Chemical Kinetics
e Chemical kinetics complements thermodynam-
1Cs:

e Thermodynamics tells us if something can
happen.

e Kinetics tells us how long it takes.

e Together they enable us to predict:
e Rates of reactions.
e Preference for one reaction over another.

e Reaction conditions that will produce de-
sired result.

e Explosions and other dangerous conditions.
e As in the case of thermodynamics, chemical ki-

netics connects the microscopic and the macro-
scopic.



Kinetic Theory of Gases

e Properties of a typical gas:
e Molecules constantly in motion.

e Volume of molecules themselves small rela-
tive to the container, so that the molecules
move past each other more often than col-
liding.

e Uniformly move through entire volume of a
container.

e History of Kinetic Theory

e Robert Hooke (1678) postulate that colli-
sions of gas atoms with walls of containers
gave rise to pressure.

e Daniel Bernoulli (1738) used this concept
to derive Boyle’s Law (PV = constant).

e Waterston (1846) suggested that the mean
kinetic energy of a gas was proportional to
its temperature.

e Using these ideas and classical mechanics,
important contributions were made by
Boltzmann, van der Waals, Maxwell, Clau-
sius, and others from 1860 on.



Speeds and Velocities of Gases

e Recall:
e Speed is a scalar and has only magnitude.
e Velocity is a vector with both direction and

magnitude.

e The equipartition theorem predicts that the to-
tal translational energy of a gas is 3nRT/2
where:

e n is the number of moles of gas
e R is the gas constant

e I'is the temperature on a thermodynamic
scale

e For 1 mol of Ar equilibrated at 300 K, this
works out to 3.741 kJ.

e But, we know that there is a distribution that
has this average and that not all molecules have
the same energy.

What is the nature of this distribution function?



e Consider some distributions that could give rise
to the observed average energy:

e Example 1:

e All molecules still except for one which has
the entire kinetic energy.

e That one molecule would have to move
faster (10° times faster!) than the speed
of light.

e Example 2:

e All molecules have exactly the same veloc-

ity:
<e>=3kpT/2 = mv*/2

v =/ Skp T — 4328 m s !
m

e Are either of these likely to be an equilibrium
distribution?

e Why?
e Why not?




Partition Functions

See Chapter 23 of Winn.

We are interested in the translational partition
function

Other types of partition functions are
e Electronic
e Vibrational
e Rotational
e Combinations of the above

Partition functions link the microscopic with
the macroscopic.

e Allow us to move from the microstate (see
Chapter 3 of Winn) to the macrostate.

Start with the quantum mechanical particle-in-
a-box view of translational motion.

e Particle-in-a-box is one of the “classic”
quantum mechanical problems. (See Chap-
ter 12, Section 12.2 if you are interested,
but this is not required.)



Quantum Mechanics
and the Translational Partition Function

e Quantum mechanical formulation assumes that
one particle is in an infinitely deep well.

e Solution to the corresponding Shrodinger
equation gives a wavefunction which is
mathematically equivalent to a sine func-
tion and energies that are proportional to
n? where n is the translational quantum
number.
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e For one particle in three dimensions this be-

comes:
R2n2 [ n? n% n?
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e The partition function is defined as:
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q = Zgz‘ff_ﬁei
1

where:



e g; is the degeneracy (1 in the case of trans-
lational motion)

o 3=1/kT

® ¢; is the ¢th translational energy level

e Thus for the one dimensional case, the transla-
tional partition function is:
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e This infinite sum does not have a closed
form (i.e. the series does not converge).

e But for microscopic m and macroscopic L,
the spacing of the energy levels is
sufficiently small that the partition func-
tion can be treated as a continuum instead

of a sum.
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Thus the three dimensional translational parti-
tion function is:
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This gives the distribution function (back to
Chapter 24):
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and V = LyL,L,

If we use the assumption that the translational
energy levels are so closely spaced as to be a
continuum, then the distribution function can

be defined.

e f(€)de is the fraction of molecules with en-
ergy between € and € + de.



e p(€)de is the translational density of states, the
number of translational states with energy be-
tween € and € + de.

T [ 2m \/?
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p(€)de = 1 (h27T2> Vel/2de
which can be obtained by the inverse Laplace
transform of the partition function.

e Thus the distribution function becomes:
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which depends only on the temperature of the
gas.

e Figure 24.1 shows some distributions at differ-
ent temperatures.

e The area under the curve is 1 since

[ rde=1

e At lower T, the distribution is very peaked
compared to higher T'.

e The distribution is not symmetric.



Some Properties of the Distribution Function

e Consider:
e Average energy

e Most probable energy

e Determination of average energy

e If a distribution function has been normal-
ized (i.e. the integral of the distribution
function over its entire range is unity), then
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| 3/2 oo
_9 3/2,—¢/kpT g
7 (7T]{JBT) /0 €/ “e €

e To evaluate the integral:
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use the variable transformation € = 22 and
de = 2xdr and recalling that 8 = 1/kgT.
This gives an integral of the form:

/OO x4€_ﬁx2d:€ _ (1) (§> 7_‘_1/25—5/2
. 1) \2



e Substitution of this into above gives

3 . 3
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e Determination of most probable energy

e Need to find position of the maximum of
the distribution function.

e One condition that is satisfied by the max-
imum is that the derivative of the function
1S zero.
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Therefore:
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and:
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N. B. The condition that the first derivative is zero
is a necessary condition for a maximum, but not
a sufficient condition. It must now be shown that
this is a maximum. There are two approaches to

this:

€

e Find the second derivative and show that it is
negative at the maximum.

e Characterize the function.



Characterizing the energy distribution function

e Is the first derivative zero at only one value?

e If not, then another method must be used
to prove the maximum

e If so, then this method can be used.
e Must show that points on either side of the max-

imum have values of f(e) less than the value at
the maximum.

e Appropriate choices to test for maximum
are

e=20

and
€ = 00

e Consider f(e) at each of these values:

fle=0)=0
fle=00)=0
e Therefore € = 8T is a maximum.

2

e Note that the average energy is three times the
most probable energy.



Properties of the Speed Distribution

e Consider the relationship between energy,
speed, and velocity.

1 1 1
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e Fmnergy is a scalar. Distributions in energy
are directly proportional to distributions of
the square of the speed.

e Since (¢) = 3kpT/2, the root mean square
(rms) speed may be determined:

Vrms = (02)1/2 = \@ _ \/?




Transformation of the Kinetic Energy Distribution
Function into a Speed Distribution Function

e Start with the kinetic energy distribution func-
tion:

| \3/2
f(e)de = 2 ( . T) el/2e=e/knT g¢
TRB

e Transform the variable from € to v

1
€ = —muv?
2
de = muvdv
L m1/2q

e This substitution gives the Maxwell-Boltzmann
distribution:

m 3/2 2
f(v)dv = 4x (Qﬂ'kBT) v2e~mv /2kBT gy,

e From this can be determined the most probable
speed, the average speed, and the median speed.



Most Probable Speed

e I'ind the maximum of the distribution function.

df(v) _ In ( )3/2 d (er—m“2/2’fBT)

27TkiBT dv

=0

e Therefore there is an extremum (a maxi-

mum or minimum) when:
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dv
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e Now prove that this is a maximum or minimum
by characterizing the distribution function.

v—0,f(v) =0

v — 00, f(v) — 0

e Therefore it is a maximum and the most
probable speed is:

(szT>1/2
vV =
m™m

The Average Speed

e Determine the average speed by integration of:

W)= [ erty -
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e This involves a definite integral of the form:

o0 2
/ e " dx
0

which may be looked up in a standard table of
integrals.




A Mathematical Aside

e If m is even, then write the integral in the form:
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e If m is odd, then write the integral in the form:
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e If m = 3 then the integral is:
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e Therefore the average speed is:

(v) = /OOO vf(v) dv
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Characteristic Speeds of an Equilibrium Gas

e So far we have determined:

e Root-mean-square speed

3kgT
Urms =—
m
e Most probable
2kpT
Ump = —
e Average
8kpT
() =/ ——
e Also of interest are:
e Median
kgT
Umea = 1.53824/ ——
m
e Speed of sound
’)/kBT
Vg =
m

(Recall that v = Cp/Cy)



Velocity Distributions
e We know that v? = v2 + vs + v?

e From equipartition of energy, we can infer

that:
1 V2 krnT
2 2 2 2\ __ “Yrms __ B
(v3) <Uy> (v7) g(v ) = 3

e We also now that the average value of each
velocity component must correspond with the
components of velocity of the center of mass.

e If the center of mass is at rest, then the
velocity distribution must be symmetric
about zero.

e Starting with

m 3/2 2
f(v)dv = 4x (QWICBT) v2e~mv /2kBT gy,

we must be able to break it into:

fvz) f(uy) f(v.)dvzdoydu,

How do we do this?



Mathematical Aside #2

Transformation from Cartesian to
Spherical Polar Coordinates
See p. 412 in your text.

Cartesian Coordinates are (x,, 2)
Spherical Polar Coordinates are (r, 0, ¢)
e () is the polar angle
e ¢ is the azimuthal angle

x,y, 2z in terms of (7,6, ¢):
x = rsinf cos ¢

y = rsinfsin ¢

z =1rcosb

(r,0,¢) in terms of x,y, 2
= (22 442 4 %)/
0 = cos ' (z/r)

¢ =tan”" (y/2)



Transforming a differential element

e Need to take into account the change is shape
of the differential element.

x):y?’z

r,0,¢

where |J (z,y,z/r,0,¢)| is the determinant of
the Jacobian matrix.
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e Therefore, we need to get all the derivatives:
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(@) = sin 0 sin ¢
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e Evaluation of the Jacobian shows:

,J(f’ga;) (=2 sing

e Therefore

dr dy dz = r° sinf dr df d¢



Since the range of 6 is 0 to m and the range of
¢ is 0 to 27, integration of the angles over these
ranges gives:

/ / / dr dy dz :/ 4r? dr
—00 J —o0 J —00 0

On this basis, we can say that
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e Now consider

o\ 2
Ndv, = —m'vi,/ZkBTd N
f(vg)dv (27TkBT) e v

e From this may be shown:
e (vg) =0
[ ) <Ug> = kBT/m

Pressure and the velocity distribution
e Pressure is defined as force per unit area

e Force is defined as the change in momentum
with respect to time.

p_ force  dp/dt
- unit area  unit area

e Considering pressure in terms of collisions with
the wall of the container.

P = (momentum change per wall collision)-

(number of wall collisions)

(unit wall area)(unit time)



e Consider elastic collisions with the wall perpen-
dicular to the x direction.

The x component of the velocity is the same
magnitude after the collision with the wall
as it was before, but opposite in direction.
Therefore the change in momentum is:

m|vg| — (=mlvz|) = 2m|v.|

The number of molecules per unit volume
with velocities between v, and v, + dv,, is:

N f(vg)dv,
V

Let A be an area on the wall
Let 7 be an arbitrary time period.

Define a volume v,7A extending a distance
v,7T from the wall. Molecules within this
volume will hit the wall within time 7.

Assume density is so low that molecule-
molecule collisions do not occur within this
volume during time 7.



e The number of molecules striking unit area
per unit time is:

(v2T)AN/V) f(vz)dvy 0N f(vg)dvg,

TA V

e Thus the pressure contribution due to
molecules with velocities between v, and
Vp + dv, 1S:

2mv,) (%N‘i(%)> dv.

e Thus the total pressure due to velocities di-
rected toward the wall is:

p_ OOQm% Ve N f(vs) do.
J ) (252)

_ (g) m/:: 02 f (v, )dvy = (%) m(v?)

e But mv?/2 = kgT/2, therefore:

p N < 2> NkBT nNAkBT nRT
= — v = = =
i Vv Vv Vv



e Related to this derivation of pressure is the wall
collision rate, J,, the number of molecules hit-
ting a unit area per unit time.

N oo
Jr = V[) Uxf(vx)dva:

1/2 oo
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e Since P = NkgT/V, then

P
(2rmkpT)"?

Jp =

e Since mean speed is (v) = (8kgT/mm)Y/2,
J, becomes

N(kBT>1/2 1N(8kBT>1/2 1 N

2Tm ™



o A flow expressed as amount per unit time per
unit area is a flux, therefore J, is a flux of
molecules.

e Comnsider a container with a hole of small area,
A. The rate of escape through that hole is A.J,,
if there is an appropriate relationship between
the hole and the density of the gas.

e (ollisions between molecules and the wall
are independent, isolated events. (i.e. The
density is so low that molecules do not col-
lide with each other as they are going
through the hole.)

Mean Free Path

e The mean free path, A, is the average distance
that a molecule travels between collisions with
other molecules.

e The derivation of this involves molecules that
are nonideal.

e (Collisions occur only between molecules
that have size.

e The hard-sphere gas consists of molecules
that are spheres of radius r.



e (Collisions between two hard-sphere molecules
occur when their centers are separated by a dis-
tance of d where d = 2r.

e Therefore the hard-sphere cross section is:

o = md’

e Any other molecule that comes within the
distance d of the center of this molecule will
collide with it.

e Consider first the case in which all the other
molecules are still with just the molecule of in-
terest moving.

e On average the molecule will move the dis-
tance A\ before hitting another molecule.

e The volume swept out will be o .

e This volume will also be V/N, the average
volume per molecule.

e But in a real gas, all the molecules are moving.

e Therefore we must consider the average rel-
ative velocity, not the average velocity of
the molecule with respect to the observer.



Mathematical Aside # 3
Conversion to center-of-mass coordinates

Consider two particles, one of mass m,, the
other of mass m; with position x, and x;

X, the position of the center-of-mass, satisfies:
mq(X — xq) = mp(xp — X)

X — MgXg + mMyTy

Mg + Mp
x, the separation of the two particles is:

T =Ty — T,

Therefore
mpyx
xa p— X -
Mg + My
M, XL
rp = X + 2
Mg + My

The moment of inertia about the center-of-mass

is:
I =mg(X —24)% +mp(zp — X)?



( mpx )2 ( My X )2
I =m, + my
ma+mb ma—"mb

mamg + mgmb 9

I = 5T
(ma =+ mb)
Mgy
I = - z? = pa?
Mg + My
where
Mgy
ILL p—
Mg + My

o If m, = my = m then

m? m
2

M:m+m:

e Instead of distance, this approach may be ap-
plied to any vector including velocity.



e The mean relative speed for identical particles
is:

(g — (8k3T>1/2 _ 3 (SkBT)1/2 V3

gv mm

e Note that the mean relative speed is greater
than the mean speed. Therefore the volume

swept out between collisions is smaller by
the factor v/2

e
V2N
or
\ 1%

B V2No
e But V/N = kT /P and

kT
B V2Po

A

e )\ gets smaller as the density or pressure of
the gas increases.

e )\ gets larger as the density or pressure of
the gas decreases.



e Returning to our consideration of gas escaping
through a hole, if A is larger than the character-
istic diameter, then the gas will escape through
the hole without hitting another molecule.

e [f the diameter of the hole is D then the Knud-
sen number, Kn is the ratio A\/D

e If Kn >> 1, then the molecules will pass
through the hole without colliding with
each other. This process is known as ef-
fusion.

e The rate at which molecules leave the container
1S:
dN B wD? P

= A, =
dt 4 (2rmkpT)'/?

e Thus the rate of effusion permits the exper-
imental determination of vapour pressure.



