
BEYOND THIS POINT BE DRAGONS
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BEYOND THIS POINT BE EQUATIONS!
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Some things to know from the prerequisites:

• First Year Chemistry
• Significant figures
• Manipulation of units
• Fundamental units and derived units
• The Ideal Gas Law
• Van der Waals Gas Law
• Enthalpy
• Entropy
• Free Energy
• Hess’s Law
• Equilibrium Coefficients
• Activity
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Some things to know from the prerequisites
(continued):

• First Year Calculus (and High School Math)
• How to manipulate an equation algebraically
• Derivatives of one variable
• Integrals of one variable
• Power series
• Properties of logarithms and exponentials
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What is Physical Chemistry?

• Physics of Chemistry

What is Thermodynamics?

• THERMO - heat, energy

• DYNAMICS - changes

• Consider
pV = nRT

• Rewrite as:

p =
nRT

V
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• What can cause p to change?
• V - volume (

∂p

∂V

)

n,T

= −nRT
V 2

• n - number of moles of gas

(
∂p

∂n

)

V,T

=
RT

V

• T - temperature

(
∂p

∂T

)

n,V

=
nR

V
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How do we describe the change if all three are
changing at once?

dp =

(
∂p

∂V

)

n,T

dV +

(
∂p

∂n

)

V,T

dn+

(
∂p

∂T

)

n,V

dT

• Note carefully the difference between ∂ and d:
• ∂ describes the partial change due to the change in a

particular variable.
• d describes the total change.

• Some other ways of describing changes (useful for
numerical applications):
• ∆ - a finite change.
• δ - an infinitesimal change.

. – p.7/282



UNITS

• Even when represented by a symbol, physical quantities
have units.
• Verification of units can help detect mistakes in a

derivation.

• p - force per unit area. The SI unit is the Pascal (Pa).

• 1 Pa = 1 N m−2 = 1 kg m s−2 m−2

• 1 Pa = 1 kg m−1 s−2 (fundamental units)

• V - volume
• m3 (fundamental units)

• n -number of moles
• mol (fundamental units)
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• R - Gas Constant
• 8.314 J K−1 mol−1 = 8.314 kg m2 s−2 K−1 mol−1

• (1 J = 1 kg m2 s−2 (fundamental units))

• (1 J = 1 Pa m3 or 1 Pa = 1 J m−3)

• T K (fundamental units)
• temperature is on absolute Kelvin scale.

UNITS ARE YOUR FRIENDS!!
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EQUATIONS OF STATE

• “An equation of state is the mathematical relationship
among the relevant thermodynamic variables of an
equilibrium system.”

• Examples (from gas behaviour):
• Ideal Gas Equation of State

pV = nRT

• van der Waals Equation of State

p =
RT

V − b −
a

V
2
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• Berthelot Equation of State

p =
RT

V − b −
a

TV
2

• Virial Equation of State

pV

RT
= 1 +

B(T )

V
+
C(T )

V
2 + . . .

THERMODYNAMIC VARIABLES

• Intensive

• Extensive

• Relation to Equation of State

• Description of Equilibrium
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COMPRESSIBILITY

• Recommended Reading: Chapter 21 of Berry et al.

• The compressibility factor, Z, may be defined:

Z ≡ V (real)

V (ideal)
=
pV

RT

• Ideal gas

Z ≡ pV

RT
= 1

• van der Waals

Z ≡ pV

RT
=

V

V − b −
a

RTV
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• Virial equation

Z ≡ pV

RT
= 1 +

B(T )

V
+
C(T )

V
2 + . . .

• For more equations of state, see Table 21.2 on page 553
of Berry et al.

• Deviation from 1 of the value of Z, the compressibility
factor, is a measure of the nonideal behaviour of a gas.

• B(T ), the second virial coefficient, has units of molar
volume (m3 mol−1) and is the first term in the
description of deviation from ideal behaviour.

• C(T ), the third virial coefficient, has units of the square
of molar volume (m6 mol−2) and is the second term in
the description of deviation from ideal behaviour.
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Significance of the second virial coefficient, B(T )

• B(T ) is temperature dependent
• At high T repulsions are expected to be important.
• At low T attractions are expected to be important.

• Consider the van der Waals equation of state written in
virial form:

Z = 1 +
(
b − a

RT

)
1

V
+

b2

V 2
+ . . .

or:

Z ≡ pV

RT
= 1 +

B(T )

V
+
C(T )

V 2
+ . . .

where:

B(T ) = b− a

RT
; C(T ) = b2
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• If T is large, B(T )→ b, which is positive.
• Repulsion accounts for most of the deviation from

ideal behaviour.

• If T is small, B(T ) becomes negative.

B(T )→ − a

RT

• Attraction accounts for most of the deviation from
ideal behaviour.

• When B(T ) = 0, the corresponding temperature is the
Boyle temperature, TB.

B(T ) = 0 = b− a

RTB
;TB =

a

Rb
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• A physical interpretation of the Boyle temperature, TB,
is that temperature at which the average attractive and
repulsive forces are balanced.

• The second virial coefficient depends on the interaction
potential between molecules of the gas of interest.
• See section 21.7 of Berry et al.

• For a van der Waals gas, the Boyle temperature, TB,
allows us to define a dimensionless temperature scale in
terms of multiples of the Boyle temperature.

B(T ) = 0 = b− a

RTB

• Dividing both sides of the equation by b gives:

B(T )

b
= 1 − a

RbT
= 1 − TB
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• This means:
• that any temperature can be expressed as a multiple

of of the Boyle temperature, TB;
• and that the second virial coefficient, B(T ), can be

expressed as a multiple of the second van der Waals
parameter b.

• Dimensionless scales allow the convenient comparison of
a number of different gases described by the van der
Waals equation.

• To set up scales of V and P , combinations of
parameters that have the “right” dimensions are need.
• The van der Waals parameter b has units of molar

volume, which are the same units as V .

• The term a/V
2

has the same units as pressure.
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• Thus, one system of scaled variables is:

• T = T
TB

= RbT
a

• V = V
b

• P = pb2

a

• The van der Waals equation may be rewritten as:

P =
T
V − 1

− 1

V2

• This contains the same information as the original form
of the van der Waals equation:

p =
RT

V − b −
a

V
2
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• Consider pV isotherms of the van der Waals equation.
• At high temperature, the curve has neither a

maximum nor a minimum.
• At lower temperature, the curve has both a

maximum and a minimum.
• As temperature is increased from this lower

temperature, the maximum and minimum move
closer together.

• There exists a temperature such that the minimum
and maximum meet in an inflection point.
• This temperature is the critical temperature.

• An inflection point has the properties that the first
and second derivatives of the curve are 0.
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• Thus there are three simultaneous equations that can be
solved for pc, Tc, and V c.

p =
RT

V − b −
a

V
2

(
∂p

∂V

)

T=Tc

= 0 =
−RT

(V − b)2
+

2a

V
3

(
∂2p

∂V
2

)

T=Tc

= 0 =
2RT

(V − b)3
− 6a

V
4

• To solve for (pc, V c, Tc):
• Isolate Tc in the first and second derivatives.
• Combine the resulting two equations and isolate V c
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• Continued:
• Substitute V c into one of the equations and evaluate
Tc.

• Substitute V c and Tc in the van der Waals equation
to get pc.

• This gives:

V c = 3b; TC =
8a

27Rb
; pC =

a

27b2

• The critical variables provide another way to scale
(p, V , T ). (See section 21.1 of Berry et al.)

• The resulting set of scaled variables are known as the

reduced variables, (p̃, Ṽ , T̃ ).

• Different gases described by the same set of reduced
variables are in corresponding states. . – p.27/282



• Something to try on your own (between now and the
first term test):
• Write the van der Waals equation in terms of

reduced variables.

Some useful properties of partial derivatives

• Consider some function z(x, y).

(
∂x

∂z

)

y

=

(
∂z

∂x

)−1

y

if z is a continuous function of x.
• Most thermodynamic functions are continuous

functions.

• An application of this would be for a van der Waals gas

of the evaluation
(
∂V /∂p

)
T

.
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The Cyclic Rule

• Another useful property of partial derivatives.

• Again consider the function z(x, y). The cyclic rule is:

(
∂x

∂y

)

z

(
∂y

∂z

)

x

(
∂z

∂x

)

y

= −1

• This in combination with the previous property allows us
to find one of the derivatives given the other two.

• An application of this would be the evaluation for a van
der Waals gas of (

∂V

∂T

)

p

• The cyclic rule is a consequence of the chain rule.
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The Chain Rule

• Consider function f(x1, x2) such that
• x1 = x1(y1, y2)
• x2 = x2(y1, y2)

• Then the chain rule is:
(
∂f

∂x1

)

x2

=

(
∂f

∂y1

)

y2

(
∂y1

∂x1

)

x2

+

(
∂f

∂y2

)

y1

(
∂y2

∂x1

)

x2

• Consider the case where

x1 = T, x2 = p, y1 = T, y2 = V
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• Then the chain rule becomes:
(
∂f

∂T

)

p

=

(
∂f

∂T

)

V

(
∂T

∂T

)

p

+

(
∂f

∂V

)

T

(
∂V

∂T

)

p

• If f = p then this becomes:

0 =

(
∂p

∂T

)

V

(
∂T

∂T

)

p

+

(
∂p

∂V

)

T

(
∂V

∂T

)

p

• From this the cyclic rule may be derived:

−
(
∂p

∂T

)

V

=

(
∂p

∂V

)

T

(
∂V

∂T

)

p
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• which can be rearranged as:

−1 =

(
∂p

∂V

)

T

(
∂V

∂T

)

p

(
∂T

∂p

)

V

State Functions and Path Functions (see Chapter
13 of Berry)

• Consider a system initially at equilibrium in state 1.

• The system undergoes a change and comes to a new
equilibrium at state 2.

• The value of a state function at state 2 is
independent of the path taken from state 1 to state
2.

• The value of a path function at state 2 is dependent
on the path taken from state 1 to state 2.
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Exact and Inexact Differentials

• An infinitesimal change on a path for a state function
between state 1 and state 2 is described by an exact
differential.

• An infinitesimal change on a path for a path function
between state 1 and state 2 is described by an inexact
differential.

• Consider some function z such that:

dz = fx(x, y)dx+ fy(x, y)dy

where functional forms are chosen arbitrarily for fx and
fy. For example:

fx(x, y) = xy and fy(x, y) = x2y2

. – p.35/282



• Does there exist some function z(x, y) such that dz is
the total derivative?
• If there does, then z is a state function.
• If there does not, then z is a path function.

How to Test for State Functions

• If z is a state function, it must pass the cross derivative
equality test.

• If the state function z(x, y) exists then:

∂

∂x

(
∂z

∂y

)
=

(
∂2z

∂x∂y

)
=

∂

∂y

(
∂z

∂x

)
=

(
∂2z

∂y∂x

)

• Applied to dz = fx(x, y)dx+ fy(x, y)dy, the test
becomes whether:
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∂fy(x, y)

∂x
=
∂fx(x, y)

∂y

• Applied to dz = xydx+ x2y2dy, we see that the cross
derivative equality test is failed because:

∂xy

∂y
= x

and
∂(x2y2)

∂x
= 2xy2

Therefore in this case z is a path function.
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Energy, Work, and Heat

• Consider energy and molecules.
• Energy affects how molecules react. In particular the

distribution of energy within a molecule influences
how it behaves both
chemically and physically.

• How do molecules have energy?
• In chemical bonds. The more energy required to

break a bond, the stronger the bond is.
• In internal motions (such as vibration and rotation)

and electronic excitations.
• As kinetic energy of motion. Temperature is a way

of measuring the average kinetic energy of a system
of molecules at equilibrium.
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Energy (from a Thermodynamic Perspective)

• Consider the exothermicity of a chemical reaction.
• Food Calories
• Fuel Combustion
• Corrosion
• Decomposition

• Energy is considered on a scale related to changes, not
an absolute scale.

• In thermodynamics, two particular forms of energy
transfer are considered:
• q heat
• w work
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What is energy?

• What are the properties of energy?
• Cannot be created or destroyed
• Can only change form such as be converted to heat,

work, or internal energy.

• This will be examined initially from the perspective of
the perfect gas.

The Perfect Gas (See Chapter 12 of Barry)

• A dilute gas is the simplest type of matter.
• Molecules are far apart.
• Molecules do not interact with one another.
• Properties observed are related to the properties of

the individual gas molecules.
• An ideal gas is a perfect gas.
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• In the limit of low pressure, real gases behave as perfect
gases.

• The behaviour of a substance is described the equation
of state.
• The equation of state relates p, V , and T .
• Empirically determined for real substances.

The Kinetic Hypothesis

• The kinetic hypothesis assumes:
• Individual molecules are continually in motion, even

if the system as a whole is not in motion.
• Individual motions are in all directions.
• Individual motions are at a variety of speeds.

• The net effect is that the contributions of the individual
molecules tend to cancel.
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• Two consequences of molecular motion:
• Kinetic energy of individual molecules contributes to

the internal energy of the system.
• The impact of the moving molecules on the wall of

the container contributes to the pressure exerted by
the system on the surroundings.

• In a dilute gas only the internal energy and pressure need
to be considered at present.

• Consider the case of a monatomic gas such as He, Ne,
or Ar.
• No motions of the atoms internal to the molecule

need to be considered.
• Motions of the molecules are independent
• Molecules exert no forces on each other, except at

impact.
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• Continued:
• Collisions are elastic with momentum and kinetic

energy being conserved.
• If the extremely remote possibility of electronic

excitation of the atom is ignored, then such a gas
may be referred to as perfect.

• Most real gases at moderate pressures (such as
atmospheric) are sufficiently dilute to behave as perfect
gases.

• A perfect gas is also assumed to be at equilibrium.
• Macroscopic properties of the system are not

observed to change with time.
• Even though macroscopic properties of the system

are stable, the microscopic positions and velocities of
the individual molecules are constantly changing.
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• Continued:
• Many different microscopic states (“microstates”)

can correspond to one particular macroscopic state
(“macrostate”).

• Macroscopic properties such as p and T are related
to averages of microscopic velocities.

• In a particular macrostate, the values of the
microscopic variables fluctuate negligibly about their
average values.

• Thus the equilibrium distribution of microscopic
velocities is invariant with time.

• At equilibrium, in the absence of an external field, a gas
is uniform throughout its container and the gas is at rest
in its container with no flows or currents.
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• Continued:
• Measurements of intensive variables such as pressure

and temperature are the same regardless of where in
the system they are made.

• Kinetic energy per unit volume is the same in every
volume element (that is sufficiently large to contain
very many molecules).
• Thus the distribution of velocities is the same

everywhere.

• If the gas as a whole is at rest then:

< v >=
1

N

N∑

i=1

vi = 0 and thus
N∑

i=1

vi = 0
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• The bold vi indicates velocity which is a vector.

• The average velocity of the system at rest is zero.

• Recall that speed is a scalar and has magnitude only.

• The average molecular speed is not zero.

• A density is any quantity per unit volume.
• Mass density, ρ, is mass per unit volume.
• Number density, n, is number per unit volume.
• Consider N molecules of mass m in volume V :

n =
N

V
and ρ = nm

• Energy density is energy per unit volume (and has
units of pressure).

• What is the relationship between kinetic energy of
molecules and the pressure of a gas? . – p.46/282



• Consider a perfect gas contained in a cubical box of
length l.

• Define a cartesian coordinate system with axes normal to
the walls (and parallel to the sides) of the cube.

• The walls of the cube reflect molecules elastically.
• If a molecule with velocity v and components
vx, vy, vz strikes a wall of the box, then the sign of
the appropriate velocity component is reversed.

• Therefore the velocity at some later time is described
by ±vx,±vy,±vz.

• Consider motion in the z direction.
• S is the face of the box perpendicular to z and has

the area l2.

• In the time between two collisions with S, the molecule
must move 2l (to the other end of the box and back).. – p.47/282
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• The velocity component perpendicular to S is vz
• Therefore the time between collisions with S is 2l/vz
• The frequency of collisions is vz/2l

• When the molecule collides with S, its momentum
changes from +mvz to −mvz.
• An equal and opposite momentum is transferred to

the wall of the container.

• The total change in the z component of the momentum
of a single molecule per unit time is:

[
d(mvz)

dt

]
= 2mvz ·

vz
2l

=
mv2

z

l

• Assume the simplest possible velocity distribution with
all molecules having the same velocity components,
±vx,±vy,±vz. . – p.49/282



• There are N molecules in the volume V = l3

• Therefore the total change in momentum per unit
time arising from all collisions with S is:



N∑

i=1

d(mvz)

dt


 =

Nmv2
z

l
=
nV mv2

z

l
= nml2v2

z

(Recall that n is number density.)

• Pressure is defined as force per unit area.

• Force is defined as the change in momentum per unit
time.

• p is the pressure of the gas
• pl2 is the total force on S and

pl2 = nml2v2
zor p = nmv2
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• The pressure of a gas is the same in all directions. Thus:

v2
x = v2

y = v2
z =

1

3
(v2
x + v2

y + v2
z) =

1

3
v2

where v is the common speed of the molecules.

• This gives:

p =
1

3
nmv2

• Since the kinetic energy of a single molecule is mv2/2
and n is the number density of molecules, the pressure is
2/3 of the kinetic energy density.

The Perfect Gas

• What is the relationship between pressure and energy?

• The previous treatment is restrictive.
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• Not all collisions with the wall are elastic.

• Molecular speeds are not all the same.

• Directions of motion are random.

• The container is not a cube.

• It may be useful to have a more general derivation of the
relationship between the distribution of velocities and
the pressure and energy of a gas.
• In most cases the generalized distribution does not

need to be known, but only some of its properties.

• Consider a perfect gas in equilibrium with N molecules
in volume V .
• The molecules will move with different velocities.

• Let f(v)dv be the number of molecules per unit volume
with velocity between v and v + dv.
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• f(v) is the velocity distribution function.

• The total kinetic energy of all N molecules is finite.
Therefore f(v)→ 0 as v→∞

• If the sum of f(v)dv is taken over all possible velocities
then n, the total number of molecules per unit volume is
obtained.

• This may be written as:

∫

v
f(v)dv =

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
f(v)dvxdvydvz = n

• Molecular motion at equilibrium is isotropic.
• Equal numbers of molecules in any given speed

interval must travel in any direction.
• f(v) is independent of direction.
• f(v) is a function only of its magnitude, the speed v.. – p.53/282



• Therefore, a distribution function in terms of v would be
convenient.

• Consider f(v)dv as the number of molecules per unit
volume with speeds between v and v + dv.

• Consider the molecular velocity as a point in velocity
space defined velocity coordinates, vx, vy, vz
• The volume element is dv = dvxdvydvz

• But now the distribution is to be considered in terms of
speed, not velocity.
• What is the relationship between dv and dv?
• The molecules with the speed between v and v + dv

occupy a spherical shell of radius v and thickness dv.
• The volume of this spherical shell is 4πv2dv

• Therefore:
f(v) = 4πv2f(v) . – p.54/282
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• An important property of f(v):
• At equilibrium the gas is homogenous, therefore f(v)

is independent of the position within the gas.
• This is true for real molecules if the energy of

interaction is independent of velocity.

• What is the internal energy of a gas arising from
molecular motion?
• A molecule of mass m and speed v has kinetic

energy of mv2/2.
• The total number of molecules with speed between v

and v + dv is given by f(v)dv.
• Contributions from all values of v are summed.
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• The total internal energy U is:

U =
∫

V

∫ ∞

v=0

mv2

2
f(v) dv dV

• Since f(v) does not depend on the position, it is
independent of the volume, therefore the integral
over volume can be separated from the integral over
speed:

U =
∫

V
dV

∫ ∞

v=0

mv2

2
f(v) dv

U =
mV

2

∫ ∞

v=0
v2 f(v) dv

• Note that this expression may break down for real gases.
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• For polyatomic molecules, there are contributions to the
internal energy from the motions within the molecules.

• Real molecules can have interactions between them
which will also make a contribution to the internal
energy.

• What is the relationship between internal energy and
pressure?
• Pressure has been defined as force exerted by the gas

per unit area of the wall of the container, i.e. the
rate at which momentum is transferred to the wall.

• But the gas is homogeneous and isotropic.
• Therefore the pressure must be the same anywhere

in the gas.

• Consider a plane surface S anywhere within the gas.
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• Molecules hit this surface in the same way as they hit
the walls.

• When a molecule with mvz as the z component hits the
surface, momentum 2mvz is transferred to S.

• The pressure on S is total momentum transmitted per
unit time and per unit area of S.

• The pressure is the same on both sides of S when the
system is at equilibrium.

• Now replace S with an imaginary plane in the same
position.
• The molecules will cross this imaginary plane with

momentum mvz.
• By definition, pressure is same whether the wall is

there or not.
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• Thus the pressure normal to the imaginary plane S is
twice the momentum transported from one side across S
per unit time and per unit area.

• What is the rate of momentum transfer?
• Consider those molecules crossing S in the positive z

direction.
• θ is the angle between the molecule’s trajectory and
S.

• F (θ, v)dθdv is the number of molecules with speed
between v and v + dv that cross S per unit time and per
unit area at angles between θ and θ + dθ.

• Each molecule has momentum mv with z component
mv cos θ.
• Only the z component contributes to the pressure.
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• The contribution of the other components of the motion
cancel out due to the isotropy of the gas and make no
net contribution to the pressure.

• Therefore the contribution to the pressure from the
molecules in the range dvdθ is the number per unit time
per units area multiplied by twice the z component of
the momentum transported per molecule.

dp = 2mv cos θF (θ, v)dθdv

• This is integrated over all possible values of θ and v that
represent molecules crossing z in the positive direction
to give the total pressure:

p =
∫ ∞

v=0

∫ π/2

θ=0
2mv cos θF (θ, v)dθdv
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• What is F (θ, v)? It is the product of:
• the number of molecules per unit volume with speed

between v and v + dv moving with angles between θ
and θ + dθ, i.e. f(θ, v)dθdv.

• The volume occupied by all molecules capable of
crossing S per unit time, i.e. the volume of the
prism.

• The volume of the prism (Figure 12.4) is Avt cos θ
for a base of area A and time t, thus per unit area
and per unit time, this becomes v cos θ

F (θ, v)dθdv = v cos θ f(θ, v)dθdv

• Recall that f(v)dv is the total number of molecules
per unit volume with speeds between v and v + dv.
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• Thus: ∫

θ
f(θ, v)dθdv = f(v)dv

• Recall also that molecular motion is isotropic. Therefore
the integration is over the range of solid angles between
θ and θ + dθ.
• Note also that f(θ, v)dθdv and f(v)dv are in the

same relationship as are the solid angles between
θ + dθ and 4π.
• The solid angle between θ and θ + dθ is 2π sin θdθ
• Therefore:

f(θ, v)dθdv

f(v)dv
=

2π sin θdθ

4π
=

1

2
sinθdθ
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• Thus the pressure is:

p =
∫ ∞

v=0

∫ π/2

θ=0
(2mv cos θ)(v cos θ)

(
1

2
sin θdθ

)
f(v)dv

p = m
∫ ∞

v=0
v2f(v)dv

∫ π/2

θ=0
cos2 θ sin θdθ

• The angular integral is of the form:

∫
u2du =

u3

3
+ C

where u = cos θ and du = − sin θdθ

• Therefore

∫ π/2

θ=0
cos2 θ sin θdθ = −1

3

(
cos3(π/2)− cos3(0)

)
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= −1

3
(0− (1)3) =

1

3

• Therefore:

p =
m

3

∫ ∞

0
v2f(v)dv

• Recall that:

U =
∫

V

∫ ∞

v=0

mv2

2
f(v) dv dV

thus

p =
2

3

U

V

which is consistent with

p =
1

3
nmv2
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Some Comments about Thermodynamics

• Thermodynamics deals with relationships among the
macroscopic properties of matter.
• Equilibrium thermodynamics deals with relationships

among macroscopic properties of matters at
equilibrium.

• The laws of thermodynamics allow these relationships to
be derived.

• The laws of thermodynamics are postulates.
• These postulates conform with our observations of

the world.
• These postulates apply to systems containing a large

number of molecules, i.e. a macroscopic system.
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• Thermodynamics also permits us to interpret
spontaneous processes.
• Also aids in the understanding of “time’s arrow” and

irreversible processes.

• The laws of thermodynamics make no assumptions
about the microscopic structure of matter.

• The laws of thermodynamics allow the construction of a
logically complete and internally self consistent theory.
• The properties of real matter appear in the theory,

but thermodynamics is only concerned about the
relationships among these quantities.

• These properties of real matter have the values that
they do because of the microscopic interactions of
the molecules.
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