
Chemical Kinetics

• Chemical kinetics complements thermodynamics:

• Thermodynamics tells us if something can happen.

• Kinetics tells us how long it takes.

• Together they enable us to predict:

• Rates of reactions.

• Preference for one reaction over another.

• Reaction conditions that will produce desired result.

• Explosions and other dangerous conditions.

• As in the case of thermodynamics, chemical kinetics connects the microscopic and the macroscopic.

Kinetic Theory of Gases

• Properties of a typical gas:

• Molecules constantly in motion.

• Volume of molecules themselves small relative to the container, so that the molecules move past
each other more often than colliding.

• Uniformly move through entire volume of a container.

• History of Kinetic Theory

• Robert Hooke (1678) postulate that collisions of gas atoms with walls of containers gave rise to
pressure.

• Daniel Bernoulli (1738) used this concept to derive Boyle’s Law (PV = constant).

• Waterston (1846) suggested that the mean kinetic energy of a gas was proportional to its temper-
ature.

• Using these ideas and classical mechanics, important contributions were made by
Boltzmann, van der Waals, Maxwell, Clausius, and others from 1860 on.

Speeds and Velocities of Gases

• Recall:

• Speed is a scalar and has only magnitude.

• Velocity is a vector with both direction and magnitude.

• The equipartition theorem predicts that the total translational energy of a gas is 3nRT/2
where:

• n is the number of moles of gas

• R is the gas constant

• T is the temperature on a thermodynamic scale

• For 1 mol of Ar equilibrated at 300 K, this works out to 3.741 kJ.

• But, we know that there is a distribution that has this average and that not all molecules have the same
energy.



What is the nature of this distribution function?

• Consider some distributions that could give rise to the observed average energy:

• Example 1:

• All molecules still except for one which has the entire kinetic energy.

• That one molecule would have to move
faster (106 times faster!) than the speed of light.

• Example 2:

• All molecules have exactly the same velocity:

< ε >= 3kBT/2 = mv2/2

v =

√
3kBT

m
= 432.8 m s−1

• Are either of these likely to be an equilibrium distribution?

• Why?

• Why not?

Partition Functions

• See Chapter 23 of Winn.

• We are interested in the translational partition function

• Other types of partition functions are

• Electronic

• Vibrational

• Rotational

• Combinations of the above

• Partition functions link the microscopic with the macroscopic.

• Allow us to move from the microstate (see Chapter 3 of Winn) to the macrostate.

• Start with the quantum mechanical particle-in-a-box view of translational motion.

• Particle-in-a-box is one of the “classic”
quantum mechanical problems. (See Chapter 12, Section 12.2 if you are interested, but this is
not required.)

Quantum Mechanics
and the Translational Partition Function

• Quantum mechanical formulation assumes that one particle is in an infinitely deep well.

• Solution to the corresponding Shrodinger equation gives a wavefunction which is
mathematically equivalent to a sine function and energies that are proportional to n2 where n
is the translational quantum number.

εn =
h̄2π2n2

2mL2



• For one particle in three dimensions this becomes:

εn =
h̄2π2
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• The partition function is defined as:

q =
∞∑

1

gie
−βεi

where:

• gi is the degeneracy (1 in the case of translational motion)

• β = 1/kT

• εi is the ith translational energy level

• Thus for the one dimensional case, the translational partition function is:

qtr =

∞∑

n=1

e−βεn =

∞∑

n=1

exp

(
−βh̄

2π2n2

2mL2

)

• This infinite sum does not have a closed form (i.e. the series does not converge).

• But for microscopic m and macroscopic L, the spacing of the energy levels is
sufficiently small that the partition function can be treated as a continuum instead of a sum.

qtr =

∫ ∞

0

exp

(
−βh̄

2π2n2

2mL2

)
dn

=

(
mkBT

2πh̄2

)1/2

L

since ∫ ∞

0

exp (−a2n2)dn =
√
π/2a

• Thus the three dimensional translational partition function is:

qtr = qtr,xqtr,yqtr,z =

(
mkBT

2πh̄2

)3/2

LxLyLz

qtr =

(
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)3/2

V

• This gives the distribution function (back to Chapter 24):

f(ε) =
Nε
N

=
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=
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and V = LxLyLz

• If we use the assumption that the translational energy levels are so closely spaced as to be a continuum,
then the distribution function can be defined.

• f(ε)dε is the fraction of molecules with energy between ε and ε+ dε.

• ρ(ε)dε is the translational density of states, the number of translational states with energy between ε
and ε+ dε.

ρ(ε)dε =
π

4

(
2m

h̄2π2

)3/2

V ε1/2dε

which can be obtained by the inverse Laplace transform of the partition function.

• Thus the distribution function becomes:

f(ε)dε =
ρ(ε)e−ε/kBT

qtr
dε

= 2π

(
1

πkBT

)3/2

ε1/2e−ε/kBT dε

which depends only on the temperature of the gas.

• Figure 24.1 shows some distributions at different temperatures.

• The area under the curve is 1 since ∫ ∞

0

f(ε)dε = 1

• At lower T , the distribution is very peaked compared to higher T .

• The distribution is not symmetric.

Some Properties of the Distribution Function

• Consider:

• Average energy

• Most probable energy

• Determination of average energy

• If a distribution function has been normalized (i.e. the integral of the distribution function over its
entire range is unity), then

< ε >=

∫ ∞

0

ε f(ε)dε

= 2π

(
1

πkBT

)3/2 ∫ ∞

0

ε3/2e−ε/kBT dε

• To evaluate the integral: ∫ ∞

0

ε3/2e−ε/kBT dε

use the variable transformation ε = x2 and dε = 2xdx and recalling that β = 1/kBT . This gives an
integral of the form: ∫ ∞

0

x4e−βx
2

dx =

(
1

4

)(
3

2

)
π1/2β−5/2



• Substitution of this into above gives

< ε >=
3

2
β−1 =

3

2
kBT

• Determination of most probable energy

• Need to find position of the maximum of the distribution function.

• One condition that is satisfied by the maximum is that the derivative of the function is zero.

f(ε) = 2π

(
1

πkBT

)3/2

ε1/2e−ε/kBT

df(ε)

dε
= 0 =

d(ε1/2e−ε/kBT )

dε

= ε1/2
d(e−ε/kBT )

dε
+ e−ε/kBT

dε1/2

dε

= ε1/2
( −1

kBT

)
e−ε/kBT + e−ε/kBT

(
1

2

)
ε−1/2

Therefore:

0 = ε1/2e−ε/kBT
( −1

kBT
+
ε−1

2

)

and:

ε =
kBT

2

N. B. The condition that the first derivative is zero is a necessary condition for a maximum, but not a
sufficient condition. It must now be shown that this is a maximum. There are two approaches to this:

• Find the second derivative and show that it is negative at the maximum.

• Characterize the function.

Characterizing the energy distribution function

• Is the first derivative zero at only one value?

• If not, then another method must be used to prove the maximum

• If so, then this method can be used.

• Must show that points on either side of the maximum have values of f(ε) less than the value at the
maximum.

• Appropriate choices to test for maximum are

ε = 0

and
ε =∞

• Consider f(ε) at each of these values:
f(ε = 0) = 0

f(ε =∞) = 0



• Therefore ε = kBT
2 is a maximum.

• Note that the average energy is three times the most probable energy.

Properties of the Speed Distribution

• Consider the relationship between energy,
speed, and velocity.

ε =
1

2
mv2 =

1

2
m v · v =

1

2
m
(
v2
x + v2

y + v2
z

)

• Energy is a scalar. Distributions in energy are directly proportional to distributions of the square
of the speed.

〈ε〉 =

〈
1

2
mv2

〉
=

1

2
m〈v2〉

• Since 〈ε〉 = 3kBT/2, the root mean square (rms) speed may be determined:

vrms = 〈v2〉1/2 =

√
2〈ε〉
m

=

√
3kBT

m

Transformation of the Kinetic Energy Distribution
Function into a Speed Distribution Function

• Start with the kinetic energy distribution function:

f(ε)dε = 2π

(
1

πkBT

)3/2

ε1/2e−ε/kBT dε

• Transform the variable from ε to v

ε =
1

2
mv2

dε = mvdv

ε1/2 =
m1/2v√

2

• This substitution gives the Maxwell-Boltzmann distribution:

f(v)dv = 4π

(
m

2πkBT

)3/2

v2e−mv
2/2kBT dv

• From this can be determined the most probable speed, the average speed, and the median speed.

Most Probable Speed

• Find the maximum of the distribution function.

df(v)

dv
= 4π

(
m

2πkBT

)3/2 d
(
v2e−mv

2/2kBT
)

dv
= 0

• Therefore there is an extremum (a maximum or minimum) when:



d
(
v2e−mv

2/2kBT
)

dv
= 0

2v e−mv
2/2kBT +

(−2mv

2kBT

)
v2 e−mv

2/2kBT = 0

2v −
(
mv3

kBT

)
= 0

(
2kBT

m

)
= v2

v =

(
2kBT

m

)1/2

• Now prove that this is a maximum or minimum by characterizing the distribution function.

v → 0, f(v)→ 0

v →∞, f(v)→ 0

• Therefore it is a maximum and the most probable speed is:

v =

(
2kBT

m

)1/2

The Average Speed

• Determine the average speed by integration of:

〈v〉 =

∫ ∞

0

vf(v)dv =

4π

(
m

2πkBT

)3/2 ∫ ∞

0

v3e−mv
2/2kBT dv

• This involves a definite integral of the form:

∫ ∞

0

xme−ax
2

dx

which may be looked up in a standard table of integrals.

A Mathematical Aside

• If m is even, then write the integral in the form:

∫ ∞

0

x2ne−ax
2

dx

∫ ∞

0

x2ne−ax
2

dx =
1

2

√
π

(2n)!a−(n+1/2)

22nn!



• If m is odd, then write the integral in the form:

∫ ∞

0

x2n+1e−ax
2

dx

∫ ∞

0

x2n+1e−ax
2

dx =
1

2
(n!)a−(n+1)

• If m = 3 then the integral is: ∫ ∞

0

x3e−ax
2

dx =
1

2
(1!)a−2 =

1

2a2

• Therefore the average speed is:

〈v〉 =

∫ ∞

0

vf(v) dv

= 4π

(
m

2πkBT

)3/2 ∫ ∞

0

v3e−mv
2/2kBT dv

= 4π

(
m

2πkBT

)3/2
1

2

(
2kBT

m

)2

〈v〉 =

(
8kBT

πm

)1/2

Characteristic Speeds of an Equilibrium Gas

• So far we have determined:

• Root-mean-square speed

vrms =

√
3kBT

m

• Most probable

vmp =

√
2kBT

m

• Average

〈v〉 =

√
8kBT

πm

• Also of interest are:

• Median

vmed = 1.5382

√
kBT

m

• Speed of sound

vs =

√
γkBT

m

(Recall that γ = CP /CV )

Velocity Distributions

• We know that v2 = v2
x + v2

y + v2
z



• From equipartition of energy, we can infer that:

〈v2
x〉 = 〈v2

y〉 = 〈v2
z〉 =

1

3
〈v2〉 =

v2
rms

3
=
kBT

m

• We also now that the average value of each
velocity component must correspond with the components of velocity of the center of mass.

• If the center of mass is at rest, then the velocity distribution must be symmetric
about zero.

• Starting with

f(v)dv = 4π

(
m

2πkBT

)3/2

v2e−mv
2/2kBT dv

we must be able to break it into:
f(vx)f(vy)f(vz)dvxdvydvz

How do we do this?

Mathematical Aside #2

Transformation from Cartesian to
Spherical Polar Coordinates

See p. 412 in your text.

• Cartesian Coordinates are (x, y, z)

• Spherical Polar Coordinates are (r, θ, φ)

• θ is the polar angle

• φ is the azimuthal angle

• x, y, z in terms of (r, θ, φ):
x = r sin θ cosφ

y = r sin θ sinφ

z = r cos θ

• (r, θ, φ) in terms of x, y, z
r = (x2 + y2 + z2)1/2

θ = cos−1(z/r)

φ = tan−1(y/z)

Transforming a differential element

• Need to take into account the change is shape of the differential element.

dx dy dz =
∣∣J
(
x, y, z

r, θ, φ

) ∣∣ dr dθ dφ

where |J (x, y, z/r, θ, φ)| is the determinant of the Jacobian matrix.

J

(
x, y, z

r, θ, φ

)
=




(
∂x
∂r

)
θ,φ

(
∂x
∂θ

)
r,φ

(
∂x
∂φ

)
r,θ(

∂y
∂r

)
θ,φ

(
∂y
∂θ

)
r,φ

(
∂y
∂φ

)
r,θ(

∂z
∂r

)
θ,φ

(
∂z
∂θ

)
r,φ

(
∂z
∂φ

)
r,θ






• Therefore, we need to get all the derivatives:

(
∂x

∂r

)

θ,φ

= sin θ cosφ

(
∂x

∂θ

)

r,φ

= r cos θ cosφ

(
∂x

∂φ

)

r,θ

= −r sin θ sinφ

(
∂y

∂r

)

θ,φ

= sin θ sinφ

(
∂y

∂θ

)

r,φ

= r cos θ sinφ

(
∂y

∂φ

)

r,θ

= r sin θ cosφ

(
∂z

∂r

)

θ,φ

= cos θ

(
∂z

∂θ

)

r,φ

= −r sin θ

(
∂z

∂φ

)

r,θ

= 0

• Evaluation of the Jacobian shows: ∣∣J
(
x, y, z

r, θ, φ

) ∣∣ = r2 sin θ

• Therefore
dx dy dz = r2 sin θ dr dθ dφ

• Since the range of θ is 0 to π and the range of φ is 0 to 2π, integration of the angles over these ranges
gives: ∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
dx dy dz =

∫ ∞

0

4πr2 dr

• On this basis, we can say that

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
dvxdvydvz =

∫ ∞

0

4πv2dv

and

∫ ∞

0

4π

(
m

2πkBT

)3/2

v2e−mv
2/2kBT dv

=

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
f(vx)f(vy)f(vz)dvxdvydvz

=

[∫ ∞

−∞

(
m

2πkBT

)1/2

e−mv
2
x/2kBT dvx

]
·



[∫ ∞

−∞

(
m

2πkBT

)1/2

e−mv
2
y/2kBT dvy

]
·

[∫ ∞

−∞

(
m

2πkBT

)1/2

e−mv
2
z/2kBT dvz

]

• Now consider

f(vx)dvx =

(
m

2πkBT

)1/2

e−mv
2
x/2kBT dvx

• From this may be shown:

• 〈vx〉 = 0

• 〈v2
x〉 = kBT/m

Pressure and the velocity distribution

• Pressure is defined as force per unit area

• Force is defined as the change in momentum with respect to time.

P =
force

unit area
=

dp/dt

unit area

• Considering pressure in terms of collisions with the wall of the container.

P = (momentum change per wall collision)·

(number of wall collisions)

(unit wall area)(unit time)

• Consider elastic collisions with the wall perpendicular to the x direction.

• The x component of the velocity is the same magnitude after the collision with the wall as it was
before, but opposite in direction. Therefore the change in momentum is:

m|vx| − (−m|vx|) = 2m|vx|

• The number of molecules per unit volume with velocities between vx and vx + dvx is:

Nf(vx)dvx
V

• Let A be an area on the wall

• Let τ be an arbitrary time period.

• Define a volume vxτA extending a distance vxτ from the wall. Molecules within this volume will
hit the wall within time τ .

• Assume density is so low that molecule-molecule collisions do not occur within this volume during
time τ .

• The number of molecules striking unit area per unit time is:

(vxτ)A(N/V )f(vx)dvx
τA

=
vxNf(vx)dvx

V



• Thus the pressure contribution due to
molecules with velocities between vx and vx + dvx is:

(2mvx)

(
vxNf(vx)

V

)
dvx

• Thus the total pressure due to velocities directed toward the wall is:

P =

∫ ∞

0

(2mvx)

(
vxNf(vx)

V

)
dvx

=

(
N

V

)
m

∫ ∞

−∞
v2
xf(vx)dvx =

(
N

V

)
m〈v2

x〉

• But mv2
x/2 = kBT/2, therefore:

P =

(
N

V

)
m〈v2

x〉 =
NkBT

V
=
nNAkBT

V
=
nRT

V

• Related to this derivation of pressure is the wall collision rate, Jx, the number of molecules hitting a
unit area per unit time.

Jx =
N

V

∫ ∞

0

vxf(vx)dvx

=
N

V

(
m

2πkBT

)1/2 ∫ ∞

0

vxe
−mv2

x/2kBT dvx

=
N

V

(
kBT

2πm

)1/2

• Since P = NkBT/V , then

Jx =
P

(2πmkBT )1/2

• Since mean speed is 〈v〉 = (8kBT/πm)1/2, Jx becomes

Jx =
N

V

(
kBT

2πm

)1/2

=
1

4

N

V

(
8kBT

πm

)1/2

=
1

4

N

V
〈v〉

• A flow expressed as amount per unit time per unit area is a flux, therefore Jx is a flux of molecules.

• Consider a container with a hole of small area, A. The rate of escape through that hole is AJx, if there
is an appropriate relationship between the hole and the density of the gas.

• Collisions between molecules and the wall are independent, isolated events. (i.e. The density is so
low that molecules do not collide with each other as they are going
through the hole.)

Mean Free Path

• The mean free path, λ, is the average distance that a molecule travels between collisions with other
molecules.

• The derivation of this involves molecules that are nonideal.



• Collisions occur only between molecules
that have size.

• The hard-sphere gas consists of molecules that are spheres of radius r.

• Collisions between two hard-sphere molecules occur when their centers are separated by a distance of d
where d = 2r.

• Therefore the hard-sphere cross section is:

σ = πd2

• Any other molecule that comes within the distance d of the center of this molecule will collide with
it.

• Consider first the case in which all the other molecules are still with just the molecule of interest moving.

• On average the molecule will move the distance λ before hitting another molecule.

• The volume swept out will be σλ.

• This volume will also be V/N , the average volume per molecule.

• But in a real gas, all the molecules are moving.

• Therefore we must consider the average relative velocity, not the average velocity of the molecule
with respect to the observer.

Mathematical Aside # 3

Conversion to center-of-mass coordinates

• Consider two particles, one of mass ma, the other of mass mb with position xa and xb

• X , the position of the center-of-mass, satisfies:

ma(X − xa) = mb(xb −X)

X =
maxa +mbxb
ma +mb

• x, the separation of the two particles is:
x = xb − xa

• Therefore
xa = X − mbx

ma +mb

xb = X +
max

ma +mb

• The moment of inertia about the center-of-mass is:

I = ma(X − xa)2 +mb(xb −X)2

I = ma

(
mbx

ma +mb

)2

+mb

(
max

ma +mb

)2

I =
mam

2
b +m2

amb

(ma +mb)
2 x2



I =
mamb

ma +mb
x2 = µx2

where
µ =

mamb

ma +mb

• If ma = mb = m then

µ =
m2

m+m
=
m

2

• Instead of distance, this approach may be applied to any vector including velocity.

• The mean relative speed for identical particles is:

〈g〉 =

(
8kBT

πµ

)1/2

=
√

2

(
8kBT

πm

)1/2

=
√

2〈v〉

• Note that the mean relative speed is greater than the mean speed. Therefore the volume swept out
between collisions is smaller by the factor

√
2

σλ =
V√
2N

or

λ =
V√
2Nσ

• But V/N = kBT/P and

λ =
kBT√
2Pσ

• λ gets smaller as the density or pressure of the gas increases.

• λ gets larger as the density or pressure of the gas decreases.

• Returning to our consideration of gas escaping through a hole, if λ is larger than the characteristic
diameter, then the gas will escape through the hole without hitting another molecule.

• If the diameter of the hole is D then the Knudsen number, Kn is the ratio λ/D

• If Kn >> 1, then the molecules will pass through the hole without colliding with
each other. This process is known as effusion.

• The rate at which molecules leave the container is:

−dN
dt

= AJx =
πD2

4

P

(2πmkBT )1/2

• Thus the rate of effusion permits the experimental determination of vapour pressure.


