(f∗(vx, vy, vz , x, y, z, t)d
3vd3r

= F ∗(vx, vy, vz, x, y, z, t)d
3vd3r

where

• dN is the number of molecules at time t in the six-dimensional volume element defined by the
velocity and position coordinates d3vd3r = dvx dvy dvz dx dy dz.

• F ∗ is the number density distribution function, F ∗ = nf∗.

• Consider the evolution of the number density distribution function through the time interval dt.

• Molecules move due to their velocity and any acceleration caused by external forces.

• Positions change from r to r′ = r + v dt

• Velocities change from v to v′ = v + a dt

• The number, dN ′, in d3v d3r at r′ and v′ is:

dN ′ = F ∗(v′, r′, t+ dt)d3v d3r



• But collisions may cause molecules to enter or leave the volume element d3v d3r. The contribution
this makes is dNcoll

dN ′ − dN = dNcoll

Therefore

dNcoll = [F ∗(v′, r′, t+ dt)− F ∗(v, r, t)] d3v d3r

But

[F ∗(v′, r′, t+ dt)− F ∗(v, r, t)] = dF ∗ =
dF ∗

dt
dt

Therefore

dNcoll =
dF ∗

dt
dt d3v d3r

Analogous to the treatment of f∗:

dF ∗

dt
= ∇F ∗ · v +∇vF ∗ ·

Fext

m
+
∂F ∗

∂t

and

dNcoll =
(
∇F ∗ · v +∇vF ∗ ·

Fext

m
+
∂F ∗

∂t

)
dt d3v d3r

• Now collisions must be considered explicitly.

• dNcoll is the net change of molecules scattered in and out of d3v d3r in time dt.

• The rate of change of this with time is:

dNcoll
dt

= (time rate of change of F∗)d3v d3r

• Finding the time rate of change is difficult. The result is the Boltzmann Transport Equation
which is difficult to solve.

• Need to use approximations instead.

• Consider a system sufficiently close to equilibrium that F ∗ ∼= F .

• F is the equilibrium number density distribution function Nf/V .

• If the system is isolated, F ∗ should go
smoothly and quickly toward F .

• Consider Ar(g) at equilibrium at 300 K.

• Alter the equilibrium by taking half the molecules at vx=250 m s−1 and reverse
their direction.

• The distribution will be the equilibrium
distribution except for spikes at vx = ±250 m s−1.

• The system then relaxes smoothly toward equilibrium.

• Consider first the spike at vx =-250 m s−1.

• f∗ > f or f∗ − f > 0. Therefore df∗/dt < 0.



• The spike drops until equilibrium is
reached.

• For the spike at vx =+250 m s−1.

• f∗ < f or f∗ − f < 0. Therefore df∗/dt > 0.

• The spike rises until equilibrium is reached.

• Thus it can be shown that df∗/dt dF ∗/dt, and dNcoll/dt have the same sign and that the sign is opposite
to that of (f∗ − f) or (F ∗ − F ).

• When F ∗ is not far from F it may be assumed that dNcoll/dt is directly proportional to the difference
between F ∗ and F

(time rate of change of F∗) ∝ (F ∗ − F )

• This is known as the linear response regime.

• What affects the proportionality factor?

• Since it is collisions that cause the relaxation, the average time between collisions τcoll will be
involved. If it is assumed that this is the proportionality factor, then:

dNcoll
dt

=
F ∗ − F
τcoll

d3v d3r

• Thus, in the linear response regime, the Boltzmann transport equation become linearized:

∇F ∗ · v +∇vF ∗ ·
Fext

m
+
∂F ∗

∂t
= −F

∗ − F
τcoll

What is τcoll?

• Consider λ, the mean free path or the average distance travelled between collisions.

• Consider the cross section σ

• A cross section may be determined for any type of interaction potential.

• For most potentials, the cross section varies with relative speed of the collision partners.

• Collision cross sections for slow speeds can be larger than those for faster speeds since the molecules
have more time to interact under the influence of the interaction potential.

• A velocity-specific free path needs to be considered.

λ(v) = vτcoll(v)

where:

• λ(v) is the free path of a molecule with velocity v,

• v is the speed corresponding to velocity v,

• τcoll(v) is the time between collisions for a molecule with velocity v.

• vτcoll(v) is the distance travelled at speed v before the next collision.

• We must now get the average of τcoll(v) over all velocities.

• The collision rate is the reciprocal of τcoll, i.e. τ−1
coll



• To determine the collision rate:

• Consider molecules with velocity v1 colliding with molecules of velocity v.

• The relative speed of these molecules is g = |v1 − v|
• The collision cross section is σ(g)

• n is the number density of target molecules with velocity v.

• The flux of molecules with velocity v1 toward the collision partners is gn.

• The collision rate for molecules with velocity v1 is the product of flux and cross section.

τ−1
coll(v1) = gnσ(g)

• Consider (see Figure 25.2) a frame of reference in which the target molecules are still (i.e. both the
frame of reference and the target molecules are moving with velocity v).

• The unit area holding the target molecules is considered as the end of a solid of length g dt.

• The target molecules take up a fraction of this unit area.

• The solid defines a volume containing a flux of molecules that are moving with uniform speed g

• In the time, dt, all the molecules contained in the volume moving with speed g will move through
the unit area unless they collide with a target molecule.

• We can find the average collision rate for one molecule of type 1:

z1 = τ−1
coll =

∫
g σ(g) F ∗(v)d3v = n 〈gσ〉

• If a system is at equilibrium, this is a constant.

• If a system is not at equilibrium, then n depends on time and space.

• Recall that:
λ(v) = vτcoll(v)

• Thus at conditions of equilibrium:

λ =

∫
λ(v)f(v)d3v =

〈v〉
n〈gσ〉

• If σ is independent of velocity then 〈gσ〉 = 〈g〉σ and 〈g〉 =
√

2〈v〉
• At equilibrium n = N/V , therefore:

λ =
〈v〉V

N
√

2〈v〉σ
=

V√
2Nσ

(which is the equation we previously derived).

• The mean collision rate gives an upper limit on reaction rates.

• Why don’t all collisions lead to reaction?

Collisions between Unlike Molecules

• The cross section for a collision depends specifically on the types of molecules undergoing collision.



• Consider a binary mixture of gases 1 and 2.

• σ11 is the cross section for collision of a type 1 molecule with another molecule of type 1.

• σ22 is the cross section for collision of a type 2 molecule with another molecule of type 2.

• σ12 is the cross section for collision of a type 1 molecule with another molecule of type 2.

• With hard sphere molecular diameters of d1 and d2, the cross sections are:

σ11 = πd2
1

σ22 = πd2
2

σ12 =
π(d1 + d2)2

4

• The mean collision rate for molecules of type 1 with molecules of type 2.

z12 = n2〈g〉σ12 = n2

(
8kBT

πµ12

)1/2

σ12

where µ12 is the reduced mass of molecule 1 with molecule 2.

• Note the dependence of this rate on the number density of molecule 2, the target molecule.

Total Collision Rate per Unit Volume

• The total collision rate per unit volume is the collision rate per molecule times the number density for
that molecule.

• If there is one component in the gas:

Z11 =
1

2
nz1 =

1

2
〈gσ〉n2 =

σ〈v〉√
2
n2

where the factor of 1/2 ensures that collisions are not double counted.

• If there are two components in the gas, then:

Z12 = n1z12 = n2z21 = 〈gσ〉n1n2

where 〈gσ〉 ∼= 〈g〉σ12

• See the summary in table 25.1

Macroscopic Non-equilibrium Phenomena

• We will consider

• Diffusion

• Thermal conduction

• Electrical conduction

• Viscosity

• The evolution of nonequilibrium systems is governed by the Second Law of Thermodynamics.



• In an isolated system, a spontaneous process will continue until maximum entropy is reached subject
to the constraints of the system.

• Nonequilibrium thermodynamics may be
considered in terms of the time dependence of entropy.

• Recall the formulation of chemical potential (µ) in terms of the minimization of the potential and the
maximization of entropy.

• Chemical potential gradients will drive the system toward equilibrium.

• These gradients are of macroscopic parameters such as temperature, concentration, or density.

• For a system at equilibrium:

µ(T, P ) = µ◦(T ) +RT ln

(
P

1 bar

)

• Consider a closed system with a temperature gradient in the x direction and with uniform pressure.

• The chemical potential gradient is:

∂µ

∂x
=
∂µ

∂T

∂T

∂x
=
∂(µ◦ +RT lnP )

∂T

∂T

∂x

• The spatial derivative of thermodynamic potential (in this case ∂T/∂x) act as the forces that drive
transport phenomena.

• The mathematical formulation of diffusion, thermal conduction, electrical conduction, and viscosity
are all similar.

• Recall the wall collision rate, Jx, or flux of
molecules moving through a plane in the gas.

• All transport phenomena may be treated in terms of the vector flux of a transported quantity.

Flux = J(something)

=
amount of something moving in given direction

(unit area)(unit time)

• This may be applied to:

• diffusion - transport of matter

• thermal conduction - transport of energy

• electrical conduction - transport of charge

• viscosity - transport of linear momentum

• Flux increases, the further a system is from
equilibrium.

• Distance from equilibrium may be
measured by the magnitude of simple gradients of macroscopic parameters.

J(something) = −(phenomenological coefficient)

×(gradient of a macroscopic parameter)



Diffusion

• Consider the diffusion of matter, where z is the direction of the flux of matter.

Jz = −D
(
∂n

∂z

)

where:

• D is the diffusion coefficient

• (∂n/∂z) is the density gradient.

• The negative sign indicates that the flux is in the direction opposite that of the gradient.

• This equation is known as Fick’s first law.

• This equation applies if the system is not far from equilibrium (i.e. in the linear response regime.)

• If the system is far from equilibrium, then the situation is more complex.

• Consider binary diffusion:

• For example a drop of dye in water. The dye diffuses through the water until the
composition is uniform.

• Binary diffusion is defined in terms of two distinquishable species moving through
each other.

• Self diffusion involves only one species.

• May be monitored experimentally by isotopic labelling.

• May be monitored by optical properties
such as light scattering.

• May be monitored by nuclear spin properties (NMR).

• Consider a density gradient in the z direction:

• The flux into a region from z to z + dz is given by Fick’s first law evaluated at z:

Jn,z = −D
(
∂n(z)

∂z

)

• The flux out of this region is given by Fick’s first law evaluated at z + dz:

Jn,z+dz = −D
(
∂n(z + dz)

∂z

)

= −D
[(

(∂n(z)

∂z

)
+

(
∂2n(z)

∂z2

)
dz

]

where:

n(z + dz) = n(z) + dn(z) = n(z) +

(
∂n(z)

∂z

)
dz

• The difference between flux in and flux out, per unit distance, is:

Jn,z − Jn,z+dz
dz

=
∂n(z)

∂t



• Substitution for Jn,z and Jn,z+dz gives:

∂n(z, t)

∂t
= D

(
∂2n(z, t)

∂z2

)

which is Fick’s second law.

• Fick’s second law accounts for nonlinear concentration gradients.

• If a gradient were perfectly linear and stable in time, then

(
∂2n(z, t)

∂z2

)
= 0;

(
∂n

∂t

)
= 0

• Spontaneous fluctuations characterized by large values of
(
∂2n(z, t)/∂z2

)
which

change rapidly with time.

• Solutions to Fick’s second law depend strongly on the initial conditions.

An Example of Diffusion

• Initially the solute is contained in a yz plane at x = 0 and t = 0.

• Let it diffuse from x = 0 to x = ±∞
• Experimentally this may be achieved by coating a thin plate on both sides with the solute and inserting

it into the solvent.

• The solution to Fick’s second law is:

n(x, t) =
N0

A
√

4πDt
e−x

2/4Dt

• Conservation of the number of molecules gives the normalization condition:

∫ ∞

−∞
n(x, t)dx =

N0

A

• Note also that this solution of Fick’s second law is in the form of the Gaussian function, i.e.:

exp

[
−
(

distance

width

)2
]

• In this case width= (4Dt)1/2.

• Note the dependence on the square root of time.

• As the concentration gradients lessen, diffusion slows down.

• The solution to Fick’s second law may be
thought of in terms of a time dependent distribution function with the fraction of molecules at a
particular time and position given by:

f(x, t) =
1√

4πDt
e−x

2/4Dt



• The rms spread in x may be determined:

xrms =

[∫ ∞

−∞

x2

√
4πDt

e−x
2/4Dtdx

]1/2

=

[
4Dt√
π

∫ ∞

−∞
y2e−y

2

dy

]1/2

= (2Dt)1/2

Diffusion as a Stochastic Process

• In 1905, Einstein and van Smoluchowski independently explained Brownian motion as a
stochastic or random process.

• Diffusion is one consequence of Brownian motion.

• Individual molecules collide and as a result the molecules change direction randomly.

• This may be simulated by a random walk.

• Consider a one dimensional random walk.

• The initial position is x = 0.

• The particle may move randomly by x = ±1 each time step.

• What is the probability that the particle has moved X units after N time steps?

• Since there are two choices at each step, there are 2N possibilities.

• Denote the number of steps in the positive direction as N+.

• Denote the number of steps in the negative direction as N−.

• The final position is:
X = N+ −N−

• Since the total number of steps taken is N = N+ +N−,

X = N+ − (N −N+) = 2N+ −N

or

N+ =
1

2
(N +X)

• The number of ways, W, that N+ may be
achieved are:

W =
N !

N+!N−!
=

N !

N+!(N −N+)!

• In terms of position and total number of moves, this becomes:

W =
N ![

1
2 (N +X)

]
!
[

1
2 (N −X)

]
!

• Therefore the probability of arriving X steps from the origin after N steps is:

P =
W

2N
=

N !

2N
[

1
2 (N +X)

]
!
[

1
2 (N −X)

]
!



• Recall Stirling’s Approximation:

lnN ! =

(
N +

1

2

)
lnN −N + ln(2π)1/2

• Rewriting the probability P in logarithmic form gives:

lnP = lnN !−N ln 2− ln

{[
1

2
(N +X)

]
!

}

− ln

{[
1

2
(N −X)

]
!

}

Therefore:

lnP =

(
N +

1

2

)
lnN −N + ln(2π)1/2 −N ln 2

−
({[

1

2
(N +X)

]
+

1

2

}
ln

[
1

2
(N +X)

]

−
[

1

2
(N +X)

]
+ ln(2π)1/2

)

−
({[

1

2
(N −X)

]
+

1

2

}
ln

[
1

2
(N −X)

]

−
[

1

2
(N −X)

]
+ ln(2π)1/2

)

Rearranging gives:

lnP =

(
N +

1

2

)
lnN − ln(2π)1/2

−
([

1

2
(N +X + 1)

]
ln

1

2

+

[
1

2
(N +X + 1)

]
ln

[
N

(
1 +

X

N

)])

−
([

1

2
(N −X + 1)

]
ln

1

2

+

[
1

2
(N −X + 1)

]
ln

[
N

(
1− X

N

)])

Further rearrangement gives:

lnP =

(
N +

1

2

)
lnN − ln(2π)1/2

−
[

1

2
(N +X + 1)

]
ln

1

2
−
[

1

2
(N −X + 1)

]
ln

1

2

−
[

1

2
(N +X + 1)

]
lnN −

[
1

2
(N −X + 1)

]
lnN



−
[

1

2
(N +X + 1)

]
ln

(
1 +

X

N

)

−
[

1

2
(N −X + 1)

]
ln

(
1− X

N

)

which simplifies to:

lnP = ln

(
2

πN

)1/2

−
[

1

2
(N +X + 1)

]
ln

(
1 +

X

N

)

−
[

1

2
(N −X + 1)

]
ln

(
1− X

N

)

• This with the the power series for ex and the fact that X/N is sma!ll gives:

P =

(
2

πN

)1/2

e−X
2/2N

which is an unnormalized Gaussian function.

• Normalization (i.e. integration over all space gives 1) yields:

1

2

(
2

πN

)1/2

e−X
2/2N =

(
1

4πDt

)1/2

e−x
2/4Dt

• If it is assumed that a random step covers the distance x◦ such that Xx◦ = x and the time between
steps is τ (i.e.N = t/τ) then:

X2

2N
=

x2τ

2x2◦t
=

x2

4Dt

Therefore:

D =
x2
◦

2τ
=
λ2

2τ

• Recall that:

〈τcoll〉 =
λ

〈v〉
where 〈v〉 is the mean speed.

• Therefore:

D =
〈v〉λ

2

• Therefore the diffusion is faster the larger the mean free path is.

• The diffusion coefficient, D, increases as the square of the mean free path.

• Random walks may be studied by computer
simulation (Fig. 25.6).

• The difference between the simulation and theory varies as
√
N where in this case N is the number

of simulations.

Concentration Gradients

• What drives diffusion or any other transport process, are chemical potential gradients.



• A concentration gradient is just one example of a chemical potential gradient.

• Nonideal systems may have gradients in
chemical potential which give rise to concentration gradients.

Diffusion in Solids

• Defects in the crystalline structure are important (See section 16.4 of Winn).

• Defects can affect how diffusion occurs in a solid.

• Defect sites themselves can diffuse through the solid.

• Annealing or tempering is a way to minimize defects in a solid.

• Small molecules such as H2 or He can diffuse through the interstitial sites in a crystalline
solid.

• Reactions of the solid with the diffusing molecules can change the properties of the solid (i.e.
poisoning of a catalyst).

• Consider two pure metals or alloys, A and B

• A and B are a diffusion couple which initially have a distinct interface and diffuse into each other.

• If one metal diffuses into the other much more rapidly, then the Hartley-Kirkendall may be observed.

• Let B be the faster moving metal.

• As diffusion proceeds, the interface of the AB region appears to move towards B.

• Vacancies appear in B as the atoms move into A and diffusion may be interpreted as the movement of
the vacancies themselves.

• The mutual diffusion coefficient, DAB is proportional to xADB + xBDA where xA and xB are mole
fractions and DA and DB are the self- diffusion coefficients.

• If B diffuses quickly then DB >> DA and as B moves into A, xA >> xB .

• Then DAB
∼= DB

• A is moving slowly into B and from that perspective, DAB
∼= DA

• The interface moves toward B and as B depletes, vacancies form.

Thermal Conduction

• Encounter it frequently in our day-to-day life.

• Insulation of walls

• Heat loss through different types of windows

• Styrofoam food containers

• Temperature gradient transports energy.

Jq,z = −k
(
∂T

∂z

)

where k is thermal conductivity (W m−1 K−1)

• This equation is known as “Fourier’s Law”.

• What affects the value of k?



• For elements, k reflects periodic trends.

• Metals typically have k between 10-300 W m−1 K−1 (for example Ag has k= 430 W m−1 K−1) .

• Diamond has k= 1370 W m−1 K−1.

• Graphite has k= 129 W m−1 K−1.

• Molecular solids have lower k.

• Red phosphorous k= 13.2 W m−1 K−1.

• White phosphorous k= 0.44 W m−1 K−1.

• What affects the ability of of solids to conduct heat:

• The physical state of the system (i.e. polycrystalline or single crystal)

• Anisotropy of physical structure.

• Lattice vibrations (phonons), especially insulating materials.

• Electron mobility in metals and semiconductors (more important than phonons in conducting ma-
terials.

• How do liquids conduct heat?

• Liquids generally have lower conductivity than solids.

• k= 0.03 W m−1 K−1 for liquid He at 4.2 K.

• k= 0.10-0.15 W m−1 K−1 for most molecular liquids.

• k= 0.61 W m−1 K−1 for water.

• k > 10 W m−1 K−1 for liquid metals.

• The mechanism for heat transfer is energy transfer in molecular collisions and is related to the speed of
sound in the liquid.

• Therefore thermal conductivity in a liquid is related to heat capacity.

• Thermal conductivity in gases is related to the pressure of the gas.

• Thermal conductivity usually increases with
temperature at temperatures above room temperature.

• The temperature dependence of thermal
conductivity in single crystal solids in very nonlinear at low temperature.

Electrical Conduction

• Metals conduct electricity well.

• Insulators do not conduct electricity.

• Semiconductors can conduct electricity, but not as well as metals.

• The high conductivity of metals can be interpreted in terms of the structure of the metals and the
mobility of the conduction elections in the conducting band.

• Ohm’s Law is the flux gradient equation for charge transport:

Je,z = −σe
(
∂φ

∂z

)



where:

• Je,z is the electron flux in C m−2 s−1 or A m−2

• σe is the electical conductivity in S m−1 or A2 s3 kg−1 m−3. (S stands for siemens where 1 S = 1
A V−1 and is the reciprocal of the ohm.)

• φ is the potential difference in V or J C−1

• z is distance in m.

• A variant of Ohm’s Law is E = IR where:

• E is the electomotive force or voltage.

• I is the current

• R is the resistance (which is the reciprocal of the conductance.)

• The relationship between resistance and
conductivity is:

σe =
1

R

length

area

• Thus the bulk resistance of something depends on its size.

• Consider a sample of area A

• The current I is constant

• The voltage difference over a distance ∆z (in the direction of the current flow) is V2 − V1.

• Therefore the resistance is:

R =
E

I
=
V2 − V1

I

• The flux of electrons Je,z or the current density is:

Je,z =
I

A
=
σe|V2 − V1|

∆z

• Resistance R, resistivity ρe, and conductivity σe, are all related by:

R =
∆z

σeA
=
ρe∆z

A

• Electrical conductivities (S m−1) span over 24 orders of magnitude for ordinary substances
(not superconductors).

• Metals have high values:

• Ag 6.3× 107 S m−1

• Cu 5.85× 107 S m−1

• Stainless steel 0.14× 107 S m−1

• Conductivity of carbon depends on the form:

• Graphite 105 S m−1

• Diamond 10−8 S m−1

• Semiconductors span several orders of magnitude:

• Si 2.52× 10−4 S m−1



• Ge 1.45 S m−1

• “gray” Sn 136 S m−1

• Other elements

• Iodine 7.7× 10−8 S m−1

• Sulphur 5× 10−16 S m−1

• Polymers are often poor conductors:

• Polyethylene 10−15 S m−1

• Polytetrafluoroethylene 10−17 S m−1

• Conductivities of solutions depend strongly on the composition (i.e. electrolytes) of the solution.

• Conductivities of gases are extremely low unless the gas is subject to a high electric field that can ionize
atoms and molecules.

• Conductivity and resistivity are temperature
dependent.

Viscosity

• There are various types of viscosity. We will focus on shear viscosity.

• Viscosity is related to the flux of momentum.

• Newton’s viscous law is:

Jmv,zx = −η
(
∂vx
∂z

)

• Flux, Jmv,zx, has units of momentum per unit time per unit area.

• However flux is easily interpreted as pressure because although momentum per unit time is a force,
the direction of the force is parallel to the area and not perpendicular to it.

• Viscosity, η, has units of Pa s or poise (1 P = 0.1 Pa s)

• Hydrodynamics treats viscosity in great detail.

• Consider shear viscosity (Figure 25.9).

• Consider an xz plane in a fluid.

• Move a large thin plate (xy plane) in the x direction with velocity vx.

• A thin layer of fluid in contact with the plate moves with velocity vx.

• The layer of fluid in contact with the fixed container is moving with zero velocity.

• This produces a velocity gradient in the z direction.

• If the container is not fixed and the fluid sufficiently viscous, then the motion of the plate will cause the
container to move.

• This means that x momentum has been transferred along the z direction.

• This is an example of a shear force.

• This type of viscosity is called shear viscosity.

Some Representative Viscosities



• Cold molasses ≈ 1 Pa s

• Gylcerol ≈ 1.5 Pa s

• Water ≈ 10−3 Pa s

• Viscosity may also be expressed in units of poise (P).

• 1 Pa s = 1 kg m−1 s−1

• 1 P = 1 g cm−1 s−1, therefore 1 P = .1 Pa s; 1 cP = 10−3 Pa s; 1 µ P = 10−7 Pa s.

Measuring Viscosity

• The Ostwald viscosimeter is a convenient instrument for measuring the viscosity of a liquid.

• Includes a vertical capillary tube.

• The flow of a fluid through a tube is subject to a radial velocity gradient and flows fastest in the
center.

• Flow through a capillary is subject to laminar (non-turbulent) flow.

• The viscous force is a friction.

• If this friction is balanced by a hydrostatic head providing pressure, then steady-state flow results.

• The viscosity of the incompressible fluid is η.

• The tube is of length L and radius R.

• ∆P is the pressure difference between the top and bottom of the tube.

• r is the distance from the center of the tube.

• The force pushing the fluid at r is ∆Pπr2

• The contact area is 2πLr.

• The force per unit contact area is given by
(∆Pπr2)/(2πrL) = (∆Pr)/(2L)

• This force is exactly balanced by radial flux of z momentum. Therefore:

Jmv,rz = −∆Pr

2L
= −η ∂vz

∂r

• Thus the velocity v may be found as a function of r:

vz(r) =

∫ vz(r)

vz(R)

dvz = −∆P

2Lη

∫ r

R

rdr

=
∆P

4Lη

(
r2 −R2

)

• The flow rate per unit time for an incompressible fluid becomes:

dV

dt
=

∆PπR4

8Lη

• The flow rate per unit time for a compressible fluid becomes:

dV

dt
=

πR4

16Lη

P 2
i − P 2

f

P0



where

• Pi is the pressure at the tube’s inlet,

• Pf is the pressure at the tube’s outlet,

• P0 is the pressure at which the volume is measured.

• The Ostwald viscometer is designed to exploit these equations.

• Fill viscometer bulb with fluid of interest.

• Draw fluid through capillary into calibrated bulb of volume V to above start mark.

• Measure the time between the start and finish mark.

• Calculate viscosity from:

η =

(
πR4

8L

)
ρg〈∆h〉
V

∆t

where ρ is the density of the fluid, g is gravitational acceleration, and 〈∆h〉 is the time average
height difference:

〈∆h〉 =
∆hstart −∆hfinish

ln (∆hstart/∆hfinish)

Microscopic Transport Coefficients

• Recall the linearized Boltzmann transport equation.

• The solution gives the non-equilibrium
number density distribution function, F ∗.

• Of more interest are the transport coefficients.

• Consider flux:

flux =

∫



quantity
transported

per
molecule







molecular
speed in
transport
direction


 ·

F ∗(v, r, t) dvxdvydvz

• Applied to diffusion this becomes:

Jn,z =

∫
vzF

∗(v, r, t) dvxdvydvz = −D
(
∂n

∂z

)

• Applied to thermal conductivity this
becomes:

Jq,z =

∫
mv2

2
vzF

∗(v, r, t) dvxdvydvz = −k
(
∂T

∂z

)

• Applied to electrical conductivity this becomes:

Je,z =

∫
QvzF

∗(v, r, t) dvxdvydvz = −σe
(
∂φ

∂z

)

• Applied to viscous flux of x momentum, this becomes:



Jmv,zx =

∫
mvxvzF

∗(v, r, t) dvxdvydvz

= −η
(
∂vx
∂z

)

• From each of these it is possible to derive the transport coefficient, since each flux expression imposes
constraints on the Boltzmann transport equation.

The Diffusion Coefficient

• Assumptions:

• Steady state, thus
∂F ∗

∂t
= 0

• No external forces, thus

∇vF ∗ ·
Fext

m
= 0

• The concentration gradient is only in the z direction, thus:

∇F ∗ · v =

(
∂F ∗

∂z

)
vz

• Under these conditions, the Boltzmann equation becomes:

∂F ∗

∂z
vz = −F

∗ − F
τcoll

• Further assume that F ∗ is close to F . Define the difference F ′:

F ∗(r) = F (r) + F ′(r)

• Also assume that the spatial derivative of F ′ is negligible.

(
∂F ∗

∂z

)
∼=
(
∂F

∂z

)

• With these further assumptions, the Boltzmann equation becomes:

∂F

∂z
vz = − F ′

τcoll

• Isolating F ′ gives:

F ′ = −τcoll
∂F

∂z
vz = −τcollvz

∂F

∂n

∂n

∂z

=
−τcollvzF

n

∂n

∂z



• Substituting F + F ′ for F ∗ gives:

Jn,z =

∫
vzF (v, r, t) dvxdvydvz

+

∫
vzF

′(v, r, t) dvxdvydvz

= 0 +−
(
τcoll
n

∫
v2
zFdv

)(
∂n

∂z

)

• Therefore:

D =
τcoll
n

∫
v2
zFdv =

τcoll
n

(
nkBT

m

)
=
τcollkBT

m

since F = nf and 〈vz〉 = kBT/m.

• Recalling that τcoll = λ/〈v〉:

D =
λkBT

m〈v〉 =
1

4nσ

(
πkBT

m

)1/2

=
( π
m

)1/2 (kbT )3/2

4Pσ

where σ is the collision cross section and P is the pressure.

• Therefore:

• Molecules with larger σ diffuse more slowly than ones with smaller σ.

• Diffusion slows as P increases

• Diffusion is faster at higher T

Thermal Conductivity

• A temperature gradient at constant pressure
means that there is a density gradient.

P = nkBT

where n is the density N/V

• If ∂T/∂z 6= 0 then ∂n/∂z 6= 0 to maintain constant P .

• This means that the local equilibrium distribution function explicitly depends on z through n(z)
and T (z):

F (z) = n(z)

(
m

2πkBT (z)

) 3
2

e−m(v2
x+v2

y+v2
z)/2kBT (z)

• Following the same procedure as we used for diffusion, the Boltzmann transport equation becomes:

F ′ = −vzτcoll
(
∂F (z)

∂z

)

and
∂F (z)

∂z
=
F

T

(
mv2

2kBT
− 5

2

)(
∂T

∂z

)



• Thus Jq,z becomes:

Jq,z =

∫ (
mv2

2

)
vzF

′dv

= −
[
τcoll
T

∫ (
mv2

2

)
v2
z

(
mv2

2kBT
− 5

2

)
Fdv

](
∂T

∂z

)

• Integration yields:

k =
5

2

τcollnk
2
BT

m

• Using Cv = 3NAkB/2 for an ideal monatomic gas, this becomes:

k =
5

2

λnk2
BT

m〈v〉 =
5

2

k
3/2
B

4σ

(
πT

m

)1/2

=
5

12

CV
σNA

(
πkBT

m

)1/2

• Thus thermal conductivity k

• decreases for heavier molecules

• increases with temperature

• is independent of pressure, but the expression breaks down at low pressures and extremely high
pressures.

• At intermediate pressures, the P dependence of λ is cancelled out by the P dependence of n.

• If the pressure is so low that λ is greater than the thickness of the gas layer through which the heat is
conducted, then k becomes P dependent and the heat transfer does not depend on collisions.

• At high pressures, multiple collisions become an important means of heat transfer.

Electrical Conductivity

• Consider a weakly ionized gas (i.e. a plasma)

• n+ is the number density of positively
charged ions, each with a charge of Q+.

• Sufficient electrons or anions are present to balance the charge and assure that the plasma is
electrically neutral.

• While the net current is due to motion of all charged species, the movement of positive
charges will be initially considered.

• Impose on a plasma a small potential gradient,

∂φ

∂z
= −Ez

due to the z component of the external electric field.

• Thus the flux gradient equation becomes:

Je,z = σeEz



• Assume that ions and neutrals have the same f ∗.

• This is reasonable because of collisions.

• Assume that n+ << n

• For the positive ions, F ∗ = n+f
∗.

• For the neutrals F ∗ = nf∗.

• Assume that the deviation, F ′ from equilibrium is small.

F ∗ = F + F ′

• The Boltzmann equation has no spatial gradient term (∇F ∗ = 0), but is subject to an external force
(Fext,z = Q+Ez).

• Thus:

∇F ∗ · v +∇vF ∗ ·
Fext

m
+
∂F ∗

∂t
= −F

∗ − F
τcoll

becomes:
∂F

∂vz

Q+Ez
m

= − F ′

τcoll

which rearranges to:

F ′ = −τcollQ+Ez
m

∂F

∂vz

• Since F is the equilibrium distribution,

∂F

∂vz
= −mvz

kBT
F

F ′ =
τcollQ+Ez
kBT

vzF

• Because F ′ << F , the electric field, Ez is small.

• The expression for flux becomes:

Je,z = Q+

∫
vzF

′dv =

(
τcollQ

2
+

kBT

∫
v2
zFdv

)
Ez

where

σe =
τcollQ

2
+

kBT

∫
v2
zFdv =

n+τcollQ
2
+

m

• If it is assumed that the ions have the same cross section as the neutrals, then a substitution may be
made for τcoll:

σe =
λn+Q

2
+

m〈v〉 =
n+

n

Q2
+

4σ

(
π

mkBT

)1/2

• Note that the charge term is squared so that σe is always positive.

• It is necessary to consider other ions and other charges that are present in the solution.

• The concept of ion mobility u is useful.



• u is the ions’ drift velocity per unit electrical field or conductivity per unit of charge concentration.

u+ =
conductivity

unit charge concentration
=

σe
n+Q+

=
τcollQ+

m
=
Q+

4nσ

(
π

mkBT

)1/2

• For two species of opposite charge with ion mobilities of u+ and u−, the net conductivity is:

σe = σ+ + σ− = n+Q+u+ + n−Q−u−

• The ratio of mobility to the diffusion coefficient is:

u+

D
=
τcollQ+

m

m

τcollkBT
=

Q+

kBT

Viscosity

• Consider a gas with a slow bulk flow in the x direction and a flow gradient in the z direction.

• The flow speed is ux is additive to the velocity vectors of the molecule, yielding local velocity components
(Ux, Uy, Uz) with respect to the flowing frame of reference:

Uz = vz, Uy = vy, Ux = vx − ux
• Assume

• A steady state flow

• That the distribution is slightly perturbed from equilibrium such that:

F ∗ = F + F ′

• Thus, it can be shown that:

F ′ = −τcollvZ
∂F

∂z
= −τcollvZ

(
∂F

∂Ux

)(
∂Ux
∂z

)

= −τcollvZ
(
∂F

∂ux

)(
∂ux
∂z

)

• The flux expression becomes:

Jmx,zx =

∫
(mUx)UzF

′dU = m

∫
UxvzF

′dU

=

[
τcoll m

∫ (
∂F

∂Ux

)
Uxv

2
zdU

](
∂ux
∂z

)

• Thus:

η = −τcoll m
∫ (

∂F

∂Ux

)
Uxv

2
zdU

= −τcoll m
∫ (
−F mUx

kBT

)
Uxv

2
zdU

=
τcoll m

2

kBT

∫
FU2

xv
2
zdU =

τcoll m
2

kBT
n

(
kBT

m

)2

= nτcollkBT

• And substituting for τcoll yields:

η =
nλkBT

〈v〉 =
(πkBTm)1/2

4σ

• Thus for a gas:

• η increases with temperature.

• η is independent of pressure.


