
• The number of collisions per unit time for a single Ar
atom with Xe atoms is:

Z12

n1
= πd2n2〈v12〉

.

• Now consider the collision frequency in a pure gas.
• m1 = m2 = m so that µ12 = m/2. Therefore

〈v12〉 =

[
8πkBT

π(m/2)

]1/2

=
√

2〈v〉

where 〈v〉 is the average speed in pure gas.
• The number of collisions per unit time for a single

atom is multiplied by the number density, then
divided by 2 to avoid double counting collisions.
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• The collision frequency for a pure gas is:

Z =
πd2

√
2
n2〈v〉

• Consider a hard-sphere gas (see Figure 28.7):
• As one atom moves through the gas with relative

speed 〈v12〉, it sweeps out a cylinder of
cross-sectional area πd2.

• The volume swept out per second is πd2〈v12〉.
• Any other atom within this volume will collide with

the first atom.
• If the density is n and the volume πd2〈v12〉, then the

number of collisions per atom per unit time is
πd2n〈v12〉.
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• The mean free path is the overage distance that a
molecule travels between collisions.
• In time t an atom travels the distance 〈v〉t.
• During time t, an atom undergoes πd2n〈v12〉t

collisions.
• Therefore the mean free path l is:

l =
〈v〉t

πd2n〈v12〉t
=

1√
2πd2n

• Note that the mean free path is independent of
temperature and decreases as the density increases.

• The mean free path is not directly measurable.
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Molecular Fluxes
• Three fluxes will be considered:
• Density
• Momentum Density
• Energy Density

• A flux may be considered as the net flow of a physical
quantity in a given direction.

• It is defined rigorously as the amount of a given quantity
that flows across a surface area per unit time.

• The flux density is the flow per unit time per unit
surface area.
• Diffusion is the net flux of particles.
• Viscous flow is produced by the net flux of

momentum.
• Thermal conduction is the flux of energy.
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• Consider a hypothetical plane surface in a dilute gas.
• The orientation of the plane is given by a

perpendicular unit vector k pointing in the positive
direction.

• Molecules cross the planes in both directions.
• The net flow of molecules per unit time per unit area

is the quantity of interest.

• Consider molecules with velocity v with angle θ between
v and k

• In time dt a molecule with speed v moves vdt.

• Construct a parallelepiped of length vdt with base area
A and inclination θ (see Figure 28.8).
• The volume of the parallelepiped is v cos θ dA dt.
• All molecules within this volume will cross A in time
dt. . – p.112/194
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• It is assumed that are no collisions between molecules
within this volume.

• The number of molecules per unit volume with velocity
between v and v + dv is f(r,v, t)dv.
• Therefore, the number of molecules with velocity

between v and v + dv that cross the plane per unit
time is:

v cos θf(r,v, t)dv

• Integration of this over all velocities gives the
number flux density, Γn

Γn(r, t) =
∫

v
v cos θf(r,v, t)dv

• The cos θ factor is positive or negative depending on
the direction of v relative to k.
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• v cos θ may be rewritten as v · k and keeps track of the
net flow across the plane in the positive direction k.

• The flux density vector is:

Γn =
∫

v
vf(r,v, t)dv

and the flux density in the k direction is given by:

Γ = k · Γn

which is a scalar.

• The flow of mass per unit time per unit area, Γm is
sometimes denoted as Jm is:

Γm = mΓn
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• Consider the flow of energy across the plane.
• Recall the number of molecules with velocities

between v and v + dv:

v cos θf(r,v, t)dv

.
• Multiply this by the kinetic energy per molecule

1
2mv

2 to yield:

1

2
mv2v cos θf(r,v, t)dv

as the kinetic energy flux density.
• Thus the net energy carried by molecules across the

unit area per unit time is:
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ΓE =
1

2
m
∫

v
v3 cos θf(r,v, t)dv

• The flow of energy per unit time per unit area is
sometime denoted as q. This is equivalent to the flux
density vector ΓE which is defined as:

ΓE = k · ΓE
where

ΓE =
1

2
m
∫

v
v2vf(r,v, t)dv

• Note that both mass and kinetic energy are scalars but
that their fluxes are vectors.

• Momentum is a vector and the flux of momentum will
be considered next.
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• The flux of momentum is a tensor.
• The flux density of momentum Γmv is also denoted

as JP :

Γmv = m
∫

v
vvf(r,v, t)dv

which contains two vectors multiplied together.
• In Cartesian space, this is a second rank tensor with

nine components.
• A vector is a first rank tensor with three

components.
• The components of Γmv are labelled by two

subscripts denoting the Cartesian coordinates:

(Γmv)xy = m
∫

v
vxvyf(r,v, t)dv
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• Tensors are often represented as matrices.
• If the indices are the same, then it is a diagonal

component.
• If the indices are different, then it is an off-diagonal

component.
• In this case the matrix is symmetric and

(Γmv)xy = (Γmv)yx

• Consider now the physical interpretation of the elements
of the momentum flux tensor.
• Define a Cartesian coordinate system with an x axis

parallel to the vector k.
• Thus vx = v cos θ.

• What is (Γmv)zz? (Note that the momentum
component of the molecule is in the z direction.)
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• It is the number of molecules of momentum mvz with
velocity between v and v + dv crossing unit area of
plane per unit time integrated over all velocities:

(Γmv)zz = m
∫

v
vzvzf(r,v, t)dv

• This gives the momentum in the z direction transferred
across the plane per unit time and may be interpreted as
a stress normal to the surface with the units of pressure:

1

area

∆(mv)

∆t
=

force

area

• This is why (Γmv) is sometimes referred to as the
pressure tensor or stress tensor.
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• Now consider (Γmv)xz
• The direction of flow is the x direction
• The momentum is transferred in the z direction.
• Thus, (Γmv)xz may be considered in terms of the

transfer of the total momentum in the z direction
across a plane perpendicular to the x direction per
unit area per unit time.

(Γmv)xz = m
∫

v
vxvzf(r,v, t)dv

• This is a sheer stress on the surface.
• Consider a layer of gas flowing parallel to the plane

with a smaller velocity in the x direction on one side
of the plane than on the other.

. – p.121/194



• The molecular motion is in the x direction across the
plane and there is a net transfer of momentum in the z
direction from the faster moving to the slower moving
layer.

• For a gas at equilibrium, the number of molecules with
velocity between v and v + dv is:

f(r,v, t)dv = n
(

m

2πkBT

)3/2

e−mv
2/2kBTdv

• The distribution is independent of time and position
since the gas is at equilibrium and is spatially uniform.

• Now consider this distribution and the flux density:

Γn(r, t) = n
(

m

2πkBT

)3/2 ∫

v
ve−mv

2/2kBTdv
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• Continued:
• But it has already been shown that 〈v〉 = 0 for a gas

at equilibrium.
• Therefore there is not net flow of molecules at

equilibrium.
• Consequently the mass flow Γm is also zero.
• This is to be expected for a gas at equilibrium.

• Consider now the energy flux density for a gas at
equilibrium:

ΓE =
1

2
mn

(
m

2πkBT

)3/2 ∫

v
v2ve−mv

2/2kBTdv

• Since this is an odd function it will integrate to zero,
which is the expected energy flux density for a gas at
equilibrium.
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• Consider now the off diagonal elements of the pressure
or momentum flux density tensor which couples motion
in two directions:

(Γmv)xz = mn
(

m

2πkBT

)3/2 ∫

v
vxvze

−mv2/2kBTdvxdvydvz

• When the integral is resolved into velocity components,
two factors are odd and integrate to zero.

• This is consistent with the gas being at equilibrium.

• Consider now a diagonal component of the tensor.

(Γmv)xx = mn
(

m

2πkBT

)3/2 ∫

v
vxvxe

−mv2/2kBTdvxdvydvz

• This is not zero.
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• All the diagonal components are equivalent:

(Γmv)xx = (Γmv)yy = (Γmv)zz

and can be identified with the pressure.

p =
1

3
[(Γmv)xx + (Γmv)yy + (Γmv)zz]

• Thus:

p =
1

3
mn

(
m

2πkBT

)3/2 ∫

v
(v2
x+v2

y+v2
z)e−mv

2/2kBTdvxdvydvz

• Transforming to spherical coordinates gives:

p =
1

3
mn

(
m

2πkBT

)3/2

4π
∫ ∞

v=0
v4e−mv

2/2kBTdv
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• Note that this has been integrated over all directions.

• Integrating over all speeds gives:

p = nkBT

(Recall n = N/V , the number density of the molecules.)

• Two assumptions in the derivation are now examined.

• One is the assumption that there collisions between
molecules are ignored.
• Collisions have the effect of increasing or decreasing

the number of molecules with velocity v.
• If a gas is at equilibrium, then the opposing effects

will cancel each other out and the assumption to
ignore collisions is valid.
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• The other assumption is that the net amount of particles
crossing a given surface per unit time determines the
flux density of particles, energy, and momentum.
• This must be the case for molecular flux.
• But it is not necessarily the case for transfer of

energy or momentum because these can be
transferred through momentum

• Consider Figure 28.9 which shows a surface at which
molecules collide.

• Since molecules do not cross the surface, such
collisions do not affect the molecular flux density.

• Such collisions do affect the flux of momentum and
energy since these can be transferred across the
surface by molecular forces.
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• The conditions for collisional energy transfer require the
simultaneous presence of two molecules near surface S.

• The distance between the molecules must be within a
range determined by the intermolecular forces.

• The importance of collisional transfer depends on the
density of the gas.

• If the distance between the molecules is large, then the
probability of collisional transfer is low and the gas may
be considered at perfect gas.

• If the distance between the molecules is small, collisional
transfer will dominate.
• In a liquid, the dominant mechanism for energy or

momentum transport is collisional transfer.
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Effusion
• Consider the effusion of a gas.
• A vessel is filled with gas at low pressure as in Figure

28.10.
• The vessel has a small hole through which the gas

escapes.
• The vessel is surrounded by a vacuum chamber,

which is maintained by a vacuum pump.
• The pressure is the vacuum chamber is low enough

that the probability of molecules moving from the
vacuum chamber into the vessel is negligible.

• Conditions need to be such that the molecules
emerge independently through the hole.
• This can be satisfied if the diameter of the hole is

smaller than the mean free path.
• This condition can be achieved if the density is

low enough. . – p.130/194
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• The plane of Figure 28.9 may be considered to contain
the orifice.

• The number of molecules that cross a unit area of this
surface with velocity between v and v + dv per unit
time is:

Γn(r,v, t) = v cos θf(r,v, t)dv

• Recall that θ is the angle between the velocity vector
and the normal to the surface.

• It is also assumed that the orifice is sufficiently small
that the spatial uniformity and equilibrium velocity
distribution are unaffected by molecules escaping
through the hole.
• These conditions define effusion.
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• In spherical coordinates:

dv = v2dv dΩ = v2dv sin θ dθ dφ

where θ is the polar angle and φ is the azimuthal angle
as indicated in Figure 28.10.

• The total flux of molecules through the hole includes all
possible speeds in the directions 0 ≤ θ ≤ π/2 and
0 ≤ φ ≤ 2π.
• Note that the direction for θ does not include π/2 to
π, as this would denote molecules moving back
through the hole.

• The range of θ is what ensures that the integral is
non-zero.
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• The total flux density is:

Γn(r, t) = n
(

m

2πkBT

)3/2

×
∫ ∞

v=0

∫ π/2

θ=0

∫ 2π

φ=0
v cos θe−mv

2/2kBT v2 sin θ dθ dφ dv

• The angular integrals may be separated and
evaluated:

∫ π/2

θ=0

∫ 2π

φ=0
cos θ sin θ dθ dφ = 2π

∫ 1

0
x dx = π

• The integral over v is:

∫ ∞

v=0
v3e−mv

2/2kBTdv
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• This integral over v has been encountered previously in
the calculation of average speed.

• Thus the flux density due to effusive flow may be
recognized as:

Γn =
1

4
n〈v〉

• Using 〈v〉 = (8kBT/πm)1/2 and the equation for a
perfect gas p = nkBT gives:

Γn =
p

(2πmkBT )1/2

• Consider the situation in which it was desired to measure
only part of the flux density, such as that the emerges in
a given direction and hits a detector that subtends a
solid angular element dΩ.

. – p.135/194



• The number of molecules that escape the orifice per unit
area of the orifice that strike the detector are:

n
(

m

2πkBT

)3/2 ∫ ∞

v=0
v cos θe−mv

2/2kBT v2 dv dΩ = n〈v〉 cos θ
dΩ

4π

• It is possible to place a velocity selector in front of the
detector and the number of molecules with speed from v
to v + dv encountering the detector may be determined.

n
(

m

2πkBT

)3/2

v cos θe−mv
2/2kBT v2 dv dΩ

• This permits experimental tests of the Maxwell-
Boltzmann velocity distribution.
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• Effusion can be used to determine vapour pressures of
liquids and solids, provided molecular mass is known.
• Measurement of vapour pressure over a range of

temperatures can be used to determine the heat of
vaporization.

Transport Properties of Gases

• Transfer from one part of a system to another of a
physical property is known as a transport process.
• A transport process involves physical systems in

nonequilibrium states.
• Understanding the mechanism of how the system

evolves toward equilibrium is part of understanding
transport processes.

• This mechanism depends on intermolecular forces
and thus structure and state of aggregation. . – p.139/194



• Examples of transport processes will be considered from
a macroscopic perspective and then from a microscopic
perspective based on kinetic theory.

• Consider diffusion.
• Consider two containers, one filled with argon and

the other filled with neon.
• When the two containers are connected to each

other, a natural, irreversible process takes place as
the two gases mix.

• Each gas is observed to diffuse into the other gas
until the gas mixture is uniform.

• The process of diffusion reduces the concentration
gradient until it disappears completely and the gas is
at equilibrium.

• The removal of a spatial gradient is hydrodynamic
relaxation. . – p.140/194



• In diffusion, it is molecular transport that is the
macroscopic mass flow.

• Consider the experiment previously described carried out
in two different ways.

• One way is to remove a large partition.
• Consequently, the concentration at each point

changes with time.
• This process is not steady-state, but rather transient

• The other way is to connect the two containers with a
capillary.
• Consequently, the concentrations of each container

varies slowly with time.

• Consider the limiting case where the containers are very
large.
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• In this case, the concentration in each vessel changes so
slowly, the diffusion may be considered as occurring at
fixed concentration.

• Diffusion proceeds as long as there is a concentration
difference between the two vessels and there will be a
concentration gradient in the capillary, although the
concentration at any particular point may be regarded as
invariant with time.
• It is to be noted, however, that this steady state is

not an equilibrium because mass is crossing through
the capillary.

• Other transport processes and their associated gradients
can be considered:
• A temperature gradient is associated with the

molecular transport of energy.
. – p.143/194



• A velocity gradient is associated with the molecular
transport of momentum or viscosity.

• A potential gradient produced by an electrical field is
associated with electric conduction.

• Transport processes may be coupled to each other.
• Consider a uniform mixture of two gases in a vessel.
• Impose and maintain a temperature gradient across

the vessel.
• This leads to the establishment of a concentration

gradient and thermal diffusion occurs.
• Thermal diffusion is the coupling of thermal

conduction and diffusion.
• Thermal diffusion also occurs as the result of a

concentration gradient.
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• Consider Figure 28.13(a) in which two gases are
separated by a partition in a container that is thermally
isolated from the surroundings.
• When the partition is removed, there is a large

concentration gradient which in turn gives rise to a
temperature gradient.

• The temperature gradient disappears as the
concentration gradient disappears.

• Consider molecular transport of energy associated with a
temperature gradient.
• Energy is transferred by inelastic collisions.
• In an inelastic collision, energy moves among internal

degrees of freedom and the translational degree of
freedom.
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• Consider a set of quantum oscillators, which are all in
the same quantum state, which are introduced to a bath
of inert gas.

• The oscillators are uniformly distributed and no
concentration gradients exist.

• The oscillators collide with the molecules.
• The collisions may be elastic or inelastic.

• Inelastic collisions change the quantum states of the
oscillators.

• The populations of the quantum states changes with
time until a Boltzmann equilibrium distribution is
reached.
• The number of oscillators in state j is gje−εj/kBT ,

where εj is the energy of the jth level and gj is the
degeneracy of the jth level.
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• If the initial energy of the oscillators is larger than the
average energy of the equilibrium distribution, then
energy will be transferred to the bath gas.
• This process is irreversible and is referred to as

vibrational relaxation.
• Relaxation can also involve electronic or rotational

energy being transferred to translational energy.

• Chemical reactions may be considered as transport
processes.
• The atoms are transported from the conformation of

the reactants to that of the products.
• Equilibrium is attained when the free energy change

of the reaction becomes zero.
• A Gibbs free energy difference between reactants and

products gives rise to an irreversible process.
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• In a transport process, a flux occurs as the result of the
existence of a gradient.

• If the gradient is not too large, then the flux is
proportional to the gradient.

• The proportionality coefficients are:
• D, the coefficient of diffusion
• η, the coefficient of viscosity
• λ, the coefficient of thermal conductivity.

• These are summarized in Table 28.1 on page 837.

• These coefficients have been found experimentally to
depend on temperature.

• They are also independent of density for dilute gas.

• For higher densities, there is a strong dependence on
density.

. – p.148/194



. – p.149/194



• Consider a transport process in a gas (see Figure 28.14)
such as diffusion.

• Initially there are equal volumes of neon and argon at
the same p and T in separate containers.

• At t = 0, the partition separating the two is removed and
diffusion begins.
• Figure 28.14 (a) shows the mole fraction of argon as

a function of position at t=0.

• As diffusion occurs, a concentration gradient forms.
• Figure 28.14 (b) shows this for argon.
• A similar profile exists for neon in the opposite

direction.

• The velocity distribution during diffusion is not the
Maxwell-Boltzmann distribution, but rather a
perturbation of it. . – p.150/194



. – p.151/194



• Consider the nature of the perturbation of the
Maxwell-Boltzmann distribution.

• Only the perturbation contributes to the transport
process.

• It cannot be a large perturbation because it has been
previously shown that the velocity relaxation time is
short (10−8 to 10−9 seconds).

• The hydrodynamic relaxation time, the time required for
macroscopic equilibrium (i.e. spatial homogeneity) to be
attained, is much longer and can be of the order of
seconds or minutes.

• It is the slow process of hydrodynamic relaxation that
maintains the perturbation of the Maxwell-Boltzmann
distribution.
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• Consider a small volume element within the gradient.

• The velocity distribution within this element is nearly an
equilibrium distribution and may be considered a local
equilibrium distribution.
• In a local distribution, variables within the velocity

distribution may vary with position in accordance
with the gradient of interest.

• The gradients are small enough that variation over
distances comparable with the mean free path are
negligible.
• Thus for a volume element that is a few mean paths

wide is sufficiently small for the assumption of local
equilibrium to hold.

• Thus information on the perturbation of the velocity
distribution is needed.
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• Because the perturbation is small, some approximations
may be made.
• Detailed solutions are beyond the scope of this

course and may be found in the field of
hydrodynamics.

• Consider the expression for flux density across a plane:

Γψ =
∫

v
v cos θψf(r,v, t)dv

where ψ represents 1, mv, or 1
2mv

2 depending on
whether it is the flux density of particles, momentum or
energy that is under consideration.

• Consider now a one-dimensional transport process in the
z direction as shown in Figure 28.15 and the net flux of
density across the plane at z = 0.

. – p.154/194



. – p.155/194



• The net flux across the plane z = 0 is the difference
between the values of Γψ on either side of this plane:

Γψ = Γ+z
ψ − Γ−zψ

• Γ+z
ψ may be written as:

Γ+z
ψ =

∫

v

∫

θ,φ
(nψ cos θ)

v

n
f(r,v, t)dv

• Recall that θ is the angle between the velocity vector
v and the positive z axis.

• The range of integration is 0 ≤ θ ≤ π/2 for Γ+z
ψ and

π/2 ≤ θ ≤ π for Γ−zψ .

• The next step is to make some approximations.
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• The first approximation is that the term nψ cos θ is
constant at an average value.
• This allows the term to be taken outside the integral.

• The second assumption is that the actual velocity
distribution deviates so little from the
Maxwell-Boltzmann distribution adequately represents
the local equilibrium.
• Thus:

1

n
f(r,v, t)→ f̃(v)

.

• The flux in the +z direction may now be written as:

Γ+z
ψ = 〈ψn cos θ〉

∫

v
vf̃(v)dv
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• This can be recognized as:

Γ+z
ψ = 〈ψn cos θ〉〈v〉

• 〈ψn cos θ〉 must be evaluated.
• Consider the molecules as moving only along the

axis.
• Therefore 1/6 will move in the +z direction and 1/6

will move in the −z direction.
• For the +z direction cos θ = 1 and for the −z

direction cos θ = -1.
• Consider the molecules to be hard spheres.
• A molecule that collides near z = 0 and contribute

to the flux in the +z direction will have last collided
near z = −l which is about one free path length
away.
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• Thus 〈ψn cos θ〉 for Γ+z
ψ should be evaluated at z = −l.

• Similarly, 〈ψn cos θ〉 for Γ−zψ should be evaluated at

z = +l.

• Therefore:
Γψ = Γ+z

ψ − Γ−zψ

becomes

Γψ =
〈v〉
6

(〈ψn〉−l − 〈ψn〉+l)

where the subscripts indicate the positions where 〈ψn〉 is
evaluated.

• 〈ψn〉 can be evaluated using a Taylor series:

〈ψn〉−l = 〈ψn〉0 − l
(
d〈ψn〉
dz

)

z=0 . – p.159/194



• Similarly:

〈ψn〉+l = 〈ψn〉0 + l

(
d〈ψn〉
dz

)

z=0

• Truncation at first order is justified because the gradient
over the mean free path is small.

• This gives as the flux density, Γψ:

Γψ = −〈v〉
3
l

(
d〈ψn〉
dz

)

z=0

• Recall the ψ is defined by the flux under consideration.
• For diffusion ψ = 1.
• For viscosity ψ = mv

• For thermal conductivity ψ = 1
2mv

2.
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• For diffusion, the flux density is:

Γn = −〈v〉
3
l
dn

dz

and the diffusion coefficient is:

D =
1

3
〈v〉l

• For viscous flow, the flux density in the z direction of the
y component of momentum is:

(Γmv)yz = −1

3
nm〈v〉l dvy

dz

and the viscosity coefficient is:
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η =
1

3
nm〈v〉l

• For thermal conduction, 〈ψn〉 = nCV T since

〈12mv2〉 = 3
2kBT = CV T .

• The energy flux density is:

ΓE = −1

3
〈v〉lnCV

dT

dz

and the coefficient of thermal conductivity is:

λ =
1

3
nCV 〈v〉l

• Note that all these derivations assumed a spatial
gradient small enough that the Taylor expansion can be
truncated at first order. . – p.162/194



• Thus the flux is proportional to the gradient.

• It was also assumed that there was local thermal
equilibrium.

• The molecules were assumed to be hard spheres which
gave rise to a mean free path.

• The molecules constitute a perfect gas with now forces
of attraction between them.

• The effects of collisions were ignored.

• In Table 28.2, the results of these assumptions are
compared with numerical solutions of the Boltzmann
equation for hard spheres.
• The differences are only in the numerical factors.
• Temperature and density dependence are the same.
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• How do these transport coefficients compare to
experiments?

• The derivation predicts T 1/2 for all three.
• The coefficients for viscosity and thermal

conductivity are predicted to be independent of
density while the diffusion coefficient is inversely
proportional to the density.

• In experimental regimes consistent with the
assumptions of the derivations, these dependencies
are confirmed.

• To advance on Maxwell’s treatment requires the removal
of one or more assumptions.
• This took another 50 years.

• Theory and experiment are compared in Figure 28.16.
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• Note that the vertical axis is η/T 1/2.
• Thus this quantity is constant for a hard sphere gas.
• On the assumption of a hard sphere gas, molecular

diameters may be estimated from experimental
measurements.

• The experimental values of η/T 1/2 are not constant with
temperature.

• Results of a model based on the Lennard-Jones potential
give a reasonably good fit.
• The Lennard-Jones potential includes short range

repulsion and long range attraction.
• At lower temperature attractions are important.
• At higher temperature repulsions are important.
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Energy Exchange Processes
• The previous discussion has be limited to structureless

particles which can only undergo elastic collisions.

• Real molecules have internal degrees of freedom and can
undergo inelastic collisions.

• Such molecules have internal energy and kinetic energy.

• The internal energy may be partitioned among
vibration,rotation, and electronic energy.
• The degrees of freedom are not rigorously separable.
• Vibration and rotation are coupled and are

sometimes referred to as rovibrational energy.
• When electronic and vibrational states are coupled,

they are referred to as vibronic and the
Born-Oppenheimer approximation breaks down.
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• Whether degrees of freedom may be treated separately is
considered on a case by case basis.

• An increase in internal energy is referred to as excitation
and occurs as the result of collisions or by absorption of
a photon.

• In the gas phase, collisions are often binary.

• In the liquid phase, collisions may be multibody.

• Collisions may also occur with surfaces or within solids.

• Deexcitaion occurs as the result of collisions or by
emission of a photon.
• Which is most likely depends on the radiative

lifetime relative to the time between collisions.
• At standard temperature and pressure, the time

between collisions is about 10−9 to 10−8 seconds.
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• Radiative lifetimes depend upon the degree of freedom
involved.
• 10−8 to 10−6 seconds for allowed electronic

transitions.
• Up to 1 second for forbidden electronic transitions.
• 10−3 to 10−1 seconds for vibrational states.
• 10−1 seconds for rotational states.

• Rotational and vibrational deexcitation by radiation
occurs only when the density of the gas is very low.

• The probability of energy transfer due to collisions is
usually represented by energy transfer cross sections.

• Velocity relaxation occurs as the result of the transfer of
translational energy from one molecule to another.

• There are also cross sections for the transfer of
translational energy to internal energy. . – p.170/194



• In order for internal energy changes to occur, the value
of ∆E for the transition is usually small relative to kBT ,
the thermal energy.
• Energy spacings usually follows the order:

translation < rotation < vibration < electronic

• Thus the efficiency of energy transfer generally
follows the order:

translation > rotation > vibration > electronic

• There are exceptions to this.

• Transfer of internal energy from one molecule to internal
energy of another is also possible.

• Of particular interest is resonant or near-resonant energy
transfer. . – p.171/194



• Resonant energy transfer involves the conversion of
internal energy from one form to another or from one
molecule to another with little, if any, transfer to or from
translation.

• Consider a N2 molecule in the v = 1 state colliding with
another N2 molecule in the v = 0 state.
• If the quantum of vibrational energy is transferred

from one molecule to the other, resonant energy
transfer has occurred.

• The possibility of resonant energy transfer is high (in
systems where the barrier to reaction is high).

• In other cases resonance is not likely to be exact.

• Consider:
N2(v = 2) + N2(v = 0) → N2(v = 1) + N2(v = 1)

which is nearly resonant.
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• Because N2 is anharmonic, it is not exactly resonant and
a small amount of energy needs to be transferred from
translation.

• Consider the case of the polyatomic molecule, SF6,
which is excited by light under conditions where there is
a low likelihood of collisions.
• The density of states is shown in Figure 28.17.
• At low energy, the density of states is sufficiently

low, that the molecule may be regarded as having
independent normal modes of vibration.

• One mode can be excited by at photon and since
there are no other states of the same energy, energy
transfer within the molecule cannot occur and the
energy stays in that mode until lost by radiation of a
photon.
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• At higher energy, the density of states is higher, and if
one mode is excited, that energy can be redistributed to
many other modes.

• If such an excited SF6 molecule were to collide with
another SF6 molecule in the ground state, near resonant
energy transfer will occur.

• Consider now the relaxation of excited molecules.
• If the excitation is the result of collisions or the

absorption of blackbody radiation, the excitation in
incoherent in that the vibrational phases are not
related to each other.

• If it is assumed that the temperature of the gas is
low enough that collisions usually result in the
transfer of energy from vibration to translation, the
the population of the vibrational levels will relax to
the final equilibrium distribution. . – p.175/194



• Mathematically, this can be described by the relaxation
equation:

d [cn(t)− cn(∞)]

dt
=
cn(t)− cn(∞)

τ

• This can be recognized as a first order equation and has
an exact solution:

cn(t)− cn(∞) = [cn(0)− cn(∞)] e−t/τ

• τ is the relaxation time for vibration and is related to the
cross sections for the collisional processes leading to
vibrational energy transfer.

• Consider now coherent excitation where the vibrational
phase of all molecules is the same.
• Elastic or inelastic collisions destroy coherence.
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• Since elastic collisions are more common than inelastic
collisions, dephasing of the coherence occurs more
rapidly than vibrational relaxation.

• Energy transfer may be explored experimentally by a
variety of techniques.

• With difficulty, energy transfer cross sections may be
determined by molecular beam apparatus.
• Consider a beam of O+

2 ions prepared by velocity
selection to have nearly the same translational
energy somewhere in the range 10 - 20 eV.

• The second beam of Ar atoms is prepared at a lower
translational energy.

• The two beams collide and the scattering of O+
2 ions

in measured as a function of angle and translational
energy.
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• If energy has been transferred from translation to
internal energy, then the O+

2 ions will be moving more
slowly.

• Thus by measuring the translational energy, an “energy
loss” spectrum may be determined (Figure 28.18)
indicating which vibrational excitations have occurred.

• The cross section for a transition may be determined by
summing scattering intensity over all angles.

• Kinetic spectroscopy is another technique.
• I2 vapour can be irradiated with an Ar+ ion laser to

produce a fluorescence spectrum.
• The 514.5 nm line of the laser provides photons that

can excite the I2 molecule from v = 0 in the ground
state to v = 43 in the first excited electronic state.

. – p.178/194



. – p.179/194



• The fluorescence spectrum is measured (Figure 28.19).

• Because a photon from the laser can be scattered
elastically from the excited molecule, there is a large
peak at 514.5 nm corresponding to the energy difference
between v = 0 in the ground state and v = 43 in the
first excited electronic state.
• The rest of this peak is due to fluorescent emission

from v = 43 in the first excited electronic state to
v = 0 in the ground state.

• Peaks at other positions are due to energy transfer
upon collision with the excited molecule followed by
fluorescent emission.

• The spectrum is taken after a steady state has been
reached.
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• This steady state is NOT an equilibrium state because
energy is being transferred into the system by the laser.

• The populations of the vibrational and rotational states
are steady since the pumping of energy into the system is
offset by collisional relaxation and fluorescent emission.

• Information about energy transfer cross sections may be
obtained by such experiments.

• This type of experiment has been refined to use pulsed
lasers which allows more direct determination of the
cross sections.
• Fluorescence is used to monitor the populations of

excited states as a function of time.

• If a pulse of laser light is sufficiently intense, multiple
absorptions may occur.
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• In CH3F, there are a number of vibrational modes
(Figure 28.20)
• ν3 is the C-F stretch.
• ν6 is the H-C-F bend.
• ν2,5 is the H-C-H bend
• ν1,4 is the C-H stretch.

• The energy levels for ν3 are nearly evenly spaced.
• Thus a CO2 laser which emits photons at 9.6 µm

can excite from v = 0 to v = 1 then from v = 1 to
v = 2 then from v = 2 to v = 3 and so on.

• Within nanoseconds, collisions can cause
vibration-vibration energy transfer and a steady state can
be attained within microseconds.

• It takes milliseconds for vibrational-translational energy
transfer to occur. . – p.184/194



• Studies of phase relaxation require that coherent
vibrations be prepared.

• This is done with lasers.
• Radiation from a red laser at 9455 cm−1 is doubled

by a frequency doubling device to produce green
laser light at 18910 cm−1 which hits liquid nitrogen
causing some of the N2 molecules to undergo Raman
scattering and be excited to v = 1.

• The green laser at 18910 cm−1 is sufficiently intense
to cause stimulated emission of a photon which is in
phase with the original photon from the laser and
leaves the N2 molecules oscillating in phase.

• The red laser can be used to probe the coherent
vibrations after a few picoseconds.

• The red laser produces CARS (coherent anti-Stokes
Raman scattering) as shown in Figure 28.21. . – p.185/194
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• Collisions destroy the coherence of the vibrations.

• The decay of coherence is measures by changing the
time between the pump (green) laser pulse and the
probe (red) laser pulse.

• The phase relaxation time is found to be about 75 ps,
must shorter than the 1.5 s required for vibrational to
translational energy relaxation for liquid nitrogen.

• Relaxation times may be considered in terms of the
number of collisions that it takes for them to occur.
• The number of collisions required depends on the

temperature and the nature of the interaction
potential.

• Translational relaxation takes a few collisions.
• Rotational relaxation typically takes 5 to 10

collisions.
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• Vibrational relaxation can take a few thousand collisions.

• Vibrational-vibrational energy transfer, especially
near-resonant energy transfer is more rapid than
vibrational relaxation.

• Because relaxation times vary by several orders of
magnitude, “temperatures” can be associated with
various degrees of freedom for a system not at
equilibrium by assuming an internal equilibrium for those
degrees of freedom.
• A vibrational temperature, Tvib may be defined by a

parameter characterizing a Boltzmann distribution

function as e−Evib/kTvib.
• Similarly, rotational and electronic temperatures may

be defined.
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Sound Propagation and Absorption
• The speed of sound in a fluid depends on the ratio of

heat capacity at constant pressure to the heat capacity
at constant volume.

• The propagation and absorption of sound in a fluid can
be used to study inelastic and reactive processes.

• Sound is a pressure or compression wave.

• Audible sound are those in the range of frequencies from
20 to 20,000 Hz (or s−1).

• Consider sound with ν = 500 Hz.
• The speed of sound in air at 273 K is 300 m/s.
• The wavelength is:

λ =
c

ν
=

300 m s−1

500s−1
= 0.66 m
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• At 500 Hz, the time between a crest and a trough (half
a period) is about 1 µs.

• This pressure variation occurs more quickly than heat
may be transferred.
• Therefore the compression and expansion of the fluid

may be assumed to be near adiabatic.

• A sound wave is longitudinal.
• This means that particles move back and forth in the

propagating medium.

• Consider plane waves (Figure 28.23) in which the
pressure varies only in the direction of propagation.
• The pressure and its associated density perturbation

is propagated by collisions between molecules.
• Thus the speed of sound is proportional to the

average molecular speed. . – p.191/194
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• Consider a periodic wave, such as can be generated by a
tuning fork, transmitted through a gas initially at rest.

• In the absence of a wave, the average molecular velocity
is everywhere zero.

• As the wave propagates, the gas molecules oscillate
about their equilibrium positions in the direction of
propagation.
• The local average velocity is u(x; t), which is not the

same as the speed of propagation c.

• The gas moves forward and backward in alternating
regions of compression and rarefaction where the
pressure is above or below the equilibrium pressure.

• The adiabatic compression is accompanied by a
temperature increase.
• Therefore temperature varies periodically.
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• Setting up the oscillation associated with sound requires
energy.

• the kinetic energy per unit volume is 1
2ρu

2 where ρ is the
local density and u is the local average velocity.

• The potential energy is equivalent to the work of the pV
compression which is nearly adiabatic.

• If the medium of propagation is perfectly elastic, the
energy propagates with the wave and it never decreases
with energy.

• In reality the medium is not elastic, the propagation is
not perfectly adiabatic, and energy will dissipate as the
wave is propagated.

• The main dissipative processes are thermal conduction
and viscosity.
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