
Chemical Kinetics

• Chemical kinetics complements thermodynamics:
• Thermodynamics tells us if something can happen.
• Kinetics tells us how long it takes.

• Together they enable us to predict:
• Rates of reactions.
• Preference for one reaction over another.
• Reaction conditions that will produce desired result.
• Explosions and other dangerous conditions.

• As in the case of thermodynamics, chemical kinetics
connects the microscopic and the macroscopic.
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Molecular Motion and Collisions (Chapter 27)

• Molecules are constantly in motion.

• Molecular motions are important in accounting for
change with time of some observable physical or
chemical properties:
• Amount of liquid evaporating per unit time.
• Change in translational temperature per unit time.
• Change in concentration of chemical reactant per

unit time.

• Collisions of molecules are the only way energy can be
transferred from one degree of freedom to another.
• Between vibration and translation

• Rates of chemical and physical processes depend on the
detailed dynamics of molecular collisions.
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Kinematics

• Consider a molecule as a point mass moving with a
given velocity.
• A collision between molecules is an event in which

the velocity of each particle is changed.
• An interaction occurs between the particles which

must involve a force since the velocity is changed.
• A change in velocity dv/dt is an acceleration that is

proportional to force acting on the particle.

• Consider two point masses with masses m1, m2 and
velocities v1,v2, respectively.
• Conservation of mass may be stated as:

m1 +m2 = m′1 +m′2
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• Conservation of momentum may be stated as:

m1v1 + m2v2 = m′1v
′
1 +m′2v

′
2

where v is a vector.

• If no reaction has taken place, then m1 = m′1 and
m2 = m′2.
• Thus

m1v1 +m2v2 = m1v
′
1 +m2v

′
2

• The third quantity to be conserved is energy:

1

2
m1v

2
1 +

1

2
m2v

2
2 =

1

2
m1v

′2
1 +

1

2
m2v

′2
2

where v is a scalar.
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• A fourth quantity to be conserved is angular momentum,
which will be considered later.

• The description of motion of two particles may be
transformed into center of mass coordinates.
• This is equivalent to the motion of one particle in a

force field.

• Choose, initially, an arbitrary point for the origin.
• Let r1 be the position of particle 1 and F1 the force

exerted by particle 2 on particle 1.
• Similarly r2 is the position of particle 2 and F2 the

force exerted by particle 1 on particle 2.

• By Newton’s Third Law:

F1 = −F2
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• By Newton’s Second Law:

F1 = m1
d2r1

dt2
, F2 = m2

d2r2

dt2

• These can be combined and rearranged to:

d2r2

dt2
− d2r1

dt2
=

d

dt

(
dr2

dt
− dr1

dt

)
=
(

1

m2
+

1

m1

)
F2

• The relative position and relative velocity may be
defined:

r = r2 − r1; v = v2 − v1

• Define F = F2 and the reduced mass µ as µ = m1m2

m1+m2

• F is the force between particles 1 and 2.
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• This yields:

µ
dv

dt
= F

which is the equation of motion for a point mass µ in a
force field F.

• Conservation of momentum requires:

m1v1 +m2v2 = (m1 +m2)V

where V is the velocity of the total mass.

• The motion of the two particles is now described in
terms of the motion of the centre of mass and the
relative motion of the two particles.
• It is the relative motion between the two particles

that is of interest in chemical kinetics.
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• The transformation from one set of velocity co-ordinates
to the other (see figure 27.2). is:

v1 = V − m2

m1 + m2
v

v2 = V +
m1

m1 +m2
v

• Recall the expression for total kinetic energy:

1

2
m1v

2
1 +

1

2
m2v

2
2

where
v2

1 = v2
1x + v2

1y + v2
1z

v2
2 = v2

2x + v2
2y + v2

2z
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• It can be shown that

1

2
m1v

2
1 +

1

2
m2v

2
2 =

1

2
(m1 +m2)V 2 +

1

2
µv2

• In molecular collisions (assuming that the molecules are
point masses with no internal energy), relative kinetic
energy is conserved:

1

2
µv2 =

1

2
µv′2

and v = v′, thus the magnitude, but not necessarily the
direction, of the velocity is conserved.
• Such collisions are elastic.
• If the direction of relative motion has changed, then

the collision has led to scattering.
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• In the absence of forces of interaction, two particles will
approach each other in a straight line.
• The distance of closest approach is the impact

parameter b.

• Angular momentum is conserved in a collision.
• Before collision, the total angular momentum about

the center of mass is µvb.
• Since angular momentum is conserved in a collision

and the speed is not changed, b′ = b.

• For collisions of real molecules the impact parameter is
important in determining the nature of the interaction.
• If b is small, the interaction may be repulsive and a

large deflection of their trajectory occurs.
• If b is large, the interaction may be negligible and

little if any deflection of the trajectory occurs.
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• Continued:
• For intermediate values of b, attractive interactions

may cause deflection of the trajectory.
• The details of the deflection depends on the

interaction potential which determines the forces of
interaction (See Section 27.2 of Berry et al.)

• Consider the collision of two molecules interacting with a
hard-sphere potential.
• Consider two identical spheres of diameter d and

mass m.
• At impact, the centers of the molecules will be d

apart, therefore the collision would be equivalent to
a moving point mass bouncing off a stationary hard
sphere of diameter d.

• If the impact parameter b is greater than d, then no
collision occurs. . – p.15/106
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• Scattering of one hard sphere off the other is specular.

• If the impact parameter equals the hard-sphere diameter,
then no deflection of the trajectory occurs.

• If the impact parameter is 0, then the trajectory
rebounds and, χ, the angle between the initial and final
path is π.

• If the impact parameter is between 0 and b, then the
scattering angle, χ, is between 0 and π.

b = d cos
χ

2

• If the interaction potential more complicated than the
hard-sphere potential, then the relationship between the
impact parameter and χ is more complicated.
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• The interaction potential, V , depends on the separation,
d, between the two molecules.

• Consider a hard-sphere collision (Figure 27.9) that
changes the sign of one component of the relative
velocity vector.
• The velocity vector can be resolved into two

components (OA) and (AC) which are, respectively,
parallel and perpendicular to the line of centres at
impact.

• The collision changes the sign of vOA but not vAC .

• The kinetic energy at the instant of impact is:

1

2
µv2cos2χ

2

• But energy is conserved.
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• Therefore the energy at impact must still equal the
original kinetic energy E = 1

2µv
2.

• Thus, at impact the potential energy is:

V (d) =
1

2
µv2 − 1

2
µv2cos2χ

2
=

1

2
µv2

(
1− cos2χ

2

)

=
1

2
µv2sin2χ

2
= E

(
1− b2

d2

)

.

• For potentials other than hard-sphere, the relationship
between the potential and the scattering angle is more
complicated.
• Scattering experiments can be used to obtain

information about the potential.
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• Consider the general case of an arbitrary interaction
potential V (R).

• Define the angle θ such that θ = (π − χ)/2.

• The distance of closest approach is R0.

• The particle of reduced mass µ, initial relative velocity
v, with impact parameter b, is scattered with angle χ.
• All motion takes place in a two dimensional plane,

with coordinates R and θ.
• The total kinetic energy is:

1

2
µṘ2 +

1

2
µR2θ̇2

where Ṙ = dR/dt and θ̇ = dθ/dt.

. – p.25/106



. – p.26/106



• Throughout the collision, the total energy must equal
the initial kinetic energy.

E =
1

2
µv2 =

1

2
µṘ2 +

1

2
µR2θ̇2 + V (R)

• Conservation of momentum requires:

pθ = µvb = µR2θ̇

where µR2θ̇ is the angular momentum at point R.

• Thus:

θ̇ =
dθ

dt
=
vb

R2

• Substituting into the expression for total energy yields:
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E =
1

2
µv2 =

1

2
µṘ2 +

1

2
µv2 b

2

R2
+ V (R)

• From this an expression for Ṙ may be derived:

Ṙ =
dR

dt
=

√√√√v2 − v2
b2

R2
− 2V (R)

µ

• Dividing this into the expression for dθ/dt yields:

dθ

dR
=

b

R2

√
1− b2

R2 − 2V (R)
µv2

which describes the trajectory in terms of the
relationship between θ and R.
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• The collision trajectory must be symmetric about the
line OA, which intersects with the trajectory at the
distance of closest approach.
• Define this extremum point as R = R0.
• At this turning point dR/dt = 0.
• Thus:

1− b2

R2
0

=
V (R)

E

• The scattering angle χ is determined by the angle
between the initial and final path.
• R is the magnitude of the separation of the two

particles.
• Therefore R varies from ∞ to R0 and to ∞ again.
• At the same time θ varies from 0 to π − χ.
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• Recalling that E = 1
2µv

2, the expression for dθ/dR may
be rewritten:

∫ π−χ

0
dθ = 2

∫ ∞

R0

b dR

R2
√

1− b2

R2 − V (R)
E

where the factor of 2 arises from the symmetry of the
trajectory.

• Thus the scattering angle is:

χ = π − 2b
∫ ∞

R0

dR

R2
√

1− b2

R2 − V (R)
E

and χ depends on E and b.

• For the hard-sphere potential R0 = d and V (R) = 0
when R > d. . – p.30/106



• The expression for the scattering angle becomes:

χ = π − 2b
∫ ∞

d

dR

R2
√

1− b2

R2

as previously derived.

• When this is integrated analytically:

b = d cos
χ

2

• Experimental measurements of scattering allow the
nature of the potential to be probed.

• So far collisions between structureless particles have
been considered, but real molecules can have internal
structure and internal energy.
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Types of Collisions (See section 27.4 of Berry et al.)

• For molecules with internal structure, internal energy
and internal angular momentum may be affected by a
collision.

• Consider a diatomic molecule, such as N2.
• The internal state of the molecule is defined by

rotational, vibrational, electronic, and nuclear
quantum numbers.

• Each degree of freedom has quantum number.
• The complete set of quantum numbers defines an

eigenstate.
• The eigenstate representing the internal state of N2

is denoted by i.

• Consider a collision of N2 in state i moving with velocity
v1 with Ar moving with velocity v2.
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• An elastic collision would not change the state of the N2

molecule:
N2(v1, i) + Ar(v2) → N2(v′1, i) + Ar(v′2)

and the relative kinetic energy would not be altered.

• An inelastic collision does change the state of the N2

molecule:
N2(v1, i) + Ar(v2) → N2(v′1, j) + Ar(v′2)

and since the internal energy has been altered, so has
the relative kinetic energy.
• Conservation of energy requires:

εi +
1

2
µv2 = εj +

1

2
µv′2

where v and v′ are initial and final relative speeds.
• The change in state from i to j could include

changes in any (or all) quantum numbers. . – p.35/106



• Inelastic collisions can also involve the transfer of energy
from one internal degree of freedom to another.

• Reactive collisions alter the chemical identity of one or
more of the species involved in the chemical reaction.
I2(v1, i) + Ar(v2) → I(v3,j ) + I(v4,l) + Ar(v′2)

where:
• i represents the initial internal state of I2
• j and l represent the electronic state of the iodine

atoms produced by dissociation.

• Another type of reactive collision is the exchange or
rearrangement collision:

H2(v1, i) + I2(v2, j) → HI(v3,l ) + HI(v4,m)

• As in all collisions, energy, linear momentum, and
angular momentum must be conserved.
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• Conservation of energy for this reactive collision may be
rewritten as:

εH2,i + εI2,j +
1

2
mH2v

2
1 +

1

2
mI2v

2
2 =

εHI,l + εHI,m +
1

2
mHIv

2
3 +

1

2
mHIv

2
4

• Separating out the motion of the centre of mass yields:

εH2,i + εI2,j +
1

2
µv2 = εHI,l + εHI,m +

1

2
µ′v′2

• When a chemical reaction has occurred, the reduced
mass of the products can differ from the reduced mass
of the reactants.

• The change in kinetic energy can be related to the
endothermicity or exothermicity of the reaction. . – p.37/106



• Consider a collision with both products and reactants in
their ground states (denoted by ε0).

• ε0 can be defined relative to infinite separation of
the constituent atoms, in which case it has the value
of the negative of the dissociation energy.

• Thus:
∆E0

0 = 2ε0
HI − (ε0

H2
+ ε0

I2)

which is the thermodynamic energy change at 0 K.

• In real experiments, both reactants and products are
distributed over a number of quantum states.
• Tabulated energies of reactions at a standard

temperature reflect this.
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Scattering Cross Sections

• Collisions between molecules depend on the forces
between them.

• Consider a collision between single atoms in a molecular
beam experiment ( see Figures 27.14, 27.15, and 27.16).

• The first step in preparing a beam of atoms is formed by
making a small hole in a container of gas which is
surrounded by the vacuum.
• The hole is small enough that only one atom can

escape at a time, moving with any possible speed
and direction.

• This is the process of effusion and is known as
Knudsen flow.

• The next step is to collimate the beam.
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• Continued:
• This is accomplished by a series of collimating slits

which filter out any molecules moving in any
direction not desired.

• The next step is to select the desired velocity.
• The velocity selector consists of a set of slotted disks

mounted on a shaft.
• Either the relative orientation of the slots or the

rotation of the shaft can be controlled.
• Only the molecules with the velocity of interest will

be able to pass though the slots. The rest of the
molecules will be deflected.

• The result is a velocity selected, collision free, collimated
beam with density n1(v1) and flux density v1n1.
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• A second beam can be prepared with density n2(v2) and
flux density v2n2.

• The two beams can be crossed such that they intersect
in a volume element, τ , the scattering volume.

• A typical beam is about 1 cm2 in cross sectional area,
with a density of 109 atoms cm−3, and flux density of
1013 atoms cm−3.
• Therefore τ is about 1 cm3.

• Consider the case of one beam of Ar crossing a beam of
Xe.
• If an Ar atom collides with a Xe atom, it will be

scattered. All directions are possible.
• If an Ar atom crosses τ without colliding with a Xe

atom, it will continue undeflected.
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• Usually the density of the beams are chosen such that
the probability of multiple collisions is negligible.

• A detector is able to determine the number of atoms
scattered towards its location at distance L, at
laboratory angles α and β. (See Figure 27.15).
• The detector has an area A and subtends a solid

angular element:

dΩ′ =
A

L2

• In a spherical angular coordinate system with angles
α and β:

dΩ′ = sinα dα dβ

• The scattering cross section can be determined by an
experiment of this design.
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• dNAr(α, β) is the number of Ar atoms arriving at a
detector per unit solid angle per unit time (second).
• This is proportional to the number of collisions

occurring per unit time.
• This in turn is proportional to the densities of Xe

and Ar and the collision volume τ , all of which can
be controlled experimentally.

• The number of collisions per unit time is also related to
the range of interaction between Ar and Xe.
• More collisions occur if the range is large than if the

range is small.

• The cross section σ is defined by:

dNAr(v, α, β) = σ(v, α, β) v n1(v1) n2(v2) τ dΩ′

where σ has units of cm2 atom−1. . – p.45/106



• The cross section may be thought of as the effective
area that the atoms present to each other, such that
scattering into the angular volume of interest occurs.

• This cross section is in terms of quantities that can be
controlled in the experiment.

• Scattering cross sections are measured in laboratory
coordinates, but must be analyzed in terms of the
center-of-mass coordinate system.
• Note that any scalar quantity (i.e. a quantity that

has magnitude but not direction) must be
independent of the coordinate system in which it is
measured.
• The number of particles arriving at the detector

per unit time is a scalar.

• The relative scattering angles are χ and φ (see Figure
27.16). . – p.46/106
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• Thus:

dNAr(v, χ, φ) = σ(v, χ, φ) v n1(v1) n2(v2) τ sinχ dχ dφ

• Because dNAr(v, χ, φ) = dNAr(v, α, β)

σ(v, α, β) sinα dα dβ = σ(v, χ) sinχ dχ dφ

• Note that the relative azimuthal angle φ has been
omitted as a variable of the relative cross section.
• This is because the forces between the atoms is a

central field and there is no external field.
• Therefore there can be no dependence of the

scattering cross section on φ.
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• Consider a crossed beam experiment involving Ar atoms
and N2 molecules.

N2(v1, V ) + Ar(v2) → N2(v′1, V ′) + Ar(v′2)
where V and V ′ are the initial and final quantum
numbers of the N2

• A scattering cross section specific to the change in state
can be measured:

dNN2
(v, V ′, α, β) = σ(V |V ′; v, α, β)v nN2

(v1, V ) nAr(v2) τ dΩ′

where σ(V |V ′; v, α, β) is“the cross section for conversion
of V to V ′ with collision parameters v, α, β.”
• The quantum state is now a variable for the cross

section.
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• Crossed beam experiments can also be used to
determine reaction cross sections.

H(v1, 0) + I2(v2, j) → HI(v3,l ) + I(v4,0)
where an H atom in its ground state reacts with I2 in
quantum state j (as defined by rotational, vibrational,
and electronic quantum numbers) to form HI in
quantum state l and a ground state I atom.

• The cross section for this reaction is:

dNHI(v, l, α, β) = σR(0, j|l, 0; v, α, β)vnH (v1)nI2(v2, j)τ dΩ′

which does not depend on final velocity of either
product.
• Direction of final relative velocity is determined by α

and β, while the magnitude is determined by
conservation of energy.
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• Experimental measurements may be carried out with
varying detail.
• It is now possible to detect final velocity and state as

well as direction.

• The total scattering cross section may be determined by
measuring all scattering at all laboratory angles.
• This gives the total number of molecules scattered

per unit time:

∫

α,β
dN(α, β) = N

• This is equivalent to:

N =
[∫

Ω′
σ(v, α, β)dΩ′

]
v n1(v1) n2(v2)τ
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• Note that the integral depends only on v and thus is the
integral cross section:

σ(v) =
∫ π

α=0

∫ 2π

β=0
σ(v, α, β) sinα dα dβ

where σ(v, α, β) is the differential cross section.

• This can be related to the state specific cross section by
summing over the states.

σ(v, α, β) =
∑

j

∑

l

σR(0, j|l; v, α, β)

Elastic Scattering of Hard Spheres

• The previous will now be generalized to elastic scattering
of hard spheres.
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• The hard sphere scattering cross section is defined by:

dN1(χ, φ) = σ(v, χ)vn1(v1)n2(v2)τ sinχdχdφ

where:
• species 1 is the species for which the distribution is

observed
• species 2 is the scatterer.

• This may be integrated over all angles φ

• Thus the number of particles scattered between χ and
χ + dχ:

dN1(χ) =
∫ 2π

φ=0
dN1(χ, φ) = 2πσ(v, χ)vn1(v1)n2(v2)τ sinχdχ

• What fraction of species 1 are scattered between χ and
χ + dχ? . – p.54/106



• At a given relative speed the scattering angle is
determined by the impact parameter in accordance with:

χ = π − 2b
∫ ∞

R0

dR

R2
√

1− b2

R2

• Consider db as the range of b from which particles are
scattered in dχ.
• The number of particles scattered into dχ is the

product of flux density, vn1(v1) and the differential
area element 2πbdb. Thus:

2πb db = 2πσ(v, χ) sinχ dχ

relates the impact parameter to the differential cross
section.
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• This can be rearranged to:

σ(v, χ) =
b

sinχ

∣∣∣
db

dχ

∣∣∣

• But for hard spheres b = d cos(χ/2) which is a single
valued function of χ.
• Therefore

db

dχ
=
d

2
sin

χ

2

and

σ(v, χ) =
d2

2
cos

χ

2
sin

χ

2

1

sinχ
=
d2

4

since

cos
χ

2
sin

χ

2
=

1

2
sinχ
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• Note that the differential cross section does not depend
either v or χ.

• The total cross section becomes:

σ(v) = 2π
∫ π

0
σ(v, χ) sinχdχ

=
πd2

2

∫ π

0
sinχdχ

• Cross sections for real potentials will depend on relative
speed and angle of collision.

• A cross section combined with velocity information will
give information about the rate of collision.
• The rate of collision is the upper limit on the rate of

reaction.
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Kinetic Theory of Gases
• The macroscopic properties of gases can be related to

the averages of molecular motions and intermolecular
forces.

• In thermodynamics we are concerned with equilibrium
properties of systems such as pressure and temperature.

• In kinetics we are concerned with nonequilibrium
properties such as fluxes.
• Diffusion (flow of matter)
• Viscosity (flow of momentum)
• Thermal conductivity (flow of thermal energy)
• Electrical conductivity (flow of charge)

• The kinetic theory of gases can be considered from the
perspective of statistical mechanics.
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Distribution Functions
• Solving the equations of motion for a mole of molecules

is not practical.
• State-of-the-art high performance computers can do

this for a few thousand molecules with a simple
pairwise potential for a few ns.

• This is not a feasible approach for macroscopic
systems.

• We are interested in macroscopic phenomena such as
the rate of change of some physical quantity with
respect to time.
• As in the case of thermodynamics, it is possible to

move from a large number of variables to a small
number of variables by the use of distribution
functions.
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• A volume element in three dimensional velocity space
(figure 28.1) is:

dv = dvx dvy dvz

• The condition for equilibrium requires that the gas be
homogeneous throughout the system and unchanging
with time.
• The distribution function f(v) is independent of

space and time.

• In the case of a nonequilibrium system there is
dependence on space and time.
• Thus the distribution function of interest is f(r,v, t).
• f(r,v, t)drdv is the total number of molecules with

positions in spatial volume element dx dy dz with
velocities in dvx dvy dvz.
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• Thus f(r,v, t) is a density with respect to phase space
volume.

• The velocity distribution is the primary concern,
therefore f(r,v, t) is integrated over all space:

f(v, t) =
∫ ∫

V

∫
f(r,v, t) dx dy dz

where V is the volume of the gas.

• The total number of molecules is obtained by integrating
over all velocities:

N =
∫ vx=∞

vx=−∞

∫ vy=∞

vy=−∞

∫ vz=∞

vz=−∞
f(v, t)dvx dvy dvz

• Normalized distribution functions are convenient and can
be achieved by division by N .
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• Thus the normalized distribution function is:

f̃(v, t) =
1

N
f(v, t)

• When integrated, this becomes:

1 =
∫ vx=∞

vx=−∞

∫ vy=∞

vy=−∞

∫ vz=∞

vz=−∞
f̃(v, t)dvx dvy dvz

and f̃(v, t) is a probability density.

• f̃(v, t)dv is the probability of finding a molecule
with a velocity between v and v + dv.

• With a coordinate transformation, this can be used to
calculate the probability of finding a given speed v.
• The new coordinates will be spherical coordinates.
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Cartesian and Spherical Coordinates
• The relationship between cartesian and spherical

coordinates in velocity space is:

vx = v sin θ cosφ

vy = v sin θ sinφ

vz = v cos θ

• The relationship between the volume element in velocity
space is:

dv = dvx dvy dvz = v2 sin θ dθ dφ dv

• Therefore:

f̃(v, t)dv = f̃(v, θ, φ, t)v2 sin θ dθ dφ dv
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• This can be integrated over the angles θ and φ to give
f (v, t)dv, the probability of finding a particle with speed
between v and v + dv:

f̃(v, t) =
∫ π

θ=0

∫ 2π

φ=0
f̃(v, t)dv

= v2dv
∫ π

θ=0

∫ 2π

φ=0
f̃(v, θ, φ, t) sin θ dθ dφ

• The gas is isotropic, so f̃(v.t) is independent of the
angular variables and

f̃(v, t) = v2f̃(v, t)
∫ π

θ=0

∫ 2π

φ=0
sin θ dθ dφ = 4πv2f̃(v, t)
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• The same approach may be taken with f(r,v, t) where:

f̃ =
1

N
f(r,v, t)

• Thus the normalization condition becomes:

1 =
∫ vx=∞

vx=−∞

∫ vy=∞

vy=−∞

∫ vz=∞

vz=−∞

∫ ∫

V

∫
f̃(r,v, t)

dvx dvy dvz dx dy dz

and f̃(r,v, t) is the probability distribution in six
dimensional phase (or position-velocity) space.
• If a transport process is under consideration, this

form of the distribution function is useful.
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• Distribution functions are also associated with internal
degrees of freedom:

N =
g−1∑

j=0

f(j, t)

where there are N oscillators with g quantum states with
quantum numbers 0, 1, 2, . . . , g − 1.

• The normalized function is N−1f(j, t) = x(j, t) where
x(j, t) is the mole fraction of oscillators in state j at
time t.

• Thus:
1 =

∑

j

x(j, t)
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Collision Frequency in a Dilute Gas
• In the kinetic theory, gas molecules move and collide

with other molecules or the wall of the container.

• Consider a volume element away from the walls.
• The spatial distribution is uniform.
• The velocity distribution follows the Maxwell

distribution.

• Now consider giving the molecules in this volume
element a nonequilibrium velocity distribution.
• How long will it take for the distribution to return to

the equilibrium distribution?
• Molecules can change velocity only as the result of

collisions each other since the volume element under
consideration is away from the walls.

• What is the frequency with which collisions take
place?
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• This has been investigated by computer simulation in
1955 by Alder and Wainwright.

• 100 hard spheres of diameter d were distributed
uniformly through volume V .

• All had the same initial speed, but the direction of
motion was selected randomly.

• The motion of each particle was followed.
• A collision occurs when the distance between two

spheres is within d.
• Since the position and coordinates of each particle

are known, the outcome of the collision may be
determined in terms of impact parameter, scattering
angle, and direction and magnitude of velocity.

• Distributions of velocity and speed may be
determined at any time step in the simulation.
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• The distribution of time and distance between collisions
may also be determined.
• The average time between collisions is the mean free

time, τf .
• The average distance travelled between collisions is

the mean free path.

• After a few τf , the distribution of speed asymptotically
approaches the equilibrium distribution.

• The relaxation time is a few τf .

• Consider now an experimental situation with the
objective of deriving the collision frequency in a dilute
gas.
• Consider a uniform mixture of two gases, each of

structureless particles.
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• A real system that would approach these conditions
would consist of Ar (1) and Xe(2).
• The number densities are n1 and n2, respectively

and are constant with time.
• The velocity distributions are f̃(v1) and f̃(v2) and

may be time dependent.
• The number density of argon atoms with velocities

between v1 and v1 + dv1 is n1f̃(v1)dv1

• Recall collisions between molecules in molecular beams.
• It is possible in a molecular beam to have all the

molecules with the same velocity.
• The number of collisions per unit time in a volume τ

between Ar atoms with velocities between v1 and
v1 + dv1 of density n1f̃(v1)dv1 and Xe atoms with
velocities between v2 and v2 + dv2 of density
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n2f̃(v2)dv2 is:

τZ12(v1,v2) =

2πv
∫ π

χ=0
σ(v, χ)n1n2f̃(v1, t)f̃(v2, t)τdv1dv2 sinχdχ

where v = |v2 − v1| and is determined by the intersection
angle in the beams.

• The overall collision rate is determined by summing over
all possible values of v1 and v2.

• Implicit in this is the assumption that the atoms move
freely and independently before collision and that the
velocity of each atom is uncorrelated with the velocity of
the collision partner.

• If the correlation existed then f̃(v, t) for colliding atoms

would be different from f̃(v, t) for the bulk gas.
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• The validity of this derivation will be restricted to
situation where, on average, this condition is met.
• This is true for the ideal gas, but would not be true

in dense gases or liquids.

• The number of collisions per unit time per unit volume
for Ar atoms with velocities between v1 and v1 + dv1 is
obtained by dividing the previous expression by the
volume τ and integrating over all values of v2:

Z12(v1) =

2πn1n2dv1

∫

v2

∫ π

χ=0
vσ(v, χ)f̃(v1, t)f̃(v2, t)dv2 sinχdχ

• The total number of collisions per unit time per unit
volume between Ar atoms of all velocities and Xe atoms
of all velocities is:
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Z12 = 2πn1n2

∫

v1

∫

v2

∫ π

χ=0
vσ(v, χ)f̃1(v1, t)f̃2(v2, t)dv1dv2 sinχdχ

• Z12 is the collision frequency.

• Note that f̃ has yet to be specified.

The Evolution of Velocity Distributions in Time

• Consider a gas that initially has a nonequilibrium
velocity distribution.
• The velocity distribution evolves with time and

asymptotically approaches equilibrium.
• This time evolution of the velocity distribution is

driven by molecular collisions.
• The collision frequency will determine the rate of

change of the distribution.
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• nf̃(v1, t)dv1 gives the number of molecules per unit
volume with velocities between v1 and v1 + dv1

• If the gas is uniformly distributed in volume V , then n is
a constant.

• Thus:

n

[
df̃(v1, t)

dt

]
dv1

describes the change per unit time in the number density
of molecules with velocities between v1 and v1 + dv1

• This change is the result of:
• A molecule with velocity v1 before collision will have

a different velocity after collision.
• A molecule with a velocity outside the range of

velocities between v1 and v1 + dv1 before collision
will have velocity within this range after collision.. – p.78/106



• For a pure gas, the collision frequency for molecules at
v1 with molecules of any value of v2 is:

Z12(v1) = 2πn2dv1

∫

χ

∫

v2

vσ(v, χ)f̃(v1, t)f̃(v2, t)dv2 sinχdχ

• What is the corresponding expression for the number of
collisions with v2?
• Consider a collision occurring at velocities v1,v2 and

scattering angle χ.
• These conditions imply impact parameter b since for

a given relative velocity and scattering angle, the
impact parameter is determined.

• The final velocities after the collision are v′1,v
′
2.

• Since the particles are structureless, the collisions are
elastic.
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• Therefore the relative speed is unchanged and the final
impact parameter b′ is equal to b (see figure 27.4).

• Now consider a collision that starts with velocities v′1,v
′
2

and has scattering angle χ.
• The only possible value of the velocities after the

collision is v1,v2.

• The choice of which of v1,v2 and v′1,v
′
2 are initial or

final is arbitrary.

• Thus the number of collisions between atoms of
velocities v′1,v

′
2 leading to a scattering angle between χ

and χ+ dχ is:

Z12(v′1,v
′
2, χ) = 2πn2v′σ(v′, χ)f̃(v′1, t)f̃(v′2, t)

dv′1dv
′
2 sinχdχ
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• Since the collision is elastic v′ = v.

• It may be shown that

dv′1dv
′
2 = dV′dv′

and
dv1dv2 = dVdv

since the Jacobian is unity (see footnote on page 824).

• The center-of-mass vector V is unaffected by the
collision.
• Therefore V = V′ and dV = dV′

• It must now be shown that dv = dv′.
• Consider Figure 28.4.
• An apse line may be defined such that it lies in the

plane defined by v,v′ and bisects the angle χ.
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• This apse line may be used to define an orthogonal
coordinate system.

• The relative velocity vector may be resolved into two
components: one parallel to and the other perpendicular
to the apse line.
• Recall that for hard spheres, the effect of a collision

is to leave one component (i.e. the parallel)
unchanged and the sign of the other (i.e. the
perpendicular) reversed but the magnitude
unchanged.

• Because the magnitude of the components are
unchanged by the collision, the volume element is
unchanged:

dv = dv′
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• Thus:
dv′1dv

′
2 = dv1dv2

provided they are related as illustrated in Figure 28.4
which holds according the equation of motion for hard
spheres for a given b or χ.

• To show this more clearly, consider

v′1 = v1 −∆v1(v, χ)

v′2 = v2 + ∆v2(v, χ)

• Rewrite Z12(v′1,v
′
2, χ):

Z12(v1−∆v1,v2−∆v2, χ) = 2πn2vσ(v, χ)f̃(v1−∆v1, t)

×f̃(v2 + ∆v2, t)dv1dv2 sinχdχ
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• Integration of this over all values of v2 and χ gives the
total number of collisions per unit time per unit volume
that one atom emerges from the collision with velocity
between v1 and v1 + dv1:

Z12(v1 −∆v1) = 2πn2dv1

∫

χ

∫

v2

vσ(v, χ)f̃(v1 −∆v1, t)

×f̃(v2 + ∆v2, t)dv2 sinχdχ

• Recall:

Z12(v1) = 2πn2dv1

∫

χ

∫

v2

vσ(v, χ)f̃(v1, t)f̃(v2, t)dv2 sinχdχ

• The difference between these expressions is:
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n

[
df̃(v1, t)

dt

]

v1

dv1

• Cancelling out ndv1 yields:

[
df̃(v1, t)

dt

]

v1

= 2πn
∫

χ

∫

v2

vσ(v, χ)×

[
f̃(v1 −∆v1, t)f̃(v2 + ∆v2, t)− f̃(v1, t)f̃(v2, t)

]
dv2 sinχdχ

• This is the Boltzmann equation, an integro-differential
equation which has no general solutions.
• For the special solution at infinite time:

[
df̃(v1, t)

dt

]

v1

= 0
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• A sufficient, but not necessary condition, for this to be
true is:

f̃(v1 −∆v1(v, χ))f̃(v2 + ∆v2(v, χ))− f̃(v1)f̃(v2) = 0

for all values of v1,v2, χ.

• This is equivalent to the statement that there are as
many collisions of the type:

v1,v2 → v1 −∆v1(v, χ),v2 + ∆v2(v, χ)

as there are of the type:

v1 −∆v1(v, χ),v2 + ∆v2(v, χ)→ v1,v2

• This is a statement of the requirement of detailed
balance between each possible collision and its inverse.
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• Rearranging the equation and taking the natural
logarithm of both sides yields:

ln f̃(v1−∆v1(v, χ))+ln f̃(v2+∆v2(v, χ)) = ln f̃(v1)+ln f̃(v2)

• This means that the sum of the logarithms of the
velocities distribution is unchanged by the collision and is
invariant or conserved.

• Previously encountered summational invariants for
elastic collisions include:
• mass
• linear momentum
• angular momentum
• kinetic energy

• Thus ln f̃(v1) must be a linear combination of at least
some of the above. . – p.88/106



• This function should depend only on the magnitude of
v1.
• Since linear and angular momentum depend on the

direction they cannot be included in the function.

• Test the form:

ln f̃(v1) = α + β(
1

2
mv2

1)

where α and β are constants independent of v1.
• β = −1/kBT according to section 15.5
• Therefore:

f̃(v1) = Ae−mv
2/2kBT

where A = eα and is determined by normalization.

• This is the Maxwell Boltzmann distribution.
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• Thus an equation that describes the variation with time
of the velocity distribution in a dilute, spatially
homogeneous gas.

• At equilibrium, the integrand of the Boltzmann equation
is zero.
• Only the Maxwell-Boltzmann distribution satisfies

this condition for a gas at rest.

The Maxwell-Boltzmann Distribution

• Properties of the Maxwell-Boltzmann distribution will
now be considered.

• The probability density must be normalized:

f̃(v)dv = 1
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• This is satisfied when

f̃(v) =
(

m

2πkBT

)3/2

e−mv
2/2kBT

• Recall that

1

2
mv2 =

1

2
m
(
v2
x + v2

y + v2
z

)

• Thus:
∫

v
f̃(v)dv =

(
m

2πkBT

)3/2

×
∫

vx

∫

vy

∫

vz
e−m(v2

x+v2
y+v2

z)/2kBTdvxdvydvz
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• This may be factored into three integral factors:

∫

v
f̃(v)dv =

(
m

2πkBT

)3/2 [∫ +∞

vx=−∞
e−mv

2
x/2kBTdvx

]

×
[∫ +∞

vy=−∞
e−mv

2
y/2kBTdvy

] [∫ +∞

vz=−∞
e−mv

2
z/2kBTdvz

]

which may be considered are three identical factors of
form:

(
m

2πkBT

)1/2 ∫ u=∞

u=−∞
e−mu

2/2kBTdu = 1

• Thus

f̃(v)dv =
[
f̃(vx)dvx

] [
f̃(vy)dvy

] [
f̃(vz)dvz

]
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• where f̃(vx), f̃(vy), f̃(vz) are the probability densities for
the velocity components.

• Thus the fraction of molecules with x component of
velocity between vx and vx + dvx is:

f̃(vx)dvx =
(

m

2πkBT

)1/2

e−mv
2
x/2kBTdvx

and similar for vy and vz
• The distribution of velocity components in one

direction is independent of the velocity distribution
in the other directions.

• It is symmetric about u = 0 (see Figure 28.5).

• The maximum velocity is proportional to T−1/2
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• Continued
• The spread of the distribution is a function of both

temperature and molecular mass.
• For a given gas, as the temperature increases, the

spread increases, but the area under the curve is still
unity.

• The Maxwell-Boltzmann distribution has the same
mathematical form as the Gaussian distribution,

proportional to e−aδ
2

, where δ is a measure of the
deviation from the mean and a is a positive constant.

• Consider the average velocity of a gas at rest.
• This involves determining the average value of each

of the components.
• Consider first 〈vx〉.
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• By definition:

〈v〉 =
∫

v
vf̃(v)dv

.

• The x component is:

〈vx〉 =
∫ +∞

vx=−∞

∫ +∞

vy=−∞

∫ +∞

vz=−∞
vxf̃(v)dvxdvydvz

• Substituting the Maxwell-Boltzmann distribution for

f̃(v) gives:

〈vx〉 =
(

m

2πkBT

)3/2 ∫ +∞

vx=−∞

∫ +∞

vy=−∞

∫ +∞

vz=−∞
vx

×e−m(v2
x+v2

y+v2
z)/2kBTdvxdvydvz
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• Factoring yields:

〈vx〉 =
(

m

2πkBT

)3/2 [∫ +∞

vx=−∞
vxe
−mv2

x/2kBTdvx

]

×
[∫ +∞

vy=−∞
e−mv

2
y/2kBTdvy

] [∫ +∞

vz=−∞
e−mv

2
z/2kBTdvz

]

• Thus:

〈vx〉 =
(

m

2πkBT

)1/2 [∫ +∞

vx=−∞
vxe
−mv2

x/2kBTdvx

]

• Note that the integrand is an odd function of vx.
• Therefore 〈vx〉 = 0.
• Similarly 〈vy〉 = 0 and 〈vz〉 = 0
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• Consider a gas in motion in the x direction with speed
vx0

• The Maxwell-Boltzmann distribution in vx is no
longer symmetric about vx = 0, but instead about
vx = vx0.

• Thus the distribution becomes:

f̃(vx) =
(

m

2πkBT

)1/2

e−m(vx−vx0)2/2kBT

• Consider now the average speed.
• Since only the magnitude and not the direction

matter, consider the distribution function in spherical
coordinates integrated over all angles.

f̃(v) = v2
∫ π

θ=0

∫ 2π

φ=0

(
m

2πkBT

)3/2

e−mv
2/2kBT sin θdθdφ
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• This yields:

f̃(v) = 4πv2f̃(v) = 4π
(

m

2πkBT

)3/2

v2e−mv
2/2kBT

• This speed distribution is shown in Figure 28.6 and is
not symmetric.
• Therefore the average speed is not zero.

〈v〉 =
∫ ∞

v=0
vf̃(v)dv

= 4π
(

m

2πkBT

)3/2 ∫ ∞

v=0
v3e−mv

2/2kBTdv =

(
8kBT

πm

)1/2

• The average speed in proportional to T 1/2.
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• 〈v〉 is also known as the first moment of the distribution.

• Similarly 〈v2〉 and 〈v3〉 are known as the second and
third moments of the distribution.

• The average kinetic energy is related to the second
moment.

〈
1

2
mv2

〉
= 4π

(
m

2πkBT

)3/2 ∫ ∞

v=0

(
1

2
mv2

)
v2e−mv

2/2kBTdv

=
3

2
kBT

• Expressed as energy per mole:

u =
3

2
NAkBT =

3

2
RT
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• Previously shown (Equation 12.17) was that:

p =
2

3

U

V

• Combining this with above yields:

pV = NkBT

Collision Frequency for Hard-Sphere Molecules

• What is Z12 for a hard-sphere gas at equilibrium?
• An expression for this will be useful in predicting

reaction rates.

• Recall collisions between argon and xenon:

Z12 = 2πn1n2

∫

v1

∫

v2

∫ π

χ=0
vσ(v, χ)f̃1(v1, t)f̃2(v2, t)dv1dv2 sinχdχ
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• For the hard-sphere gas, σ(v, χ) = d2/4 and is
independent of both angle and relative speed.
• Thus:

Z12 = πd2n1n2

(
m1

2πkBT

)3/2 ( m2

2πkBT

)3/2

×
∫

v1

∫

v2

ve−(m1v
2
1+m2v

2
2)/2kBTdv1dv2

(Recall that
∫ π
0 sinχdχ = 2)

• In carrying out the integration over the velocities,
care must be taken in the treatment of relative
speed.

• Convert to center-of-mass coordinates before
integrating.
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• Consider first the constant factors:

(
m1

2πkBT

)3/2 ( m2

2πkBT

)3/2

=

(
m1m2

(m1 +m2)2πkBT

)3/2 (
(m1 +m2)

2πkBT

)3/2

=
(

µ12

2πkBT

)3/2
(

(m1 +m2)

2πkBT

)3/2

where

µ12 =
m1m2

(m1 +m2)
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• It has been previously shown that:

1

2
m1v

2
1 +

1

2
m2v

2
2 =

1

2
(m1 +m2)V 2 +

1

2
µ12v

2

and
dv1dv2 = dVdv

• Thus the expression for collision frequency becomes:

Z12 = πd2n1n2

∫

v



∫

V

(
(m1 +m2)

2πkBT

)3/2

e−(m1+m2)V 2/2kBTdV




×
(

µ12

2πkBT

)3/2

ve−µ12v
2/2πkBTdv
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• Consider first the integral over V.
• This may be recognized as the normalized

distribution function over V and thus integrates to
unity.

• The integral over v is:

〈v12〉 =
∫

v

(
µ12

2πkBT

)3/2

ve−µ12v
2/2πkBTdv =

(
8kBT

µ12π

)1/2

• Thus:

Z12 = πd2n1n2〈v12〉 = πd2n1n2

(
8kBT

µ12π

)1/2
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