The Nonequilibrium Distribution function

e If a distribution changes with time, then it is an
non-equilibrium distribution.

e Consider the following:

e Gas confined to the center of a large con-
tainer.

e The confining walls are removed.
e The gas expands to fill the container.

e The gas reaches equilibrium with the new
volume.

e What are the properties of the distribution
before equilibrium is reached?

e What role do collisions play in the evolu-
tion of the nonequilibrium distribution?

e Like the equilibrium distribution, the nonequi-
librium distribution depends on:

e velocity
e position

e In addition the distribution depends on time.



e Thus the nonequilibrium distribution function,
f* may be written as:

[ (Vz, vy, 05, 2,y, 2,t) dvy dvy, dv, do dy dz

which may be interpreted that a molecule at
time t is in the volume dx dy dz located at
(x,y,2) with velocity in the range dv, dv, dv,
at (v, vy, vs).

e Note that the nonequilibrium distribution
function, f*, depends explicitly on t as well
as through the coordinates (z,y, z) and ve-
locities (vg, vy, v2).

e The derivative of f* with respect to time is:

df* — Of* dvy N of* dvy, N Of* dv,
dt  Ov, dt = Ov, dt = Ov, dt

of*de Of*dy 0Of"dz OfF
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e Consider the three terms involving the coordi-
nates:

8f*d_x+8f*@+8f*%
Ox dt Oy dt Oz dt




e Note that dzx/dt = v, dy/dt = v,, and dz/dt =
Uz

e Note that 0f*/0x, 0f* /0y, and f*/0z are the
spatial gradients of f*.

e This can be written in vector short hand nota-
tion:
of* d_:c of* @ Of* dz

Ox dt+ oy dt+ (‘9z$:vf Y

where V = 9/0x+0/0y+0/0z, v is the velocity
vector and - means the vector dot product. (V
may be read as “nabla” or “grad”.)

e Now consider:
Of* duy N Of* dvy N of* dv.,
ov, dt Ov, dt Oov, dt

e Note that dv,/dt, dv,/dt, and dv,/dt are
the components of acceleration vector a
and that Fext = ma. Therefore:

of*dv,  Of*dv, Of dv, . Fext
ov, dt * Ov, dt * Ov, dt = Vol m
e Therefore:

df* F .« Of*
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the system is in a steady state or at equilibrium.

e In a steady state, the properties of the sys-

tem at a particular point in space do not
change with time.

When
Fext

m

=0

\ f "
There are no external forces on the system.

When something is being transported

Vf*v# 0

The Molecular Basis of f*

Recall that f* is proportional to a probability.

e We are concerned with molecular concen-
trations or number density.

If the system is not at equilibrium, then we are
concerned with number densities that depend
on position and N/V is an insufficient descrip-
tion.



dN = n(x,y, 2,t)(f* (v, vy, vz, T, Y, 2, 1) d>VdT
= F*(vg, vy, Vs, 1, 9, 2, t)d>vdr
where

e dN is the number of molecules at time ¢
in the six-dimensional volume element de-
fined by the velocity and position coordi-
nates d>vd’r = dv, dv, dv, dx dy dz.

e [ is the number density distribution func-
tion, F* = nf*.

e Consider the evolution of the number density
distribution function through the time interval

dt.

e Molecules move due to their velocity and
any acceleration caused by external forces.

e Positions change fromr tor' =r + v dt

e Velocities change from v to v = v + a dt

e The number, dN’, in d>v d°r at r’ and v’
is:

dN' = F*(v',r' t + dt)d’v d°r



e But collisions may cause molecules to enter
or leave the volume element d>v d°r. The
contribution this makes is d/N ..

dN' — dN = dN_

Therefore

dANgoy = [F*(V',x' t +dt) — F*(v,r,t)]d°v d°r

But
dF™
(F*(v',r',t +dt) — F*(v,r,t)] = dF* = o dt
Therefore
dF™
ANeoy = ——dt d*v d°r
Analogous to the treatment of f*:
dF™ Fext OF*
= VF™*. AV
a - VE v m ol
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e Now collisions must be considered explicitly.

e dN,.,; is the net change of molecules scat-
tered in and out of d°v d°r in time dt.

e The rate of change of this with time is:

choll

= (time rate of change of F*)d*v d°r

e Finding the time rate of change is difficult. The
result is the Boltzmann Transport Equation
which is difficult to solve.

e Need to use approximations instead.

e Consider a system sufficiently close to equilib-
rium that F* = F.

e ['is the equilibrium number density distri-
bution function N f/V.

e If the system is isolated, F'* should go
smoothly and quickly toward F'.

e Consider Ar(g) at equilibrium at 300 K.

e Alter the equilibrium by taking half the
molecules at v,=250 m s~ ' and reverse
their direction.



e The distribution will be the equilibrium

distribution except for spikes at v, = £250

m s_l.

e The system then relares smoothly toward
equilibrium.
Consider first the spike at v, =-250 m s~ .
o f*> for f*—f > 0. Therefore df*/dt < 0.

e The spike drops until equilibrium is
reached.

For the spike at v, =+250 m s~ '.
o "< for f*—f < 0. Therefore df*/dt > 0.
e The spike rises until equilibrium is reached.

Thus it can be shown that df*/dt dF™/dt, and
dN o /dt have the same sign and that the sign
is opposite to that of (f* — f) or (£ — F).

When F'* is not far from F' it may be assumed
that dN . /dt is directly proportional to the dif-
ference between F* and F

(time rate of change of F*) o (F* — F)

e This is known as the linear response regime.



e What affects the proportionality factor?

e Since it is collisions that cause the relax-
ation, the average time between collisions
T.orr Will be involved. If it is assumed that
this is the proportionality factor, then:

dN coll F* —F

- v dr
dt Teoll

e Thus, in the linear response regime, the Boltz-
mann transport equation become linearized:
Feoxt N oF*  F*—-F

VF* . v+V,F*-

m 8t Tecoll

What is Tcoll?
e Consider A, the mean free path or the average
distance travelled between collisions.
e (Consider the cross section o

e A cross section may be determined for any
type of interaction potential.

e For most potentials, the cross section varies
with relative speed of the collision partners.



e (Collision cross sections for slow speeds can
be larger than those for faster speeds since
the molecules have more time to interact
under the influence of the interaction po-
tential.

e A velocity-specific free path needs to be consid-
ered.
ANV) = v7eon (V)

where:

e )\(v) is the free path of a molecule with
velocity v,

e v is the speed corresponding to velocity v,

o 7.,(V) is the time between collisions for a
molecule with velocity v.

o uT.o (V) is the distance travelled at speed
v before the next collision.

e We must now get the average of 7.4(V)
over all velocities.

e The collision rate is the reciprocal of 7., i.e.

—1
Tcoll



e To determine the collision rate:

Consider molecules with velocity v collid-
ing with molecules of velocity v.

The relative speed of these molecules is g =
Vi —v|

The collision cross section is J(g)

n is the number density of target molecules
with velocity v.

The flux of molecules with velocity v to-
ward the collision partners is gn.

e The collision rate for molecules with velocity vi
is the product of flux and cross section.

Teoll (Vl) — gna(g)

e Consider (see Figure 25.2) a frame of reference
in which the target molecules are still (i.e. both
the frame of reference and the target molecules
are moving with velocity v).

e The unit area holding the target molecules is
considered as the end of a solid of length ¢ dt.

The target molecules take up a fraction of
this unit area.



e The solid defines a volume containing a flux
of molecules that are moving with uniform
speed ¢

e In the time, dt, all the molecules contained
in the volume moving with speed ¢ will
move through the unit area unless they col-
lide with a target molecule.

e We can find the average collision rate for one
molecule of type 1:

a == [ 9.0(9) F*(0)d = n (g0

e If a system is at equilibrium, this is a con-
stant.

e If a system is not at equilibrium, then n
depends on time and space.

e Recall that:

)\(V) — VUTecoll (V)

e Thus at conditions of equilibrium:




e If o is independent of velocity then (go) =
(9)o and (g) = vV2(v)
e At equilibrium n = N/V | therefore:
\ — (v)V _ V
Nv2{v)o  +/2No

(which is the equation we previously de-
rived).

e The mean collision rate gives an upper limit on
reaction rates.

e Why don’t all collisions lead to reaction?

Collisions between Unlike Molecules

e The cross section for a collision depends specit-
ically on the types of molecules undergoing col-
lision.

e Consider a binary mixture of gases 1 and 2.

e 017 is the cross section for collision of a type
1 molecule with another molecule of type 1.

® 095 is the cross section for collision of a type
2 molecule with another molecule of type 2.

® 019 is the cross section for collision of a type
1 molecule with another molecule of type 2.



e With hard sphere molecular diameters of d; and
do, the cross sections are:

011 — Wd%
0929 — 7Td§
7T(d1 +d2)2
012 — A

e The mean collision rate for molecules of type 1
with molecules of type 2.

8k3T> 1/2
012

212 = n2<g>012 %, (
TH12

where (115 is the reduced mass of molecule 1 with
molecule 2.

e Note the dependence of this rate on the
number density of molecule 2, the target
molecule.

Total Collision Rate per Unit Volume

e The total collision rate per unit volume is the
collision rate per molecule times the number
density for that molecule.



e If there is one component in the gas:

1 1 o{v)
= —Nz1 = — g ’n,2 = n2
Z11 1 <g > \/5

2 2

where the factor of 1/2 ensures that collisions
are not double counted.

e If there are two components in the gas, then:
Z1p = n1212 = Naz21 = (gO)n1n2
where (go) = (g)o12

e See the summary in table 25.1

Macroscopic Non-equilibrium Phenomena
e We will consider

e Diffusion

e Thermal conduction

e Electrical conduction

e Viscosity

e The evolution of nonequilibrium systems is gov-
erned by the Second Law of Thermodynamics.

e In an isolated system, a spontaneous pro-
cess will continue until maximum entropy
is reached subject to the constraints of the
system.



e Nonequilibrium thermodynamics may be
considered in terms of the time dependence
of entropy.

e Recall the formulation of chemical potential (1)
in terms of the minimization of the potential
and the maximization of entropy.

e Chemical potential gradients will drive the
system toward equilibrium.

e These gradients are of macroscopic param-
eters such as temperature, concentration,
or density.

e For a system at equilibrium:

w(T,P)=p°(T)+ RT In (1 ];ar>

e Consider a closed system with a temperature
gradient in the z direction and with uniform
pressure.

e The chemical potential gradient is:
O O odT  O(u®+ RT'InP)OoT
dr 0T ox oT O

e The spatial derivative of thermodynamic

potential (in this case 0T /0x) act as the
forces that drive transport phenomena.




e The mathematical formulation of diffusion,
thermal conduction, electrical conduction,
and viscosity are all similar.

e Recall the wall collision rate, J,, or flux of
molecules moving through a plane in the gas.

e All transport phenomena may be treated
in terms of the vector flux of a transported
quantity.

Flux = J(something)

amount of something moving in given direction

(unit area)(unit time)

e This may be applied to:
e diffusion - transport of matter
e thermal conduction - transport of energy
e clectrical conduction - transport of charge
e viscosity - transport of linear momentum

e Flux increases, the further a system is from
equilibrium.

e Distance from equilibrium may be
measured by the magnitude of simple gra-
dients of macroscopic parameters.



J(something) = —(phenomenological coefficient)

X (gradient of a macroscopic parameter)

Diffusion

e Consider the diffusion of matter, where z is the
direction of the flux of matter.

on
.=-b(3)

e [ is the diffusion coeflicient

where:

e (On/0z) is the density gradient.

e The negative sign indicates that the flux is
in the direction opposite that of the gradi-
ent.

e This equation is known as Fick’s first law.

e This equation applies if the system is not far
from equilibrium (i.e. in the linear response
regime.)



e If the system is far from equilibrium, then the
situation is more complex.

e Consider binary diffusion:

e For example a drop of dye in water. The
dye diffuses through the water until the
composition is uniform.

e Binary diffusion is defined in terms of two
distinquishable species moving through
each other.

e Self diffusion involves only one species.

e May be monitored experimentally by iso-
topic labelling.

e May be monitored by optical properties
such as light scattering.

e May be monitored by nuclear spin proper-
ties (NMR).

e Consider a density gradient in the z direction:

e The flux into a region from z to z + dz is
given by Fick’s first law evaluated at z:

8n(z)>

In,. = —D
’ ( 0z



e The flux out of this region is given by Fick’s
first law evaluated at z + dz:

an(z@j dz))

o[(5) (5)e

where:

Jn,z—|—dz =-D (

n(z+dz) =n(z) +dn(z) =n(z) + (8222)) dz

e The difference between flux in and flux out, per
unit distance, is:

Jn,z — Jn,z—l—dz . 8n(z)

dz ot

e Substitution for J, , and J,, .44, gives:

On(z,t) _ N (82n(z,t))

ot 022

which is Fick’s second law.



e [ick’s second law accounts for nonlinear concen-
tration gradients.

e If a gradient were perfectly linear and sta-
ble in time, then

(%57) -+ (5) -

e Spontaneous fluctuations characterized by
large values of (0?n(z,t)/0z%) which
change rapidly with time.

e Solutions to Fick’s second law depend strongly
on the initial conditions.

An Example of Diffusion
e Initially the solute is contained in a yz plane at
x=0and t = 0.
e Let it diffuse from z =0 to z = +o0

e Experimentally this may be achieved by coating
a thin plate on both sides with the solute and
inserting it into the solvent.

e The solution to Fick’s second law is:

N 2
n(:z:,t) _ 0 —x% /4Dt

e
AN A7 Dt



Conservation of the number of molecules gives
the normalization condition:

00 N,
/ n(x,t)dr = I

— OO

Note also that this solution of Fick’s second law
is in the form of the Gaussian function, i.e.:

distance \ *
exp | —
P width

e In this case width= (4Dt)'/2.

e Note the dependence on the square root of
time.

e As the concentration gradients lessen, dif-
fusion slows down.

The solution to Fick’s second law may be
thought of in terms of a time dependent distri-
bution function with the fraction of molecules
at a particular time and position given by:

1 2
fla,t) = ——=e7" /27"

VAar Dt



e The rms spread in x may be determined:

o0 2 1/2
Lrms — [/ L 6—5132/4Dtd$]
— oo VAT Dt

[4Dt >

L, 1/2 Lo
— Y d = (2Dt
ﬁ —ooy ‘ y] ( )

Diffusion as a Stochastic Process

e In 1905, Einstein and van Smoluchowski inde-
pendently explained Brownian motion as a
stochastic or random process.

e Diffusion is one consequence of Brownian
motion.

e Individual molecules collide and as a result
the molecules change direction randomly.

e This may be simulated by a random walk.
e Consider a one dimensional random walk.
e The initial position is x = 0.

e The particle may move randomly by x =
+1 each time step.



e What is the probability that the particle has
moved X units after N time steps?

e Since there are two choices at each step, there
are 2 possibilities.

e Denote the number of steps in the positive di-
rection as N .

e Denote the number of steps in the negative di-
rection as IV_.

e The final position is:

X=N,—-N_

e Since the total number of steps taken is
N=N, +N_,

X:N+—(N—N+):2N+—N

or

1

e The number of ways, W, that N, may be
achieved are:
N N

N,UIN_! NN —N.)

W =




e In terms of position and total number of
moves, this becomes:

N!
(N +X)|'[5 (N - X))!

[

e Therefore the probability of arriving X steps
from the origin after N steps is:

N

e Recall Stirling’s Approximation:

1
In N! = (N + 5) In N — N + In(2m)Y/?

e Rewriting the probability P in logarithmic form
gives:

1
InP =1InN! N1n21n{ [5 (N+X)]!}

—m{B (N—X)]!}



Therefore:

1
In P = (N+ 5) InN — N +In(2m)Y/2 = N1n?2

<{B N+X)] } [(N+X)]

[y 0] s miany )
¥ =) + } 5 (V- x)]
~[gov -]«

Rearranging giv

1
InP = (N+ 5) In N — In(27)1/2

([povexn]n;

" B <N+X+1>] In [N (1+§)D



<[;<NX+1>] .

+B(N—X+1)] In [N(1§>D

Further rearrangement gives:
1
InP = (N - 5) In N — In(27)1/2

_ B(N+X+1)] ln%—[%(N—XJrl)] m%

- B(N+X+1)] In N — B(N—XJrl)] In N

1 ] X
— | = X +1)|1 1+ —
_2(N+ +)_n(+N)

hov-xen]w(i- )

which simplifies to:
1/2
2 1 X
— - — | =(N+X+1)|In{1+ —
InP =1In (ﬂ'N) [2( + X + )] n( +N)

v n]w(1-)




e This with the the power series for e* and the
fact that X/N is smalll gives:

1/2

P — 2 o~ X7/2N
TN

which is an unnormalized Gaussian function.

e Normalization (i.e. integration over all space
gives 1) yields:

1/2 1/2
L2\ ey (LN e
2 \ N 47 Dt

e If it is assumed that a random step covers the
distance z, such that Xz, = x and the time
between steps is 7 (i.e.N = t/7) then:

X? B 2T B x?
2N 222t 4Dt

Therefore:
o T _ XN
2T 2T



e Recall that: \

<7-coll> — <U—>

where (v) is the mean speed.

e Therefore:
(V)

2

D =

e Therefore the diffusion is faster the larger the
mean free path is.

e The diffusion coefficient, D, increases as
the square of the mean free path.

e Random walks may be studied by computer
simulation (Fig. 25.6).

e The difference between the simulation and
theory varies as v N where in this case N
is the number of simulations.

Concentration Gradients

e What drives diffusion or any other transport
process, are chemical potential gradients.

e A concentration gradient is just one exam-
ple of a chemical potential gradient.



e Nonideal systems may have gradients in
chemical potential which give rise to con-
centration gradients.

Diffusion in Solids

e Defects in the crystalline structure are impor-
tant (See section 16.4 of Winn).

e Defects can affect how diffusion occurs in a
solid.

e Defect sites themselves can diffuse through
the solid.

e Annealing or tempering is a way to mini-
mize defects in a solid.

e Small molecules such as Ho or He can diffuse
through the interstitial sites in a crystalline

solid.

e Reactions of the solid with the diffusing
molecules can change the properties of the
solid (i.e. poisoning of a catalyst).

e Consider two pure metals or alloys, A and B



A and B are a diffusion couple which initially
have a distinct interface and diffuse into each
other.

If one metal diffuses into the other much more
rapidly, then the Hartley-Kirkendall may be ob-
served.

Let B be the faster moving metal.

As diffusion proceeds, the interface of the AB
region appears to move towards B.

Vacancies appear in B as the atoms move into
A and diffusion may be interpreted as the move-
ment of the vacancies themselves.

The mutual diffusion coefficient, D4p is pro-
portional to xtpDpg + xgD4 where x4 and xp
are mole fractions and D4 and Dpg are the self-
diffusion coefficients.

If B diffuses quickly then D >> D4 and as B
moves into A, x4 >> rp.

e Then Dy = Dp

A is moving slowly into B and from that per-
spective, Dap = Dy

The interface moves toward B and as B depletes,
vacancies form.



Thermal Conduction

e Encounter it frequently in our day-to-day life.
e Insulation of walls

e Heat loss through different types of win-
dows

e Styrofoam food containers

e Temperature gradient transports energy.

orT
e =)

where k is thermal conductivity (W m~! K—1)
e This equation is known as “Fourier’s Law”.
e What affects the value of k7
e For elements, k reflects periodic trends.

e Metals typically have £ between 10-300 W
m~! K1 (for example Ag has k= 430 W
m~t K1) .

e Diamond has k= 1370 W m~—! K—1.
e Graphite has k= 129 Wm—! K1



e Molecular solids have lower k.
e Red phosphorous k= 13.2 Wm~—! K—'.
e White phosphorous k= 0.44 W m~1! K—1.

e What affects the ability of of solids to conduct
heat:

e The physical state of the system (i.e. poly-
crystalline or single crystal)

e Anisotropy of physical structure.

e Lattice vibrations (phonons), especially in-
sulating materials.

e Electron mobility in metals and semicon-
ductors (more important than phonons in
conducting materials.

e How do liquids conduct heat?

e Liquids generally have lower conductivity
than solids.

o k= 0.03 W m—! K~! for liquid He at 4.2
K.

o k= 0.10-0.15 W m~—! K~! for most molec-
ular liquids.



e k=0.61 Wm~! K~ for water.
o k> 10 W m~! K~! for liquid metals.

e The mechanism for heat transfer is energy trans-
fer in molecular collisions and is related to the
speed of sound in the liquid.

e Therefore thermal conductivity in a liquid
is related to heat capacity.

e Thermal conductivity in gases is related to the
pressure of the gas.

e Thermal conductivity usually increases with
temperature at temperatures above room tem-
perature.

e The temperature dependence of thermal
conductivity in single crystal solids in very
nonlinear at low temperature.

Electrical Conduction

e Metals conduct electricity well.
e Insulators do not conduct electricity.

e Semiconductors can conduct electricity, but not
as well as metals.



e The high conductivity of metals can be inter-
preted in terms of the structure of the metals
and the mobility of the conduction elections in
the conducting band.

e Ohm’s Law is the flux gradient equation for
charge transport:

_ 0¢
Je,z — —0¢ (%)

e J. . is the electron flux in C m™% s~ ! or A

m—2

where:

e 0. is the electical conductivity in S m™*

or A? 3 kg™l m™3. (S stands for siemens
where 1 S =1 A V~! and is the reciprocal
of the ohm.)

e ¢ is the potential difference in V or J C1
e 2 is distance in m.

e A variant of Ohm’s Law is £ = I R where:
e I is the electomotive force or voltage.

e [ is the current



e R is the resistance (which is the reciprocal
of the conductance.)

e The relationship between resistance and
conductivity is:

1 length
O — —
R area

e Thus the bulk resistance of something de-
pends on its size.
e Consider a sample of area A
e The current [ is constant

e The voltage difference over a distance Az
(in the direction of the current flow) is Vo —

Vi.
e Therefore the resistance is:
R = —= —
I 1

e The flux of electrons .J. . or the current
density is:

_ O-e“/Q — Vl‘

I
Jez = A Az




e Resistance R, resistivity p., and conductiv-
ity o, are all related by:

Az pAz

R:aeA A

Electrical conductivities (S m™!) span over 24
orders of magnitude for ordinary substances
(not superconductors).

Metals have high values:
e Ag 6.3 x 10" Sm~!
e Cub5.85x10"Sm™?
e Stainless steel 0.14 x 107 S m™!
Conductivity of carbon depends on the form:
e Graphite 10° S m~!
e Diamond 107 Sm™!

Semiconductors span several orders of magni-
tude:

e Si252x107*S m™!
e Ge1.45 S m—1
e “gray” Sn 136 Sm™!



Other elements
e Iodine 7.7 x 107 S m™*
e Sulphur 5 x 10716 Sm~!
Polymers are often poor conductors:
e Polyethylene 1071° S m™!
e Polytetrafluoroethylene 10717 S m~!

Conductivities of solutions depend strongly on
the composition (i.e. electrolytes) of the solu-
tion.

Conductivities of gases are extremely low unless
the gas is subject to a high electric field that can
ionize atoms and molecules.

Conductivity and resistivity are temperature
dependent.

Viscosity

There are various types of viscosity. We will
focus on shear viscosity.

Viscosity is related to the flux of momentum.



e Newton’s viscous law is:

OV,
va,zm — - ( By )

o Ilux, Ji4 22, has units of momentum per
unit time per unit area.

e However flux is easily interpreted as pres-
sure because although momentum per unit
time is a force, the direction of the force is
parallel to the area and not perpendicular
to it.

e Viscosity, 17, has units of Pa s or poise (1 P
= 0.1 Pa s)

e Hydrodynamics treats viscosity in great de-
tail.

e Consider shear viscosity (Figure 25.9).
e Consider an zz plane in a fluid.

e Move a large thin plate (xy plane) in the x
direction with velocity v,.

e A thin layer of fluid in contact with the
plate moves with velocity v,.



The layer of fluid in contact with the fixed con-
tainer is moving with zero velocity.

This produces a velocity gradient in the z direc-
tion.

If the container is not fixed and the fluid suffi-
ciently viscous, then the motion of the plate will
cause the container to move.

This means that £ momentum has been trans-
ferred along the z direction.

This is an example of a shear force.

This type of viscosity is called shear viscosity.

Some Representative Viscosities

Cold molasses ~ 1 Pa s
Gylcerol =~ 1.5 Pa s
Water ~ 1073 Pa s

Viscosity may also be expressed in units of poise
(P).
e lPas=1kgm's

e I1P=1gcm s ! therefore1 P =.1Pas;
1cP=103Pas;1 P =10"" Pas.

—1



Measuring Viscosity
The Ostwald viscosimeter is a convenient instru-
ment for measuring the viscosity of a liquid.
Includes a vertical capillary tube.

e The flow of a fluid through a tube is sub-
ject to a radial velocity gradient and flows
fastest in the center.

e Flow through a capillary is subject to lam-
inar (non-turbulent) flow.

e The viscous force is a friction.

e If this friction is balanced by a hydrostatic
head providing pressure, then steady-state
flow results.

The viscosity of the incompressible fluid is 7.

The tube is of length L and radius R.

AP is the pressure difference between the top
and bottom of the tube.

r is the distance from the center of the tube.
e The force pushing the fluid at r is APwr?

The contact area is 2w Lr.



e The force per unit contact area is given by

(APnr?)/(2nrL) = (APr)/(2L)

e This force is exactly balanced by radial flux of
2z momentum. Therefore:

APr v,

va rz T
’ 2L g or

e Thus the velocity v may be found as a function
of r:

v (1) AP r
v,(r) = / dv, = rdr

AP,
= 1L (r R )

e The flow rate per unit time for an incom-
pressible fluid becomes:

dV B APrR*

dt 8Ln

e The flow rate per unit time for a compress-
ible fluid becomes:

dV _ wR* P} - Py
dt ~ 16Ln P




where
P; is the pressure at the tube’s inlet,
Py is the pressure at the tube’s outlet,

Py is the pressure at which the volume is
measured.

e The Ostwald viscometer is designed to exploit
these equations.

Fill viscometer bulb with fluid of interest.

Draw fluid through capillary into calibrated
bulb of volume V to above start mark.

Measure the time between the start and fin-
ish mark.

Calculate viscosity from:

4
)= TR\ pg{Ah) .
8L %

where p is the density of the fluid, g is grav-
itational acceleration, and (Ah) is the time
average height difference:

Ahstcw“t — Ahfz’nz’sh
In (Ahstart/AhfiniSh)

(Ah) =



Microscopic Transport Coefficients
e Recall the linearized Boltzmann transport equa-
tion.

e The solution gives the non-equilibrium
number density distribution function, F'*.

e Of more interest are the transport coeffi-
cients.

e Consider flux:

quantity molecular

Aux — transported speed in
per transport

molecule direction

F*(v,r,t) dvydv,duv,

e Applied to diffusion this becomes:

0
Jn.» = /sz*(V, r,t) dvydv,dv, = —D (8_n>
2

e Applied to thermal conductivity this
becomes:

m’U2

oT
Jg» = TUZF*(V, r,t) dvydvydv, = —k (a)



e Applied to electrical conductivity this be-
comes:

Je.» = /szF*(V,r,t) dvgdvydv, = —o, (%)
2

e Applied to viscous flux of ¥ momentum, this
becomes:

y /mvmsz*(V,r,t) dvdv,dv,

. OV,
— 0z

e From each of these it is possible to derive the
transport coeflicient, since each flux expression
imposes constraints on the Boltzmann transport
equation.

The Diffusion Coeflicient

e Assumptions:
e Steady state, thus
OF™
=0
ot




e No external forces, thus
Fext
m

V,F™* - =0

e The concentration gradient is only in the z
direction, thus:

oF™*
F* v =
V Vv (8z>vz

Under these conditions, the Boltzmann equa-

tion becomes:
oF™* F*—F

UV, =
87; Teoll

Further assume that F'™* is close to F'. Define
the difference F”:

F*(r)=F(r) + F'(r)

Also assume that the spatial derivative of I’ is

negligible.
OF*\ . (OF
0z )\ 0z

With these further assumptions, the Boltzmann
equation becomes:

OF F’
- /UZ —
0z Tcoll




e Isolating F” gives:

o C?FU . OF On
= —Teoll 7 Vz = —TeollVz 73— 5
"oz "2 on 02

n 0z

e Substituting F' + F’ for F’* gives:

In.z = /UZF(V,I',t) dvdvydv,

—l—/sz’(V,r,t) dv,dv,dv,

— 04— (TCO” /ngdv) (8—”)
n 0z

e Therefore:

1 — Teoll /ngdv _ Teoll (nkBT) _ Teolitk BT

n n m m

since F'=nf and (v,) = kgT/m.
e Recalling that T.o; = A/ (v):



D

m{v)  4no m

 MepT 1 (kaT)l/Q

)i

where o is the collision cross section and P is the
pressure.

m

e Therefore:

e Molecules with larger o diffuse more slowly
than ones with smaller o.

e Diffusion slows as P increases

e Diffusion is faster at higher T’

Thermal Conductivity

e A temperature gradient at constant pressure
means that there is a density gradient.

P = nkBT

where n is the density N/V

o If 0T/0z # 0 then On/0dz # 0 to maintain
constant P.



e This means that the local equilibrium dis-

tribution function explicitly depends on z
through n(z) and T'(z):

Njw

m —m ’1)2 ’1)2 ’U2 <
Fe)=nt) (%kﬂ(z)) e

e Following the same procedure as we used for
diffusion, the Boltzmann transport equation be-

comes:
OF (z)
0z

OF(z) F mu? 5\ [oT
0z T \2kgT 2)\ 0z

e Thus J, . becomes:

2
quzf(ﬂ> v, F'dv
’ 2
2 2
| Teoll mu o [ mv° 5 (‘3_T
- [T /( 2 )”Z (2kBT 2>FdV] (az>

e Integration yields:

L — §Tcollnk%T

/
= —VxTeoll (

and

2 m



Using C, = 3N4kp/2 for an ideal monatomic
gas, this becomes:

k

C5akRT 5k’ (WT)UQ
m

2 m(v) 2 4o

o 5 UV 7Tk‘BT 1/2
- 120N4 m

Thus thermal conductivity &
e decreases for heavier molecules
e increases with temperature

e is independent of pressure, but the expres-
sion breaks down at low pressures and ex-
tremely high pressures.

At intermediate pressures, the P dependence of
A is cancelled out by the P dependence of n.

If the pressure is so low that A is greater than
the thickness of the gas layer through which the
heat is conducted, then k becomes P dependent
and the heat transfer does not depend on colli-
sions.

At high pressures, multiple collisions become an
important means of heat transfer.



Electrical Conductivity

e Consider a weakly ionized gas (i.e. a plasma)

e n is the number density of positively
charged ions, each with a charge of (). .

e Sufficient electrons or anions are present
to balance the charge and assure that the
plasma is electrically neutral.

e While the net current is due to motion of all
charged species, the movement of positive
charges will be initially considered.

e Impose on a plasma a small potential gradient,

0¢ _

— _F,
0z

due to the z component of the external electric
field.

e Thus the flux gradient equation becomes:

Je,z — UeEz

e Assume that ions and neutrals have the same

A



e This is reasonable because of collisions.
Assume that n, <<n

e For the positive ions, F** = n, f*.

e For the neutrals F'* =nf*.

Assume that the deviation, F” from equilibrium
is small.

F*=F+F

The Boltzmann equation has no spatial gradient
term (VE* = 0), but is subject to an external

force (Fezt.. = Q1+ E.,).
Thus:

Foxt OF* F*— F
VE* v+ V F*. == _

m ((% Tecoll
becomes:
OF Q E.  F
avz m Tecoll

which rearranges to:

. TcollQ—l—Ez OF

F' =
m v,




e Since F'is the equilibrium distribution,

oF _mue
c?vz N kBT
TcollQ+Ez
F' = L F
keT

e Because F' << F, the electric field, E, is small.

e The expression for flux becomes:

/ TcollQa- 2
Je,=Qr [ v, Fdv = v, Fdv | E,
’ kgT

where

O —

2 2

TcollQ—|- / 2Fd . n—i—TcollQ—}-

v, F'dv =
]CBT m

e [Ifit is assumed that the ions have the same cross
section as the neutrals, then a substitution may
be made for 7.,:

_ QY ny QF ( ™ )”2

m{v)  n 40 \mkpT

Oc

e Note that the charge term is squared so
that o, is always positive.



e It is necessary to consider other ions and other
charges that are present in the solution.

e The concept of ion mobility u is useful.

e w is the ions’ drift velocity per unit electri-
cal field or conductivity per unit of charge
concentration.

conductivity O
Uu — . - =
7 unit charge concentration nyQy

TcollQ—i— - Q—I— ( n )1/2

m  4no \ mkgT

e For two species of opposite charge with ion mo-
bilities of u, and u_, the net conductivity is:

O — O'_|_ —|— o_ = n+Q+u+ —|— n_Q_u_

e The ratio of mobility to the diffusion coefficient

1S:
U 7_collcg—l— m L Q—I—

D m TcollkBT B ]CBT




Viscosity
Consider a gas with a slow bulk flow in the x
direction and a flow gradient in the z direction.

The flow speed is u, is additive to the veloc-
ity vectors of the molecule, yielding local veloc-
ity components (U,,U,,U,) with respect to the
flowing frame of reference:

Assume
o A steady state flow

e That the distribution is slightly perturbed
from equilibrium such that:

F*=F+F

Thus, it can be shown that:

o oF OF \ (U,
= —TeollVZ Oz = —TeollVZ (‘3Uw Oz

- OF OU
— —TcollVZ 8Ux Oz




e The flux expression becomes:

Tz 2z = /(mUx)UzF’dU = m/vazF’dU

B OF 5 OUy
— [7-60” m/ (8Ux> vasz] ( 5, )

e Thus:

)(@vaﬂj

/ OF

= —Tecoll M

n Teoll oU
—Tecoll m/( kBT> Um?}gdU

2 2
Tcoll m 2 9 Tcoll TN kBT
= FU vdU = —
kpT vz kpT "( m,>

— nTcollkBT

e And substituting for 7., yields:

n\kgT  (nkgTm)/?
77 — —
(v) do

e Thus for a gas:
e 7 increases with temperature.

e 7 is independent of pressure.



