BEYOND THIS POINT BE DRAGONS
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BEYOND THIS POINT BE EQUATIONS!
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Some things to know from the prerequisites:

* First Year Chemistry
* Significant figures
* Manipulation of units
* Fundamental units and derived units
* The |Ideal Gas Law
* Van der Waals Gas Law
* Enthalpy
* Entropy
* Free Energy
* Hess's Law
* Equilibrium Coefficients
* Activity
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Some things to know from the prerequisites
(continued):

* First Year Calculus (and High School Math)
* How to manipulate an equation algebraically
* Derivatives of one variable
* |ntegrals of one variable
* Power series
* Properties of logarithms and exponentials

. — p.4/282



What is Physical Chemistry?
* Physics of Chemistry

What is Thermodynamics?
 THERMO - heat, energy
* DYNAMICS - changes

e Consider
pV =nRT

e Rewrite as:
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* What can cause p to change?

@ __nRT
ov) . V2

* n - number of moles of gas

o\ _RT
on VT_ V

e V- volume

* ' - temperature
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How do we describe the change if all three are
changing at once?

Op Op Op
dp = | =— dVv S d S dT
g <8v>nT " (an>VT " <8T>nv
* Note carefully the difference between 0 and d:

* 0 describes the partial change due to the change in a
particular variable.

* d describes the total change.
* Some other ways of describing changes (useful for
numerical applications):
* A - a finite change.
* ¢ - an infinitesimal change.
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UNITS

* Even when represented by a symbol, physical quantities
have units.

* Verification of units can help detect mistakes in a
derivation.

* p - force per unit area. The Sl unit is the Pascal (Pa).
*l1Pa=1Nm?=1kgms?m*
* 1 Pa=1kg m!s? (fundamental units)

* V - volume
* m° (fundamental units)

* n -number of moles
* mol (fundamental units)
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* R - Gas Constant
* 8314 J K ! mol™! = 8.314 kg m? s72 K= mol™!
* (1J=1kg m?s™? (fundamental units))
e (I1J=1Pam’orl1Pa=1Jm)

* T K (fundamental units)
* temperature is on absolute Kelvin scale.

UNITS ARE YOUR FRIENDS!!
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EQUATIONS OF STATE

* “An equation of state is the mathematical relationship
among the relevant thermodynamic variables of an
equilibrium system.”

* Examples (from gas behaviour):
* |deal Gas Equation of State

pV =nRT
e van der Waals Equation of State

RT a
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Figure 21.1 The pV product for three gases, showing the universal
approach to the ideal gas value as the pressure tends to zero. From

R. H. Cole and J, 8. Coles, Physical Principles of Chemistry (Free-
man, San Francisco, 1964).
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Figure 21,6 A representation of the intermolecular potential
between a pair of molecules as a function of the distance between
them.
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* Berthelot Equation of State

 RT a
TV
* Virial Equation of State
pV B(T)  C(T)
L Tt Sl
TR =

THERMODYNAMIC VARIABLES
* Intensive
* Extensive
* Relation to Equation of State

* Description of Equilibrium
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COMPRESSIBILITY
* Recommended Reading: Chapter 21 of Berry et al.
* The compressibility factor, Z, may be defined:

7 V(real) i
" V(ideal) RT
* |deal gas
pV
4 =—=1
RT
* van der Waals
wo_ Vv o a
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Figure 21.5 The compressibility factor
pVInRT for several gases plotted as a function
of the reduced pressure p/p. The curves are
for different values of TV7.. From G.J. Su,
Ind. Eng. Chem. 38, 803 (1946).

»* Methane
o Ethylene
& Ethane =
+ Propane

o Butane

¥ |sopentanse
@ n-Heptane
® Nitrogen -
@ Carbon dioxide
| | | ®Water |

- 4 (]
P = p/o
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Virial equation

izlJr@JrC_(? + ...

A
RT V V

For more equations of state, see Table 21.2 on page 553
of Berry et al.

Deviation from 1 of the value of Z, the compressibility
factor, is a measure of the nonideal behaviour of a gas.

B(T), the second virial coefficient, has units of molar

volume (m? mol™!) and is the first term in the
description of deviation from ideal behaviour.

C(T), the third virial coefficient, has units of the square

of molar volume (m® mol™2) and is the second term in
the description of deviation from ideal behaviour.
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Figure 21.7 The second and third virial coefficients of Ar.
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Significance of the second virial coefficient, B(T')

* B(T) is temperature dependent
* At high T repulsions are expected to be important.
* At low T attractions are expected to be important.

* Consider the van der Waals equation of state written in

virial form:
a 1 b2
23'3:: :1 5) — — —
T ( RT) V i V 2 T
or:
pV B(T) C(T)
2? = — = ]_ E—— — ..
RT + V * Vv 2 i
where:
a 2
B(T)=b——; C(T) = b
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* If T is large, B(T) — b, which is positive.
* Repulsion accounts for most of the deviation from
ideal behaviour.

* If T"is small, B(T) becomes negative.

a
B(T) —» ———
RT

e Attraction accounts for most of the deviation from

ideal behaviour.

* When B(T) = 0, the corresponding temperature is the
Boyle temperature, T'g.

a a
Tp = —

BGW:OZb_Rﬂ; Rb
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A physical interpretation of the Boyle temperature, 1z,
Is that temperature at which the average attractive and
repulsive forces are balanced.

The second virial coefficient depends on the interaction
potential between molecules of the gas of interest.

* See section 21.7 of Berry et al.
For a van der Waals gas, the Boyle temperature, 1z,

allows us to define a dimensionless temperature scale in
terms of multiples of the Boyle temperature.

a

" RTg

B(T)=0=b

Dividing both sides of the equation by b gives:

B(T):l_ a :1_@
b RbVT T .~ p.20/282




* This means:

* that any temperature can be expressed as a multiple
of of the Boyle temperature, 1'p;

* and that the second virial coefficient, B(T'), can be
expressed as a multiple of the second van der Waals
parameter b.

* Dimensionless scales allow the convenient comparison of
a number of different gases described by the van der
Waals equation.

e To set up scales of V and P, combinations of
parameters that have the “right” dimensions are need.

* The van der Waals parameter b has units of molar
volume, which are the same units as V.

* The term a/V" has the same units as pressure.
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* Thus, one system of scaled variables is:

* The van der Waals equation may be rewritten as:

T 1
P =t —

y—-1 V2

* This contains the same information as the original form
of the van der Waals equation:

RT a
p==———5

<

|
S
1
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e Consider pV isotherms of the van der Waals equation.

* At high temperature, the curve has neither a
maximum nor a minimum.

* At lower temperature, the curve has both a
maximum and a minimum.

* As temperature is increased from this lower
temperature, the maximum and minimum move
closer together.

* There exists a temperature such that the minimum
and maximum meet in an inflection point.
* This temperature is the critical temperature.

* An inflection point has the properties that the first
and second derivatives of the curve are O.
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Figure 21.3 Some isotherms of COs in the immediate ¥
of the critical temperature. From E, A. Moelwyn-Hughes,
fcal Chemistry (Cambridge University Press, Cambridge,
data from A. Michels, B. Blaisse, and C. Michels, P

Soc. A160, 367 (1937). One Amagat unit of volume for Cl
2.2398 x 10* em*/mol.
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* Thus there are three simultaneous equations that can be
solved for p., T., and V..

* To solve for (pc, Ve, T.):
* |solate 7. in the first and second derivatives.
e Combine the resulting two equations and isolate V.
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e Continued:
e Substitute V. into one of the equations and evaluate

T..
e Substitute V. and T, in the van der Waals equation
to get p..
* This gives:
_ a a
Ve=3bi To=ooppi PC= g

* The critical variables provide another way to scale
(p,V,T). (See section 21.1 of Berry et al.)

* The resulting set of scaled variables are known as the
reduced variables, (p,V,T).

* Different gases described by the same set of reduced
variables are in corresponding states.
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* Something to try on your own (between now and the
first term test):

* Write the van der Waals equation in terms of
reduced variables.

Some useful properties of partial derivatives

* Consider some function z(x,y).

~1
or\ [0z
0z)  \Ox
y y
if 2 I1s a continuous function of x.
* Most thermodynamic functions are continuous

functions.

* An application of this would be for a van der Waals gas
of the evaluation (87/5’]9)
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The Cyclic Rule
* Another useful property of partial derivatives.

* Again consider the function z(xz,y). The cyclic rule is:

(o). (22). (),

Oy ) \0z) \Ozx y

* This in combination with the previous property allows us
to find one of the derivatives given the other two.

* An application of this would be the evaluation for a van

der Waals gas of
(8_i>
oT )

* The cyclic rule is a consequence of the chain rule.
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The Chain Rule

* Consider function f(xz1,x2) such that
° x1 =21(y1,¥2)
* x9 = 22(y1,Y2)

* Then the chain rule is:

of B

5.
(), (32), (), (52)
8y1 Yo (9:131 Lo ayz " (91’1 Zo

* (Consider the case where

r1=1, 22=p, =1, y2=V
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e Then the chain rule becomes:

(or), = ), (@), (o), (),

* |f f =p then this becomes:

- (30), (G7) (), (7).

* From this the cyclic rule may be derived:
(or), = (v, (ar)
oT' J oV )\ OT )
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* which can be rearranged as:

- (@) (5‘_V> (5‘_T>
oV ) \OT ) dp |y
State Functions and Path Functions (see Chapter
13 of Berry)

* Consider a system initially at equilibrium in state 1.

* The system undergoes a change and comes to a new
equilibrium at state 2.

e The value of a state function at state 2 is

independent of the path taken from state 1 to state
2.

* The value of a path function at state 2 is dependent
on the path taken from state 1 to state 2.
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Figure 13.1 Part of a surface representing the equation of st
(p, v T) space. The particular surface shown is for the perfect
with the equation of state pv'= RT. The lines of constant ,.,L'

v on the surface are the loci of the intersections of the surface wi
typical (T, v), (p, v), and (7, p) planes, respectively. 95-::: "
plane is shown; the others are omitted for clarity.
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Figure 13.2 Intersections of the perfect gas surface of Fig. 13
with planes on which v, p, or T is constant. (a) (7, P) plane—each
line in this plane is the locus of the intersection of the p, v T sit
face and a plane on which vis constant. (b) (7, v) plane——emh
in this plane is the locus of the intersection of the p, 1 T "
and a plane on which p 1s constant. (¢) (p, v) plane—each curve
(hyperbola) in this plane is the locus of the intersection of the p, %
T surface and a plane on which T is constant. '
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Exact and Inexact Differentials

* An infinitesimal change on a path for a state function
between state 1 and state 2 is described by an exact
differential.

* An infinitesimal change on a path for a path function
between state 1 and state 2 is described by an inexact
differential.

e Consider some function z such that:

dz = fe(z,y)dx + fy(x,y)dy

where functional forms are chosen arbitrarily for f, and
Jy. For example:

fo(x,y) = zy and f,(z,y) = 2°y*
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* Does there exist some function z(x,y) such that dz is
the total derivative?

* |If there does, then z is a state function.
* |f there does not, then z is a path function.

How to Test for State Functions

* |f z is a state function, it must pass the cross derivative
equality test.

* |If the state function z(x,y) exists then:

d (0z) 0?2 0 [0z 0?2
or \oy) \oxoy)] oy\ox) \oyor

* Applied to dz = fi(z,y)dx + f,(z,y)dy, the test
becomes whether:
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Ox oy

e Applied to dz = zydx + z%y*dy, we see that the cross
derivative equality test is failed because:

oy _,
oy N
and
2.9
0(33 Y ) _ zxyz
ox

Therefore in this case z is a path function.
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Energy, Work, and Heat

e Consider energy and molecules.

* Energy affects how molecules react. In particular the
distribution of energy within a molecule influences
how it behaves both
chemically and physically.

* How do molecules have energy?

* In chemical bonds. The more energy required to
break a bond, the stronger the bond is.

* In internal motions (such as vibration and rotation)
and electronic excitations.

* As kinetic energy of motion. Temperature is a way
of measuring the average kinetic energy of a system
of molecules at equilibrium.
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Energy (from a Thermodynamic Perspective)

* Consider the exothermicity of a chemical reaction.
* Food Calories
* Fuel Combustion
* Corrosion
* Decomposition

* Energy is considered on a scale related to changes, not
an absolute scale.

* In thermodynamics, two particular forms of energy
transfer are considered:
* ¢ heat
* w work
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What is energy?

* What are the properties of energy?
* Cannot be created or destroyed
* Can only change form such as be converted to heat,
work, or internal energy.

* This will be examined initially from the perspective of
the perfect gas.

The Perfect Gas (See Chapter 12 of Barry)

* A dilute gas is the simplest type of matter.
* Molecules are far apart.
* Molecules do not interact with one another.

* Properties observed are related to the properties of
the individual gas molecules.

* An ideal gas is a perfect gas.

. — p.40/282



* In the limit of low pressure, real gases behave as perfect
gases.

* The behaviour of a substance is described the equation
of state.

* The equation of state relates p, V, and T.
* Empirically determined for real substances.

The Kinetic Hypothesis

* The kinetic hypothesis assumes:

* Individual molecules are continually in motion, even
If the system as a whole is not in motion.

* Individual motions are in all directions.
* Individual motions are at a variety of speeds.

e The net effect is that the contributions of the individual
molecules tend to cancel.
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* Two consequences of molecular motion:

* Kinetic energy of individual molecules contributes to
the internal energy of the system.

* The impact of the moving molecules on the wall of
the container contributes to the pressure exerted by
the system on the surroundings.

* In a dilute gas only the internal energy and pressure need
to be considered at present.

* Consider the case of a monatomic gas such as He, Ne,
or Ar.
* No motions of the atoms internal to the molecule
need to be considered.
* Motions of the molecules are independent

* Molecules exert no forces on each other, except at
Impact.
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e Continued:

* Collisions are elastic with momentum and kinetic
energy being conserved.

* |f the extremely remote possibility of electronic
excitation of the atom is ignored, then such a gas
may be referred to as perfect.

* Most real gases at moderate pressures (such as
atmospheric) are sufficiently dilute to behave as perfect
gases.

* A perfect gas is also assumed to be at equilibrium.

* Macroscopic properties of the system are not
observed to change with time.

* Even though macroscopic properties of the system
are stable, the microscopic positions and velocities of
the individual molecules are constantly changing.
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e Continued:

* Many different microscopic states (“microstates”)
can correspond to one particular macroscopic state
(“macrostate”).

* Macroscopic properties such as p and 1" are related
to averages of microscopic velocities.

* In a particular macrostate, the values of the
microscopic variables fluctuate negligibly about their
average values.

* Thus the equilibrium distribution of microscopic
velocities Is invariant with time.

* At equilibrium, in the absence of an external field, a gas
Is uniform throughout its container and the gas is at rest
In its container with no flows or currents.
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e Continued:

* Measurements of intensive variables such as pressure
and temperature are the same regardless of where in

the system they are made.

* Kinetic energy per unit volume is the same in every
volume element (that is sufficiently large to contain

very many molecules).
® Thus the distribution of velocities is the same

everywhere.

* |f the gas as a whole is at rest then:

1N N
<V>:N2Vi:()andthus Zvi:()
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The bold v; indicates velocity which is a vector.

The average velocity of the system at rest is zero.
Recall that speed is a scalar and has magnitude only.
The average molecular speed is not zero.

A density is any quantity per unit volume.
* Mass density, p, is mass per unit volume.
* Number density, n, is number per unit volume.

* Consider N molecules of mass m in volume V:

N
n=— and p=nm

7

* Energy density is energy per unit volume (and has

units of pressure).

What is the relationship between kinetic energy of
molecules and the pressure of a gas?
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Consider a perfect gas contained in a cubical box of
length [.

Define a cartesian coordinate system with axes normal to
the walls (and parallel to the sides) of the cube.
The walls of the cube reflect molecules elastically.

* |f a molecule with velocity v and components
Uz, Uy, U, Strikes a wall of the box, then the sign of
the appropriate velocity component is reversed.

* Therefore the velocity at some later time is described
by v, £vy, £v,.
Consider motion in the z direction.

* S is the face of the box perpendicular to z and has
the area [°.

In the time between two collisions with .S, the molecule
must move 2! (to the other end of the box and back). ;.7/2s



R

Figure 12.1 Elastic reflection of a particle from the wall of a box.
The initial velocity is v, with components b, perpendicular to the
wall and 1, paralle] to the wall. After reflection the velocity is ¥
with components v; = -1, and v, = B,
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The velocity component perpendicular to .S is v,

Therefore the time between collisions with S is 2[/v,
* The frequency of collisions is v, /21
When the molecule collides with .S, its momentum
changes from +mv, to —mu,.
* An equal and opposite momentum is transferred to
the wall of the container.

The total change in the z component of the momentum
of a single molecule per unit time is:

N DN

d(mu,) v,  mu
= 2Mmuv, - — =

[ dt ] © 2 [

Assume the simplest possible velocity distribution with

all molecules having the same velocity components,

:|:/Ua’;7 :|:/UU7 :l:UZ . — p.49/282



e There are N molecules in the volume V = [°

* Therefore the total change in momentum per unit
time arising from all collisions with S is:

R mvz Nmv?  nVmo? 9 9
Z = = l = nmlv;

[

(Recall that n is number density.)
* Pressure is defined as force per unit area.
* Force is defined as the change in momentum per unit
time.
* pis the pressure of the gas
* pl? is the total force on S and

2

2 2 2 _
= nml v, 0r p—=—mnmuv, .~ p.50/282
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* The pressure of a gas is the same in all directions. Thus:

1
2 .2 _ 2 _ 2 2 2\
x_vy_vz__(vx+vy+vz)_

1
3

3

where v is the common speed of the molecules.

* This gives:
1 2
= —nmu
P=3

* Since the kinetic energy of a single molecule is mv?/2
and n is the number density of molecules, the pressure is
2/3 of the kinetic energy density.

The Perfect Gas

* What is the relationship between pressure and energy?

* The previous treatment is restrictive.

. — p.51/282



Not all collisions with the wall are elastic.
Molecular speeds are not all the same.
Directions of motion are random.

The container is not a cube.

It may be useful to have a more general derivation of the
relationship between the distribution of velocities and
the pressure and energy of a gas.

* In most cases the generalized distribution does not
need to be known, but only some of its properties.

Consider a perfect gas in equilibrium with N molecules
in volume V.

* The molecules will move with different velocities.

Let f(v)dv be the number of molecules per unit volume
with velocity between v and v + dv.
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f(v) is the velocity distribution function.

The total kinetic energy of all N molecules is finite.
Therefore f(v) — 0 as v — o

If the sum of f(v)dv is taken over all possible velocities
then n, the total number of molecules per unit volume is
obtained.

This may be written as:

/Vf(V)dV = /_O:O /_O:O /_O:O f(v)dvgdvydv, = n

Molecular motion at equilibrium is isotropic.

* Equal numbers of molecules in any given speed
interval must travel in any direction.

* f(v) is independent of direction.
* f(v) is a function only of its magnitude, the speed #5325



Therefore, a distribution function in terms of v would be
convenient.

Consider f(v)dv as the number of molecules per unit
volume with speeds between v and v + dv.

Consider the molecular velocity as a point in velocity
space defined velocity coordinates, v;, vy, v,

* The volume element is dv = dv;dv,dv,
But now the distribution is to be considered in terms of
speed, not velocity.

* What is the relationship between dv and dv?

* The molecules with the speed between v and v + dv
occupy a spherical shell of radius v and thickness dv.

* The volume of this spherical shell is 47v?dv

Therefore:

f(v) = 4mv? f(v)  p5a/as2



‘igure 12.2 The distribution of molecular speeds, f( v). The speed
4, which is the most probable, i1s the mode of the distribution.
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* An important property of f(v):

* At equilibrium the gas is homogenous, therefore f(v)
Is independent of the position within the gas.

* This is true for real molecules if the energy of
interaction is independent of velocity.

* What is the internal energy of a gas arising from
molecular motion?

* A molecule of mass m and speed v has kinetic
energy of muv?/2.

* The total number of molecules with speed between v
and v + dv is given by f(v)dv.

e Contributions from all values of v are summed.
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* The total internal energy U is:

U — //OO mo” ) dv dV

* Since f(v) does not depend on the position, it is
independent of the volume, therefore the integral
over volume can be separated from the integral over

speed:
U = /dv/mm” ) dv

mV [0
U=—— : d
5 ), v flv)dv
* Note that this expression may break down for real gases.
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For polyatomic molecules, there are contributions to the
internal energy from the motions within the molecules.

Real molecules can have interactions between them
which will also make a contribution to the internal
energy.

What is the relationship between internal energy and
pressure?

* Pressure has been defined as force exerted by the gas
per unit area of the wall of the container, i.e. the
rate at which momentum is transferred to the wall.

But the gas is homogeneous and isotropic.

* Therefore the pressure must be the same anywhere
in the gas.

Consider a plane surface S anywhere within the gas.
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Figure 12.3 The plane surface § is fixed at an arbitrary positio
a container of gas. The xyz coordinate system 18 defined so thatt
z axis is normal to §.



Molecules hit this surface in the same way as they hit
the walls.

When a molecule with muv, as the z component hits the
surface, momentum 2mu, is transferred to S.

The pressure on S is total momentum transmitted per
unit time and per unit area of S.

The pressure is the same on both sides of .S when the
system is at equilibrium.

Now replace S with an imaginary plane in the same
position.

* The molecules will cross this imaginary plane with
momentum muv..

* By definition, pressure is same whether the wall is
there or not.
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Thus the pressure normal to the imaginary plane S is
twice the momentum transported from one side across S
per unit time and per unit area.

What is the rate of momentum transfer?

* Consider those molecules crossing S in the positive z
direction.

* @ is the angle between the molecule’s trajectory and
S.

F(0,v)dfdv is the number of molecules with speed
between v and v + dv that cross S per unit time and per
unit area at angles between 6 and 6 + df.

Each molecule has momentum mwv with z component
mu cos b.

* Only the 2z component contributes to the pressure.
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'igure 12.4 All the molecules within the inclined prism the
elocity v 1n the direction @will strike the area A within time
olume of the prism 1s Avr cos &



* The contribution of the other components of the motion
cancel out due to the isotropy of the gas and make no
net contribution to the pressure.

* Therefore the contribution to the pressure from the
molecules in the range dvdf is the number per unit time
per units area multiplied by twice the z component of
the momentum transported per molecule.

dp = 2muw cos OF (6, v)dbdv

* This is integrated over all possible values of # and v that
represent molecules crossing z in the positive direction
to give the total pressure:

co pm/2
p= / / 2mu cos F (0, v)dfdv
v=0 J6=0
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* What is F'(6,v)? It is the product of:

* the number of molecules per unit volume with speed
between v and v 4+ dv moving with angles between 6

and 0 + d, i.e. £(6,v)d0dv.

* The volume occupied by all molecules capable of
crossing S per unit time, i.e. the volume of the
prism.

* The volume of the prism (Figure 12.4) is Avt cos 6
for a base of area A and time ¢, thus per unit area
and per unit time, this becomes v cos 8

F(0,v)d0dv =wvcosf f(6,v)dfddv

* Recall that f(v)dwv is the total number of molecules
per unit volume with speeds between v and v + dw.
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* Thus:
/ef(ﬁ,v)dedv = f(v)dv

* Recall also that molecular motion is isotropic. Therefore
the integration is over the range of solid angles between

¢ and 0 4 db.

* Note also that f(6,v)dfdv and f(v)dv are in the
same relationship as are the solid angles between
6 4+ df and 4.
* The solid angle between 6 and 6 + df i1s 27 sin 6df

* Therefore:

f(0,v)d0dv  2mwsinfdd lsmﬁd@
fydv 4w 2
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* Thus the pressure is:

1
p= / 0/9 (2mu cos 6)(v cos 0) (5 sin 9d9> f(v)dv

00 /2
p=m Ov2f(v)dv/9 ; cos? 0 sin Ol

* The angular integral is of the form:
3
/uzdu = % +C

where u = cosf and du = — sin 6d0

* Therefore

HEST O L 3 3
/9 cos” 6 sin 0df = —3 (cos (7/2) — cos (O))

=0 . — p.66,/282



1 1
= ——(0—(1)%) ==
S(0— (1)) =
e Therefore:
p:% ; v? f(v)dv
* Recall that:
U //OO MU ) do dV
— —— f(v) dv
V Ju=0
thus
- 2U
P=3y
which i1s consistent with
1 2

= —nmmv
P=13
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Some Comments about Thermodynamics
* Thermodynamics deals with relationships among the
macroscopic properties of matter.

* Equilibrium thermodynamics deals with relationships
among macroscopic properties of matters at
equilibrium.

* The laws of thermodynamics allow these relationships to
be derived.

* The laws of thermodynamics are postulates.

* These postulates conform with our observations of
the world.

* These postulates apply to systems containing a large
number of molecules, i.e. a macroscopic system.
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* Thermodynamics also permits us to interpret
spontaneous processes.

* Also aids in the understanding of “time’s arrow” and
Irreversible processes.

* The laws of thermodynamics make no assumptions
about the microscopic structure of matter.

* The laws of thermodynamics allow the construction of a
logically complete and internally self consistent theory.

* The properties of real matter appear in the theory,
but thermodynamics is only concerned about the
relationships among these quantities.

* These properties of real matter have the values that
they do because of the microscopic interactions of
the molecules.
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