
Some Comments about Thermodynamics

• Thermodynamics deals with relationships among the
macroscopic properties of matter.
• Equilibrium thermodynamics deals with relationships

among macroscopic properties of matters at
equilibrium.

• The laws of thermodynamics allow these relationships to
be derived.

• The laws of thermodynamics are postulates.
• These postulates conform with our observations of

the world.
• These postulates apply to systems containing a large

number of molecules, i.e. a macroscopic system.
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• Thermodynamics also permits us to interpret
spontaneous processes.
• Also aids in the understanding of “time’s arrow” and

irreversible processes.

• The laws of thermodynamics make no assumptions
about the microscopic structure of matter.

• The laws of thermodynamics allow the construction of a
logically complete and internally self consistent theory.
• The properties of real matter appear in the theory,

but thermodynamics is only concerned about the
relationships among these quantities.

• These properties of real matter have the values that
they do because of the microscopic interactions of
the molecules.
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• For example, the pressure of a gas may be given as a
virial equation (or power series) in n, the number density:

P = a0 + a1n+ a2n
2 + a3n

3 + · · ·

where ai are experimentally determined.

• From thermodynamics, relationships between pressure
and other thermodynamic quantities such as internal
energy, entropy, enthalpy, and free energy are known.
• Thus these quantities may be determined in terms of

the values of ai.
• The values of ai depend on the interactions of the

molecules.
• If the molecular interaction potential is known, then
ai may be determined using the methods of
statistical mechanics.
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• Continued:
• In principle, the interaction potential can be

determined from quantum mechanics.

• The development of the principles of thermodynamics
depends on some basic concepts.

• One of these basic concepts is the system.
• A system is that part of the world under

consideration.
• Everything else is the surroundings.

• Systems may be classified according to their relationship
to the surroundings.
• An open system can exchange matter and energy

with the surroundings.
• A closed system can exchange energy but not matter

with the surroundings.
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• Continued:
• An isolated system exchanges neither energy nor

matter with the surroundings.

• A thermodynamic system is described by a set of
macroscopic variables or “coordinates”.
• p, V , and T are already familiar.

• These macroscopic variables apply to measurements
made for large number of molecules over a time period
sufficiently long for many interactions of the molecules
and at energies larger than individual quanta.

• The thermodynamic properties of the system can be
completely describe by the set of macroscopic
coordinates (p, V, T ).
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• A macroscopic coordinate can be a constraint on the
system when it is fixed in value by the boundary
conditions that define the system.
• A system can have constraints other than

macroscopic coordinates.

• Classical thermodynamics deals with the properties of a
system at equilibrium.
• At equilibrium, none of the macroscopic coordinates

changes with time.

• At equilibrium there is no net energy or matter flow
through the system.

• The condition of equilibrium depends upon the
constraints on the system.
• For a specified set of constraints, there is only one

true equilibrium state.
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• Metastable states can be observed not to change during
the time of observation.
• This is because the process that would take the

system to equilibrium is so slow relative to the time
of observation.

• Nonequilibrium thermodynamics is a growing field.

• A complete set of thermodynamic coordinates uniquely
determines the thermodynamic state.
• If the mass is known, a complete set of

thermodynamic coordinates is made up of those
variables that can be independently specified.

• For a one component system of fixed mass, two
thermodynamic coordinates are needed.

• For comparison, a microscopic system of N particles
would need 6N − 6 microscopic coordinates.
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• The number of thermodynamic coordinates needed
varies with the number of components and the number
of phases in the system.

• Consider a fluid which assumes the shape of its
container such as a liquid or a gas.

• The properties of a fluid are independent of its shape.

• For a pure fluid (i.e. only one component) the
thermodynamic state can be completely specified by just
pressure and volume.

• This means that any additional thermodynamic
coordinates cannot be independent of the pressure and
volume.
• The relationship among pressure, volume, and

thermodynamic coordinate X (or T ) is the equation
of state: f(p, V,X) = 0.
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• The definition of the thermodynamic coordinate of
temperature will be developed only in terms of those
variables required to define the state of thermodynamic
system, i.e. p and V or related quantities.
• Temperature θ may be defined by an equation of the

form:
f(p, ρ, θ) = 0

where ρ is the density.
• Note that density is related to the volume, but is

intensive rather than extensive.

• What properties should θ have?
• Mathematically convenient and well-behaved in that

it is finite, continuous, and single-valued.
• Have some relationship to intuitive notions of

temperature.
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• Many mathematical functions satisfy these conditions
such as

θ = p/ρ

θ = (p/ρ)2

θ = log (p/ρ)

or multiples thereof.

• To select an appropriate function, express this as a
generality:

g(θ) = ϕ(p, ρ)

• Now some concepts about temperature scales must be
considered.

• Consider systems 1 and 2.
• The systems consists of the same pure fluid.
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• Continued:
• Initially, the systems are isolated from each other

and are separately at equilibrium at different
temperatures, i.e.

ϕ(p1, ρ1) 6= ϕ(p2, ρ2)

• The two systems are brought together so that they
are isolated from the surroundings, but separated
from each other by a rigid barrier B.

• B is an adiabatic wall if the systems do not change
from their initial states.
• An adiabatic wall does not allow energy to cross.
• Isolated systems are surrounded by adiabatic walls.

• Suppose barrier B is rigid (so no work is done), but
does allow energy to cross, i.e. it is diathermal.
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• The two systems will equilibrate to the same
temperature, i.e. they will come into thermal equilibrium
eventually.

• If the original isolated systems are separately in
equilibrium, the constraint of isolation defines the
equilibrium.

• If the constraint is altered, in this case by replacing the
adiabatic wall with a diathermal wall, the system will
move to a new equilibrium.

• If two systems have reached thermal equilibrium with
each other, the state of one system cannot be changed
without changing the other.
• The overall equilibrium is described by a single

relationship of the independent thermodynamics
coordinates of each system: F12(p1, ρ1, p2, ρ2) = 0
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• Continued:
• The exact form of F12 depends on the nature of the

fluids making up the systems and their individual
equations of states.

The Zeroth Law of Thermodynamics

• Two systems, each separately in thermal equilibrium
with a third system, are in thermal equilibrium with each
other.
• The third system is a thermometer.
• This allows us to develop a universal definition of

temperature.
• This definition will be in terms of some property

possessed by all objects “at the same temperature”.

. – p.81/172



• Consider fluids 1, 2, and 3, each described by their only
independent variables, p and ρ.

• Fluids 1 and 2 are in mutual equilibrium and are
described by:

F12(p1, ρ1, p2, ρ2) = 0

• Fluids 1 and 3 are in mutual equilibrium and are
described by:

F13(p1, ρ1, p3, ρ3) = 0

• Both equations may be solved for p1 yielding functions
w12 and w13 :

p1 = w12(ρ1, p2, ρ2) and p1 = w13(ρ1, p3, ρ3)

• Therefore: w12(ρ1, p2, ρ2) = w13(ρ1, p3, ρ3). . – p.82/172



• But the Zeroth Law requires that if systems 1 and 2 are
in thermal equilibrium and system 2 and 3 are in thermal
equilibrium, then systems 2 and 3 are in thermal
equilibrium.
• Therefore there must exist some F23 such that:

F23(p2, ρ2, p3, ρ3) = 0

which completely describes the equilibrium between
systems 2 and 3.

• If this equation and w12(ρ1, p2, ρ2) = w13(ρ1, p3, ρ3) is
true, then the variable ρ1 must disappear from w12 and
w13.
• Therefore w2(p2, ρ2) = w3(p3, ρ3), i.e. wi depends

only on the properties of system i.
• Thus: w1(p1, ρ1) = w2(p2, ρ2) = w3(p3, ρ3)
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• Given the Zeroth Law, there exists at set of functions wi
which depend only on the state of fluid i and which have
the same value of any number of fluids in equilibrium.
• wi must depend on some single property that all i

systems have in equilibrium, regardless of the nature
of the systems.

• This single property is the thermodynamic
temperature.

• wi(pi, ρi) is equivalent to ϕ(p, ρ).
• This means that g(θ) may be defined in terms of a

property that all systems in thermal equilibrium have
in common.

• Thus a universal temperature scale may be
constructed.
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• Consider a particular system as the standard.

• Select one of the system’s temperature functions, g(θ).

• Define a numerical value of g(θ) as the temperature θ.

• This standard system is the thermometer.

• The function used to define the system is the
thermometric property.

The Perfect Gas Temperature Scale

• How does this all relate to a usable temperature scale?

• Any property of a system that is “well-behaved” can be
used to define the temperature scale.
• The choice is arbitrary and is based on convenience.
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• Since the choice of thermic properties is arbitrary, it is
convenient that significant changes in the property can
be measured accurately in small systems, i.e. the
thermometer can come into equilibrium with the system
without significantly changing the system.
• Many thermometers are based on the volume of a

liquid.
• The expansion of the liquid is measured in a

narrow tube attached to a reservoir.
• Some thermometers are based on electrical

resistance.
• Thermocouples are based on the differential

properties of bimetal strip as measured by
electromotive force at the junction.
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•• Continued:
• Pyrometers measure the intensity of radiation.
• It is assumed that the emitted radiation follows

the blackbody distribution.

• All of these are calibrated against a thermodynamic
temperature scale.

• A thermodynamic temperature scale can be based on
the properties of a very dilute gas.
• Pressure and volume (or density) are easily

measured.
• The scale can be defined as proportional to the

pressure or proportional to the volume.
• Both thermometers (constant volume or constant

pressure) converge to the same low pressure limit.
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• The temperature scale needs a reference point.
• The triple point of water is such a reference point.
• Solid, liquid, and vapour coexist at a unique point

in p, ρ, and temperature.
• Consider a system in equilibrium with pure water at

the triple point.
• This system has pressure p3 and temperature θ3.
• A constant volume temperature scale may be

defined for this system in other conditions.

θ(p) =
p

p3
θ3

• θ3 is an arbitrary constant. By convention, θ3 is
273.16 K.
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• A constant pressure scale may also be defined with
respect to the triple point.

θ(V ) =
V

V3
θ3

• The actual empirical scales depend on the quantity and
nature of the gas.

• In the limit of small quantity, both scales approach the
same limiting temperature:

lim
p→ 0

θ(p) = lim
V→ ∞

θ(V ) = θ∗

• θ∗ is the perfect gas temperature.
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• Thermometers are calibrated with respect easily
reproduced phase equilibria.

• Both the constant volume and the constant pressure
temperature scales converge to the same limiting value.
• This may be expressed as:

lim
p→ 0

pV

n
= βθ∗

where β(θ∗) is a function only of θ∗

• Limits at two different temperatures are proportional to
the perfect gas temperature.

β(θ∗1)

β(θ∗2)
=
θ∗1
θ∗2
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• Temperature scales had formerly been defined in terms
of two fixed points.
• The Celsius scale had been defined in terms of the

freezing and boiling points of water at a pressure of
1 atm.

• The Fahrenheit scale had been defined in terms of
the freezing point of a saturated NaCl solution and
the boiling point of pure water at a pressure of 1
atm.

• These scales can be related to the perfect gas scale.
• For a constant volume thermometer, the Celsius

temperature t∗ may be defined by:

t∗ = lim
p0→0

100(p− p0)

p100 − p0
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• This can be related to the absolute temperature, θ∗ by:

θ∗ = t∗ + θ∗0

where θ∗0 is the ice-point temperature, 273.15 K.

• The triple point temperature θ∗3 is by definition 273.16 K.
• As a result the boiling point of water is 373.146 K.

(This supersedes the previous definition of Celsius
temperature.)

• There are other ways to establish thermodynamic
temperature scales that do not depend on the properties
of a substance.
• It can be shown that these scales are equivalent to

the perfect gas scale.
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• T will be used to represent the perfect gas temperature.
• The thermodynamic temperature T is equal to the

perfect gas temperature θ.

Pressure Units

• The SI unit is the Pascal. 1 Pa = 1 N m−2.

• Other units are:
• In cgs (centimeter gram second), 1 dyne cm−2 = 0.1

Pa.
• Common in meteorology is the bar, 1 bar = 105 Pa.
• Widely used is atm. By definition, 1 atm = 1.01325
× 105 Pa.

• The torr is defined as 1/760 atm or 1 mmHg.
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• The perfect gas equation of state is:

pV = nRT

where n is number of moles of gas in volume V .

• The universal gas constant is evaluated by:

R = lim
p→0

pV

nT

• R is related to the Boltzmann constant kB:

kB =
R

NA

where NA is Avogadro’s number.
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• The perfect gas equation of state may be written:

pV = NkBT

where N is the number of molecules in volume V .

• Molar mass, M , may be determined by measuring p, ρ,
and T

M = RT lim
p→0

ρ

p

Microscopic and Macroscopic Approaches

• What are the essential features of each?

• What is general and what is specific to each approach?

• How are the two approaches to a perfect gas related?
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The microscopic approach to the perfect gas

• The perfect gas is defined entirely in terms of the
properties of the individual molecules that make up the
gas.

• Already considered has been the case of monoatomic
molecules which collide elastically with the walls.
• What about polyatomic molecules?
• What about molecules that interact with one

another?
• Statistical mechanics involves the adoption of a

model of the molecular interactions.
• Thus the results are specific to that model.
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The macroscopic (or thermodynamic) approach to
the perfect gas

• This is based on the properties of real gas in the limit of
low pressure.

• No assumptions are necessary about the nature of the
interactions of molecules with each other.

• This thermodynamic approach is tied directly to
experiment.

How are the two approaches related?

• The microscopic approach and kinetic theory leads to

p =
2

3

U

V

where U is the total kinetic energy.
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• The macroscopic approach involves only measurable
variables:

p =
nRT

V

• Combining these gives:

U =
3

2
nRT =

3

2
NkBT

and the molecular kinetic energy per mole is proportional
to absolute temperature.
• This can be shown to be generally true for real gases.
• The microscopic perfect gas has properties chosen to

match those of the thermodynamic perfect gas.
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• This basic approach is applicable to other systems.

• For a given mass of any fluid, two of p, V and T are
independent.
• That is, there exists an equation of state such that
f(p, V, T ) = 0.

• The corresponding molecular model must involve p, V
and the molecular energy.
• Intramolecular energy (vibrational, rotational, and

electronic) as well as kinetic energy.

• Equations of state may be obtained by:
• Direct measurement.
• Extrapolation from a hypothetical system.
• From statistical mechanics.

. – p.99/172



• Thermodynamics deals with relationships between the
equation of state and measurable quantities and
thermodynamic functions.
• These relationships are general and apply regardless

of the equation of state.
• It can be shown that:

(
∂U

∂V

)

T

= T

(
∂p

∂T

)

V

− p

is true for all systems, but its actual value depends
on the equation of state.
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The First Law of Thermodynamics
• What do
• Energy
• Work
• Heat

mean in thermodynamics?

• From a microscopic view energy is defined in terms of
quantum mechanics.

• Both microscopic and macroscopic views of the perfect
gas will be considered.

• Also considered are:
• Nature of intensive and extensive variables.
• Quasi-static and reversible processes.
• Nature of constraints.
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Microscopic and Macroscopic Energy in a Perfect
Gas

• The First Law of Thermodynamics may be expressed in
terms of conservation of energy.

• Consistent with the treatment of energy conservation in
classical and quantum mechanics.

• The kinetic energy of a single particle is 1
2mv

2.

• The potential energy is defined in terms of
intermolecular potential.

• Total energy is conserved throughout the system.
• NOT the energy of the individual particles.

• But thermodynamics is concerned with macroscopic
properties of the system.
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• What does “energy”mean in the context of
thermodynamics.
• How is energy related to p, ρ, and T?
• How do mechanical and thermodynamic concepts of

energy relate to each other?

• Consider the mechanical description of a system:
• The positions and velocities of the particles can be

controlled by the manipulation of forces.
• The work associated with moving a particle can be

determined by controlling movement of that particle
and all other particles in the system.

• The motion of the individual particles is followed as
closely as possible.

• In contrast, consider the thermodynamic description:

. – p.103/172



• Only macroscopic variables, such as volume, are
controlled.

• Work is performed when the systems boundaries are
displaced.
• Positions and velocities of individual molecules can

change freely so long as the average properties of
the system are consistent with the macroscopic
properties.

• These uncontrolled molecular motions account for the
differences between thermodynamic and mechanical
energy.
• But there is a connection between the

thermodynamic and mechanical quantities.
• The thermodynamic quantities are related to the

averages over large number of molecules (or over a
long time) of the mechanical quantities. . – p.104/172



• Continued:
• Recall the relationship between the temperature and

kinetic energy of molecules.

• Consider a monatomic gas from a quantum mechanical
perspective:
• Consider a system of N noninteracting particles in

cubic box of volume V .
• This is a closed system.
• The possible energies of the particles in the box are

quantized.

• The energy spectrum for a particle in a 3-D cubic box is
given by:

εn1,n2,n3 =
π2h2

2mV 2/3

(
n2

1 + n2
2 + n2

3

)
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where n2
1, n2

2, and n2
3 are the quantum numbers for the x, y,

and z axes of the cube.

• The larger the cube is, the more closely spaced are the
energy levels.

• The total energy of the system is the number of particles
in each energy state, summed over all states.

E =
∑

n1,n2,n3

Nn1,n2,n3εn1,n2,n3

• Now consider a change in the size of the box such that it
is still a cube.
• How does this change the energy?
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dεn1,n2,n3 = − π2h2

3mV 5/3

(
n2

1 + n2
2 + n2

3

)
dV

= −2εn1,n2,n3

3V
dV

• This means that increasing the volume makes the
spacing of the energy levels smaller.

• The energy spectrum changes when the macroscopic
coordinate of V is altered.

• But does changing the volume of the system change its
energy?

• Whether or not changing the volume changes the energy
of the system depends on how the change is made.
• A perturbation of the wall of the system will lead to

transitions among the energy levels of the system.
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• Continued:
• If the perturbation is carried out infinitely slowly,

then the process is adiabatic and no transitions will
take place.

• Such a process is adiabatic.

• In an adiabatic process, same number of particles are in
each energy level before and after the volume change.
• But the spacing of the energy levels has changed.

dE =
∑

n1,n2,n3

Nn1,n2,n3dεn1,n2,n3

= − 2

3V


 ∑

n1,n2,n3

Nn1,n2,n3εn1,n2,n3


 dV = −2

3

E

V
dV
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• The only way the particles in the box can have energy is
as kinetic energy.

• If the occupation number (Nn1,n2,n3) does not change,
but the energy of the level does change as the volume
changes, then the total kinetic energy of the system
changes.
• This means that there will be a temperature change

in the gas.

• The change in the volume does not have to be carried
out in such away that no transitions in the energy of
individual particles occurs.
• Since the molecules are indistinguishable, all that is

necessary is the average population of the energy
levels remains unchanged.

• Populations of the energy levels fluctuate around
their average values. . – p.109/172



• Equilibrium thermodynamics can be used at any point
on the path if the fluctuations are small.

• The adiabatic process carried out very slowly is referred
to as reversible and “quasi-static”.
• The system never deviates significantly from

equilibrium at any point in the process.

• The First Law of Thermodynamics requires that energy
be conserved.

• Therefore if the energy of the system changes, then the
energy of the surroundings must change is such a way as
to conserve energy.
• Energy is some form is transferred to or from the

particles from or to the surroundings.
• Work is one of the ways that this energy transfer can

occur.
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• To compress a box, an external force must be applied to
it.
• By definition, work is force times distance.
• The applied pressure times the area is the force.

• The inward displacement of the container is the
distance. This distance may be obtained by dividing the
volume by the area to which the force has been applied.

• Therefore:

Work = −pappA
dV

A
= −pappdV

• This work represents the energy transferred from the
surroundings in the case of compression (dV < 0).
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• Continued:
• In the case of expansion (dV > 0), energy is

transferred to the surroundings as work.

• Is this energy change in the surroundings the same size
as the energy change in the system?

• In the case of particles in the box, the box imposes the
boundary conditions at which the wave function
vanishes.
• This is how quantum mechanics describes particles

being inside the box, but not outside.

• If the volume of the box is changed, then this is a
change in the boundary conditions for the wavefunctions
describing the particles.

• This means that the energy levels change.

. – p.112/172



• Therefore energy crosses the walls of the system in the
form of work.

• The walls are adiabatic so work is the only way of
changing the energy of the system.

• How do real systems differ from the ideal system?
• The walls of a real system are made up of molecules.
• These molecules can vibrate.
• Energy can be transferred across the walls to the gas

molecules on the other side without doing work.
• This energy is transferred across the walls as heat.
• Such walls are diathermal.

• Thermodynamics answers the question of how much
energy is transferred as heat and how much energy is
transferred as work.
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• Mechanics uses the trajectories of the individual particles
to figure out how much energy is transferred as work.

• Thermodynamics considers work in terms of the energy
that crosses the boundaries of a system and describes it
in terms of the surroundings.

Description of Thermodynamic States

• In order to develop thermodynamic definitions of work
and heat, a thermodynamic state must be described
precisely.

• Two thermodynamic states are identical if they are
described by sets of macroscopic variables that have the
same values for each state.
• How are relevant thermodynamic variables chosen?
• How many can be constrained or fixed?
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• Only variables that can be independently chosen can be
selected as constraints.

• A thermodynamic state is uniquely defined by specifying
a complete set of thermodynamic variables.
• Each set of values for such variables corresponds to

a distinct state of the system.

• Consider an equation of state for a pure substance.
• p and v (specific volume) would be a set of

independent variables in that the temperature T
would be determined once their values were chosen.

• Any two of p, v and T can be chosen independently
and constrain the value of the third coordinate.

• Geometrically, the equation of state defines a surface
in p, v, T space.
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• The surface can be defined by:

p = f1(v, T ) or v = f2(p, T ) or T = f3(p, v)

where the forms of the function are determined by the
equation of state.
• The surface is illustrated in Figures 13.1 and 13.2.

• Fixing one of the thermodynamic coordinates is
equivalent to taking a cut through the surface parallel to
appropriate axis.

• All points on the surface correspond to an equilibrium
thermodynamic state.

• All points in p, v, T space that do not lie on the surface
are nonequilibrium states of the system.

• A nonequilibrium state of the system requires more than
p, v, T to describe it fully. . – p.116/172
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• Some examples of nonequilibrium systems are:
• A one component, one phase system that is spatially

inhomogeneous.
• A system with a nonequilibrium velocity distribution.
• A system in which a chemical reaction is occurring.
• A steady state system through which energy or mass

is flowing.
• Any system in which a change is being carried out at

a perceptible rate.

• A quasi-static and reversible process is carried out so
slowly that all points on the path lie on (or very near)
the surface described by the equation of state.
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The Concept of Work in Thermodynamics

• Consider the mechanical definition of work:

dw = F · ds = Fsds

where:
• F is force.
• s is the displacement
• Fs is the component of F in the direction of ds.

• If the object is displaced from point 1 to point 2, the
work done is determined by evaluating the line integral:

w12 =
∫ 2

1
F · ds =

∫ 2

1
Fsds

• The value of a line integral depends on the path taken
between point 1 and point 2. . – p.120/172



• Line integrals are also known as path integrals.

• Therefore if different paths are taken between point 1
and point 2, different amounts of work are involved.

• Work is defined only with respect to motion.
• It is a process variable that passes between systems.

• An object does not contain work.
• That is the system does not contain one amount of

work at the beginning of the process and another
amount at the end.

• There are some important distinctions between
mechanical and thermodynamic work.

• In mechanical work, force is typically related to the
interaction potential and F · ds = Fxdx+ Fydy + Fzdz.
is an exact differential.
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• This means that the cross derivatives are equal:

(
∂Fy
∂x

)
=

(
∂Fx
∂y

)
,

(
∂Fz
∂y

)
=

(
∂Fy
∂z

)
,

(
∂Fx
∂z

)
=

(
∂Fz
∂x

)

• If this condition is met, the mechanical system is
conservative and the mechanical work can be determined
just from the initial and final positions.

• If this condition is not met, then the mechanical system
is dissipative.

• A typical thermodynamic system is dissipative.

• It is possible to define thermodynamics potentials that
are related to the work that a thermodynamic system
can do under specific conditions.

• Thermodynamic work involved in the expansion or
compression of a fluid. . – p.122/172



• Consider a volume of fluid in a container with movable
walls.

• This fluid exerts pressure p on the walls.

• The pressure applied to the walls form the surroundings
is papp.
• papp can be any force applied to the container.

• When the system is at equilibrium p = papp.

• If papp is increased then the volume of the fluid must
decrease.

• Consider a small element of the surface of the container
with area dA which moves inward by infinitesimal
distance dxi.
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• The work done on the system as the result of the force
exerted on the ith element of area is

d̄wi = Fi dxi = (papp)i dAi dxi = (papp)i dVi

where dVi = dAi dxi is the change in volume of the
system.

• This summed over the entire surface area of the
container will give the work done on the system.

• The sign convention for work:
• w > 0 when dV < 0.
• w < 0 when dV > 0.
• This is expressed as

d̄w = −pappdV
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• The total work done on a system for a finite volume
change is:

w = −
∫ V2

V1

papp dV

where V1 and V2 are the initial and final volumes
respectively and papp is the effective pressure exerted by
the surroundings.

• If work is to be done at a measurable rate (i.e. not
quasi-statically), then papp must differ from p.
• Either p or papp can be varied independently of the

volume.
• For example, papp can be varied by changing the

weight placed on a piston.
• p could be altered by changing the temperature.
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• There are an infinite number of paths between state 1
and state 2.
• Therefore work cannot be determined unless the

path is specified.
• Work cannot be determined solely by the initial and

final point of the path.
• This is why the differential of work is represented by
d̄w. ( d̄ denotes an inexact differential.)

Some properties of inexact differentials:

• Consider ∫ 2

1
d̄X

• There exists no function X of which d̄X is the
differential and which has a unique value in either the
initial or final state. . – p.126/172



• Therefore a thermodynamic system does not contain
work.

• Work cannot be defined as a function of the variables
that determine the state of a thermodynamic system.
• Only state functions can be expressed in terms of

state variables (p, v, T ).

• Work is a path function.

• Work has many forms:
• Mechanical w =

∫ x2
x1
Fdx

• Pressure-volume work w = − ∫ V2

V1
pappdV

• Electrical work to charge a capacitor w =
∫Q2

Q1
EdQ

• A general definition of work that can be applied in
principle is: “The performance of work is equivalent to
the lifting of a mass in a gravitational field.”
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• Applied to pressure-volume work this gives:

−w =
∫ 2

1
pappdV =

∫ 2

1

(
mg

A

)
(Adh) = mg

∫ 2

1
dh

• All of this assumes that work is a form of energy and
that energy can be converted in form.
• Work has the units of energy.

• What is the difference between mechanical and
thermodynamic work?

• Thermodynamic work deals with a wider range of
variables.

• Mechanical work is concerned with the trajectories of the
individual particles that make up the system.

• Thermodynamic work is concerned with what crosses the
boundaries of the system. . – p.129/172



• In principle, this thermodynamic work can be converted
into lifting a mass.

• Thermodynamics is not concerned with what is
happening with that energy before or after it crosses the
boundary of the system.

• It is concerned with how much of that energy is work.

Intensive and Extensive Variables

• Intensive variables are independent of the mass of the
system.
• Some examples of intensive variables are T and p.

• Extensive variables depend on the mass of the system.
• Internal energy and volume are examples of extensive

variables.
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• Consider intensive and extensive variables in the context
of two identical systems.
• The two systems are combined by removing a barrier

between them.
• The intensive variables, p and T , do not change.
• The extensive variables such as U or V do change,

to twice their initial values.

• Work is expressed in terms of an intensive variable and
an extensive variable.
• These pairs of variables are conjugate variables.
• What they are depends on what type of work is

involved.
• When the members of these conjugate pairs are

multiplied together, the result has units of energy.
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• Generally:
d̄w = XdY

where X is an intensive variable that has the same value
inside and outside the system and Y is the conjugate
extensive variable such that an infinitesimal change dY
does work d̄w.
• There are many such pairs of variables (see Table

13.1).
• Pairs of conjugate variables also appear in mechanics

as generalized coordinates and generalized forces.
• The potential energy of the mechanical system

can often be expressed as a function of the
generalized coordinates i.e. U = U(q1, q2, . . . , qn).
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• If this is true of the potential then:
• The generalized force Qi conjugate to the particular

generalized coordinate qi is the negative partial
derivative of the potential with respect to that
generalized coordinate:

Qi = −
(
∂U

∂qi

)

• The differential work is d̄w =
∑
iQiqi.

• Thus X = −(∂U/∂Y ) where X and Y are conjugate
variables.

• Note that the product of the conjugate variables has
dimensions of energy.

• The boundaries of the system determine whether or not
work can be performed. . – p.133/172



• If the boundary is movable, expansion work may be done.

• If the boundary is rigid, then no expansion work can be
done.

• If the boundary is conducting, then electrical work may
be done.

• If the boundary is insulating, then no electrical work may
be done.

• Work of a given type is always associated with a change
in the extensive variable until the intensive variable has
the same value on both sides of the boundary i.e. when
the system attains equilibrium with the surroundings.

• Consider a system where a portion of the boundary is
displaceable.
• When the boundary moves outward, the volume

changes in both the system and the surroundings.. – p.134/172



• The moving boundary may be thought of as
“transmitting” pressure, since the change occurs until the
pressure (the variable conjugate to volume) is the same
in both the system and the surroundings.

• If the boundary is rigid, then pressure volume-work
cannot be performed.
• When the system attains equilibrium, the pressure

(intensive variable) can have different values in the
system and the surroundings.

• If a system at equilibrium is to undergo a change in
state, energy must be able to cross its boundaries as
either heat or work.

Quasi-static and Reversible Processes

• The path by which a change in state occurs must be
carefully considered.
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• The change in the state function depends on the initial
and final states and not the path.

• The path by which the change in state occurs determines
how much heat or work is transferred by the process.

• Two categories of paths will be considered:
• reversible
• irreversible

• Consider a reversible path followed by a system between
the initial and final states.
• Every point of the path can be described by the

equation of state.
• But a system at equilibrium cannot change with

time.
• Any real process that occurs at a measurable rate is

not a reversible process. . – p.136/172



• The reversible process represents the limiting case of a
real change in state carried out at an infinitesimal rate of
change.

• The process carried out at an infinitesimal rate of
change is carried out quasi-statically.

• A given change of state can be carried out
quasi-statically by infinitely many routes.

• Not all quasi-static processes are reversible.
• The limiting behaviour depends on the conditions or

constraints.

• Consider a reversible quasi-static processes.
• In the limit of an infinitely slow process, a system

undergoing a reversible, quasi-static process moves
through a continuous sequence of equilibrium states.

• But is this of any practical use? . – p.137/172



• Many real processes have characteristics so close to that
of a reversible process, that the process may be assumed
to be reversible for the purposes of calculating useful
quantities.

• This implies that any deviation from equilibrium tends to
zero more rapidly than the rate of change.

• Consider an irreversible path between initial and final
states.
• It is possible to calculate work if the relationship

between papp and the volume is known.

• Consider the expansion of a perfect gas from V1 to V2.
• This may be carried out quasi-statically with a

frictionless piston.
• Initially the pressure papp is equal to the internal

pressure p.
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• The pressure is changed by a small amount ∆p and the
gas expands.

• Maintaining the relationship papp = p−∆p, the process
continues until the final volume is reached.

• Now consider repeating the process with a smaller ∆p.
• Since ∆p is smaller, the force will be less and the

process will occur more slowly.
• In the limit ∆p→ 0, the rate is infinitesimal with
papp = p throughout (i.e. reversible expansion).

• If this is the case and the gas is perfect, then:

w = −
∫ V2

V1

pappdV = −
∫ V2

V1

p dV

= −
∫ V2

V1

nRT

V
dV = −nRT ln

V2

V1 . – p.139/172



• Work may be thought of as the area under the curve in
(p, V ) space as illustrated in Fig. 13.4.

• It is to be noted in this case that:
• expansion work is performed.
• The intensive variable associated with this work,

pressure, has the same value on both sides of the
barrier during this reversible process.

• The complete definition of a reversible process is:
• It takes place at an infinitesimal (quasi-static) rate.
• It passes through a continuous sequence of

equilibrium states.
• At every point in the process, the intensive variable

corresponding to the type of work involved is
continuous in value.
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• A reversible path can be traversed in either direction.
• The result is identical in magnitude but not in sign.
• The direction of the process is determined by the

direction of the infinitesimal change in the intensive
variable.
• If papp < p, then expansion occurs.
• if papp > p, then compression occurs.
• If the work done in the forward process is

wf = − ∫ V2

V1
pdV , then the work in the reverse

process wr = − ∫ V1

V2
pdV = −wf .

• wf = −wr is valid only for reversible paths.

• A system undergoing a reversible quasi-static process
differs from a system at equilibrium in that the latter
does not exchange work or heat with the surroundings.
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• Consider an irreversible process.
• Can no longer assume that papp = p.
• The driving force will be A(papp − p) and the change

will occur at a nonzero rate.
• The work performed is not given by w = − ∫ V2

V1
pdV

but by w = − ∫ V2

V1
pappdV

• The substitution papp = nRT/V is not valid for
an irreversible process.

• To calculate work, the actual papp must be known.
• If papp were constant, then w = −papp

∫ V2

V1
dV

• If papp were zero, the system would expand
without doing any work.

• More about irreversible work in Chapter 16.
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• A process can be quasi-static without being reversible.

• Consider Fig. 13.5c.
• A fluid is confined by a piston held in place by a

series of pegs.
• There is a vacuum above the piston, so papp = 0.
• Removal of the lowest peg results in the fluid

expanding irreversibly until the piston hits the next
peg.

• The process is repeated for the remaining pegs.
• If the spacing of the pegs is made infinitesimal, then

the process becomes quasi-static, but not reversible.

• Another example of quasi-static irreversible expansion
involves the case of piston moving with friction.
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The First Law: Internal Energy and Heat

• Consider a system with adiabatic walls.
• Recall that all real walls have some thermal

conductivity, but real systems exist which
approximate this ideal system.

• The first law may be stated formally:

“If the state of an otherwise isolated system is changed
from A to B by the performance of work, the amount of
work required depends solely on the initial state A and
the final state B, and not on the means by which the
work is performed, nor the intermediate stages through
which the system passes between the initial and final
states.”
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• Note that the initial and final states must be equilibrium
states.

• The internal energy U of a system is defined by the
statement:

“If an otherwise isolated system is brought from one
state to another by the performance upon it of an
amount of work wad, the change in the system’s internal
energy in the process is defined to be the amount ∆U
exactly equal to wad”
• Note that wad is adiabatic work.

• Therefore ∆U = UB − UA = wad where A and B
designate respectively, the initial and final states
• ∆U > 0 when work is done on the system.
• ∆U < 0 when work is done by the system.
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• This relationship holds for both reversible and irreversible
adiabatic processes.

• Note that the definition refers only to the change in
internal energy.
• It does not establish the zero of the energy scale.
• The zero of the energy scale is arbitrary.

• When a given equilibrium system is used to fix the value
of U0, then the value of U for any other equilibrium
system is uniquely determined.

• ∆U is independent of the path, i.e. U is a state function.

• Therefore for a fluid:
U = U1(p, v) = U2(p, T ) = U3(v, T ) and have the same
value for any equilibrium state of the fluid (even though
the functions differ in form).
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• Consider a system with diathermal walls.
• Now energy can be exchanged with the surrounding

as heat and as work.

• For a given change in state in this case, w will differ
from wad.
• Diathermal work depends on the path.
• q, the heat transferred can be defined in terms of w

and wad:
q ≡ wad − w

.
• But ∆U = wad, therefore:

q = ∆U − w or ∆U = q + w

.
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• Thus heat may be determined in terms of the change of
state (i.e. change in internal energy) and the work
performed on or by the system.

• As in the case of the sign convention for work, heat is
positive when energy is transferred to the system as heat
and negative when energy leaves the system as heat.

• Heat is anything that enters or leaves the system by a
means other than work.

• Internal energy U is a state function and has exact
differential dU

• Heat q and work w are path functions and have inexact
differentials d̄q and d̄w and dU = d̄q +d̄w.

• One consequence of the definition of a state function is
that

∮
dU = 0.
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• Therefore
∮
d̄w +

∮
d̄q = 0 but:

∮
d̄w = 0 and

∮
d̄q = 0

is not necessarily true.

• What are
∮
d̄w and

∮
d̄q ?

• Consider first a cycle that follows a reversible path
from state A to state B and then returns from state
B to state A along the same reversible path.
• ∆Uf = −∆Ur and wf = −wr
• Therefore qf = −qr.

• If on the other hand, the path from state B to A is not
the exact reverse of the path taken from A to B, then
• ∆Uf = −∆Ur but wf 6= −wr
• Therefore qf 6= −qr.
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• Consider Fig. 13.6 and a cyclic path from A to B by
adiabatic path ACB and from B back to A by path
BFA.
• The work associated with ACB, wACB, is

proportional to the area enclosed by ACBDEA.
• wACB is positive since the process is a compression.
• qACB is zero because the path is adiabatic.

• Now consider BFA:
• The work associated with BFA, wBFA is

proportional to the area enclosed by BFAED.
• wBFA is negative since the process is an expansion.
• Due to the first law, the heat associated with this

portion of the path plus the work must UA − UB:
i.e. ∆UBA = wBFA + qBFA.
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• But ∆UBA = −∆UAB = −wACB and
wBFA + qBFA = −wACB.
• Therefore qBFA = −wACB − wBFA which is

proportional to the area enclosed by ACBFA.
• qBFA is negative because wACB is larger in

magnitude than wBFA.

• The net work of the cycle is wACB + wBFA (also the
area enclosed by the cycle.

• Overall: ∮
dU =

∮
d̄q +

∮
d̄w = 0

∮
d̄w = −

∮
d̄q = wACB + wBFA

.
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• If a system is undergoing only reversible processes, then
the first law may be written in general form:

dU = d̄q −
∑

i

XidYi

where Xi, Yi are the conjugate pairs of intensive and
extensive variables.
• Thus Xi, the intensive variable, can be defined as:

Xi = −
(
∂U

∂Yi

)

rev ad, Yj ,j 6=i

• Note that the first law applies to all processes.
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Some Historical Notes

• Our understanding of the first law is ∼ 200 years old.

• That work can be converted to heat was shown in many
ways.
• Rumford (1798) showed that mechanical work

involved in the boring of cannons could be
continuously converted to heat

• Davy (1799) rubbed two ice cubes together and
caused them to melt.

• Mayer (1842) formulated the principles of
equivalence of different kinds of energy and of
conservation of total energy.

• Joule (circa 1850s) provided the qualitative basis for
the law of the conservation of energy.
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• Joule produced heat from work in various ways.
• Water was heated by the rotation of a paddle wheel

in liquid with the paddle wheel driven by a fallen
weight.

• Measured heat produced by passing electrical current
through a resistor.

• Measured heat produced by rubbing bodies together.
• Measured heat produced by expansion and

contraction of air.
• Established the value of J , the mechanical

equivalent of heat:

w = Jq

• Work and heat were measured in different units
(work as footpounds and heat as calories).
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• A calorie was defined as the heat required to raise the
temperature of 1 g of water from 14.5◦C to 15.5◦C and
is denoted as cal15.

• Joule experiments established that 1 cal15 = 4.15 J,
superseding Mayer’s value of 3.6 J/cal15.

• Modern measurements give 1 cal15 = 4.1855 J.

• The thermochemical calorie is now, by definition, 1
calth = 4.1840 J.

• Once the equivalency of heat and work was established,
a thermodynamic system could be considered as a
reservoir of energy.
• Work and heat are how energy crosses the boundary

of the system.

. – p.158/172



Microscopic Interpretation of Internal Energy and
Heat

• The thermodynamic definition of internal energy is based
on adiabatic work processes.

• The adiabatic perturbation of quantum mechanics
corresponds to the reversible adiabatic process of
thermodynamics,

• In the microscopic equivalent of the adiabatic work
process, the change in the system’s internal energy is the
change in the mechanical energy of the particles in the
system.
• The distribution of particles over the energy levels is

not changed.

• Nonadiabatic process and the associated heat transfer
will now be considered.
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• When a system exchanges both work and heat with the
surroundings, the microscopic energy spectrum is
changed and the distribution of particles over the energy
levels are changed.

• Consider the expansion of a perfect gas at constant
temperature.
• The energy spectrum depends on the size of the box.

Therefore when the size of the box is increased, the
energy of each level decreases.

• If the kinetic energy of the particles stays the same,
then some particles move to higher energy levels.

• In an adiabatic expansion, the kinetic energy of the
particles decreases.

• In an isothermal expansion, some energy is added from
the surroundings as heat to promote some particles to
higher energy levels. . – p.160/172



• In summary:
• Energy entering or leaving the system as reversible

adiabatic work changes the energy levels, but not the
population of the energy levels.

• Energy entering or leaving the system reversibly as
heat changes the population of the energy levels but
not the energy levels.

• Energy entering or leaving the system as irreversible
work changes both the energies levels and the
populations of the energy levels.

• It will be demonstrated later that these conclusions hold
for real systems.
• Needed first will be a macroscopic measure of the

distribution of particles and the concept of entropy.
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• Consider the internal energy U of a perfect gas from a
microscopic perspective.
• The volume of the box is changed while the

temperature is held constant.
• If it is a perfect monatomic gas, then the only way

the molecules can have energy is as kinetic energy.
• The number of molecules is constant, therefore the

total energy of the gas is independent of the volume
of the box in a constant temperature process.

• Thus the result is the same for the quantum mechanical
perfect gas as for the classical mechanical gas.

U =
3

2
nRT

where U can be identified with the thermodynamic
internal energy.

• The internal energy of a gas depends only on
temperature and is independent of density or pressure.
• This statement allows the definition of a perfect gas

without reference to microscopic assumptions.
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• The internal energy of a gas depends only on
temperature and is independent of density or pressure.
• This statement allows the definition of a perfect gas

without reference to microscopic assumptions.

• If was previously concluded that the work associated
with the reversible expansion of an ideal gas is:

w = −
∫ V2

V1

pappdV = −
∫ V2

V1

pdV = −
∫ V2

V1

nRT

V
dV = −nRT ln

V2

V1

• But ∆U = q + w, therefore: q = −w = nRT ln V2

V1

• Also recall that for a reversible adiabatic process:

dE

dV
= −2

3

E

V
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• But U is the same as E. Therefore:

dU = −2

3

U

V
dV = −2

3

(
3

2
nRT

)
dV

V
= −nRT

V
dV = −pdV

• dU = −pdV is true for the reversible adiabatic
expansion of any fluid.
• This is consistent with dU = d̄w for reversible

adiabatic work.

Constraints, Work, and Equilibrium

• Constraints are the boundary conditions defining a
thermodynamic system.

• A change in boundary conditions can change the
equilibrium state of the system.

• Consider Figure 13.7.
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• Consider a gas enclosed in a rigid cylinder with adiabatic
walls.

• A sliding piston divides the gas into two volumes, V1 and
V2.
• If the piston is adiabatic and fixed in place, then the

two subsystems are isolated and pressures, p1 and
p2, and temperatures, T1 and T2 can completely
different.

• There are four independent variables.

• Now replace the fixed adiabatic piston with a fixed
diathermal piston.
• The system is no longer at equilibrium.
• The piston cannot move, so energy may be

transferred only as heat.
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• When a new equilibrium is attained, the temperatures
will be the same but the pressures can be different.

• There are three independent variables.

• Now allow the piston to move.
• When the equilibrium is attained, both the pressures

and the temperatures will be the same.
• The system has two independent variables.

• Now allow the piston to be moved by coupling it to an
external machine.
• If work is done on the surroundings adiabatically,

then the internal energy of the system will decrease
and the temperature will decrease.

• Each constraint imposed on the system means that an
additional independent variable is needed to describe the
system. . – p.167/172



• The type of equilibrium attained by the system is defined
by the constraints.

• The nature of the work performed by the system is
determined by the constraints under which the work is
performed.
• When a given constraint is removed, the system

becomes able to perform a particular kind of work.
• To restore the system to the original state,

reimposing the constraint, work must be performed
on it.

• In figure 13.7, pV work can be done when the constraint
of a fixed barrier is removed.

• Work must be performed to restore the barrier to its
original position.
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• Spontaneous attainment of equilibrium reduces internal
energy.
• In Chapter 19, minimization of internal and potential

energy will be explored further.
• The first law of thermodynamics is not enough to

indicate whether the process is possible or not.

Thermochemistry and Its Applications

• Some consequences of the first law will now be explored.
• Thermochemistry deals with how changes in

temperature and energy are related.
• Conditions under which the process occurs must be

defined carefully.
• Heat released by a chemical processes will vary

according to the constraints of the process.
• This is because heat is a path function. . – p.169/172



• Specific types of energy changes will be defined.

• Standard states will be defined.

• Also considered will be the molecular interpretation of
thermochemical data.

Heat Capacity and Enthalpy

• Consider a vessel with rigid and adiabatic walls, filled
with fluid.
• The system is isolated except for a heater.
• At equilibrium the temperature of the fluid is T1.
• Current is passed through the heater for a specified

time and the electrical energy is dissipated as
quantity of heat q.

• A new equilibrium is established at T2.
• Vessel is rigid, therefore constant V process.
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• The heat capacity at constant V may be defined as:

CV = lim
∆T→0

(
q

∆T

)

V

• By the first law of thermodynamics:

∆U = qV

since pV work is zero at constant V .

• Therefore

CV =

(
∂U

∂T

)

V

• Now consider the same process, but now allow one wall
of the container to be a freely moving, but adiabatic,
piston.
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• The volume of the system can change as heat is added.

• The process will occur at constant p if external pressure
is fixed at papp and heat is added so slowly (i.e.
reversibly) that at all points p = papp.

• The heat capacity at constant p may be defined as:

Cp = lim
∆T→0

(
q

∆T

)

p

• Heat capacity may also be defined with respect to other
constraints, but Cp and CV are the most widely used.

• Heat capacities are extensive (J K−1).
• Often defined with respect to particular amounts of

a substance:
• Molar heat capacity is the heat capacity per mole (J

K−1 mol−1). . – p.172/172
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