
• Continued:
• Specific heat is (usually) heat capacity per gram (J

K−1 g−1).

• Molar heat capacity (once the path has been specified)
can be treated as a state function characteristic of the
particular substance.
• It depends on the energy spectrum of the substance.

• The convention of the text is to use uppercase letters for
extensive quantities and lower case for the molar
quantities.
• U is internal energy.
• u is the molar internal energy. (Other texts use U

for molar internal energy.)

• Consider a constant pressure experiment in which the
fluid is allowed to expand. . – p.174/283



• Work, wp, is negative since work is done on the
surroundings.

• Therefore adding a given quantity of energy to the
system causes a smaller internal energy change than in
the case when the volume is held constant and no work
is done on the surroundings.
• In the constant volume case, all the heat added to

the system is used to increase the internal energy of
the system.

• Thus for the same value of q, (∆U)p < (∆U)V ,
(∆T )p < (∆T )V , and Cp > CV .

• For a constant volume process (dU)V = CV dT .

• From the first law in differential form:

(dU)p = Cp dT − p dV
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• This describes a reversible constant pressure process of a
system that can do only pV work.
• This can be rewritten as CpdT = (dU + pdV )p.
• This in turn suggests a new thermodynamic variable,
H, or enthalpy:

H ≡ U + pV

• The differential of H at constant p:

(dH)p = (dU + pdV )p = CpdT

and thus

Cp =

(
∂H

∂T

)

p
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• The heat transferred in a constant pressure process is:

qp = (∆H)p

• Because U and pV are also state functions, H is a state
function.

• Enthalpy is convenient as a state function to describe
processes carried out at constant pressure.

• Enthalpy along paths other than constant p many be
considered.
• For example for constant V ,

(dH)V = (dU)V + d(pV )V = CV dT + V dp

• Enthalpy is usually determined with a calorimeter.
• Calorimetry can also be used to determine heat

capacity. . – p.177/283
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• Cp and CV are usually determined as functions of
temperature and pressure over the ranges of interest.

• Cp and CV are related to each other.

• For a perfect gas:

Cp − CV =

(
∂H

∂T

)

P

−
(
∂U

∂T

)

V

=

[
∂(U + pV )

∂T

]

P

−
(
∂U

∂T

)

V

=

[
∂(pV )

∂T

]

P

=

[
∂(nRT )

∂T

]

P

= nR

• In the gas phase, Cp − CV can be significant.
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• In condensed phases, pV is much smaller than nRT , so
Cp and CV are similar.

• Cp − CV will be explored further in Chapter 17.

• Heat capacities are usually dependent on temperature
and are expressed in the form:

cP = a+ bT + cT 2

for the phase of interest.

Energy and Enthalpy Changes in Chemical
Reactions

• Consider a general chemical reaction of the form:
aA + bB + · · · = lL + mM + · · ·

• This may be rewritten as:
lL + mM + · · · - aA - bB - · · · = ∑r

i=1 νiXi = 0 . – p.181/283



• Xi represents the species and νi represents the
stoichiometric coefficients.

• By convention νi < 0 for reactants and νi > 0 for
products. Thus for

1
2 H2 + 1

2 Cl2 = HCl

• νHCl = 1
• νH2

= −1
2

• νCl2 = −1
2

• In terms of this notation, the condition of conservation
of mass becomes:

∆M =
r∑

i=1

νiMi = 0

where Mi is the molar mass of substance i.
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• Consider now internal energy U and enthalpy H

∆U =
r∑

i=1

νiui

∆H =
r∑

i=1

νihi

where ui and hi are the internal energy and enthalpy per
mole of component i.
• Note now that ∆U and ∆H are with respect to the

stoichiometry of the reaction.

• The text then goes on to connect this to Hess’s Law.
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Thermochemistry of Physical Processes

• Consider the changes in U and H for a fluid initially in
equilibrium at p1, V1, T1 moving to a new equilibrium at
p2, V2, T2.
• U and H are state functions, therefore the values of

∆U and ∆H are independent of the path between
the initial and final state.

• Consider a path from the initial state and the final state
that consists of two steps:
• An isochor: the fluid is heated or cooled at constant
V to T2.

• An isotherm: the fluid is held at constant
temperature T2 and the volume is changed until V2

is reached.

• ∆U may be calculated on this path.
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• An infinitesimal change in U is given by:

dU =

(
∂U

∂T

)

V

dT +

(
∂U

∂V

)

T

dV

where dT and dV are the infinitesimal changes in T and
V .

• ∆U can be determined by integrating over this path:

∆U = U(T2, V2)− U(T1, V1)

=
∫ T2,V1

T1,V1

(
∂U

∂T

)

V

dT +
∫ T2,V2

T2,V1

(
∂U

∂V

)

T

dV
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• The first step takes place at constant V . Therefore:

∆Ufirst step =
∫ T2,V1

T1,V1

(
∂U

∂T

)

V

dT =
∫ T2,V1

T1,V1

CV dT

• The second step takes place at constant T . Therefore:

∆Usecond step =
∫ T2,V2

T2,V1

(
∂U

∂V

)

T

dV

• To evaluate this, (∂U/∂V )T needs to be determined.

(
∂U

∂V

)

T

= T

(
∂p

∂T

)

V

− p
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• Thus for the total internal energy change:

∆U =
∫ T2,V1

T1,V1

(
∂U

∂T

)

V

dT =
∫ T2,V1

T1,V1

CV dT

+
∫ T2,V2

T2,V1

{
T

(
∂p(T, V )

∂T

)

V

− p(V, T )
}
dV

• This can be evaluated if the heat capacity CV and the
equation of state are known.

• If the equation of state is not known, then
measurements of p and T at constant V may be used to
evaluate (∂U/∂V )T .

• To determine the enthalpy change, a different two step
path is more convenient.
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• Continued:
• An isobar: the fluid is heated or cooled at constant p

to T2.
• An isotherm: the fluid is held at constant

temperature and the pressure is changed until p2 is
reached.

• An infinitesimal change in H is given by:

dH =

(
∂H

∂T

)

P

dT +

(
∂H

∂p

)

T

dp

• It can be shown that:
(
∂H

∂p

)

T

= V − T
(
∂V

∂T

)

p
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• Thus the total enthalpy change, ∆H, may be
determined:

∆H = H(T2, p2)−H(T1, p1)

=
∫ T2,p1

T1,p1

(
∂H

∂T

)

p

dT +
∫ T2,p2

T2,p1

(
∂H

∂p

)

T

dp

=
∫ T2,p1

T1,p1

CpdT

+
∫ T2,p2

T2,p1

{
V (p, T )− T

(
∂V (T, p)

∂T

)

p

}
dp
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• When work other than pV work is involved:

dU = d̄q +d̄wpV +d̄wX

dH = (d̄q)p +d̄wX

• Hess’s Law applies to the heat capacities, Cp and CV .

Introduction to Phase Changes

• This section will be omitted (for now).

Standard States

• This section is to be reviewed, but not in class.

Thermochemistry of Solutions

• This section is to be reviewed, but not in class.
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Molecular Interpretation of Physical Processes

• This section is to be reviewed, but not in class.

Bond Energies

• This section is to be reviewed, but not in class.

Some Energy Effects in Molecular Structures

• This section is to be reviewed, but not in class.

Lattice Energies of Ionic Crystals

• This section is to be reviewed, but not in class.
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The Concept of Entropy: Relationship to the
Energy Level Spectrum of a System

• The first law of thermodynamics allows the definition of
heat and work in terms of energy changes.

• The first law of thermodynamics also restricts the class
of possible processes to those that conserve energy.

• But processes that conserve energy do not necessarily
occur.

• The first law does not predict whether a process will
actually occur.

• For example, consider a box with two compartments.
• Each compartment is filled with a different gas.
• A valve is opened between the compartments.
• The gases mix and energy is conserved.
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• But demixing of the gases is also consistent with the
first law.
• Yet it is never observed.

• Consider an adiabatic bomb calorimeter filled with H2

and O2.
• By the first law, energy is conserved since energy is

unable to leave the system as work or heat.
• The reaction:

H2 + 1
2 O2 = H2O

is vigorously exothermic and can be initiated with a
slight perturbation (such as a spark).

• The first law is unable to predict whether this
reaction will occur in a given set of conditions.

• Consider two systems in contact through a diathermal
wall, but otherwise isolated.
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• Such systems are observed to spontaneously reach a
common temperature.

• Although it is consistent with the first law, it is never
observed that the systems spontaneously change such
that the warmer system becomes hotter and the cooler
system cools further.

• Knowing the energy change of the system associated
with a process is insufficient to predict the direction of
the process.

• There are many spontaneous processes that are either
exothermic or endothermic.
• Mixing of water with sulfuric acid is exothermic.
• Mixing of water with ammonia is endothermic.

• Criteria in addition to the first law is required to predict
spontaneity.
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• The thermodynamic function of entropy is needed.

• The second law of thermodynamics describes equilibrium
in terms of entropy.

• Derivatives of entropy with respect to the parameters
that describe the constraints of the system determine
the stability of equilibrium.

• If the energy is constant, entropy determines whether or
not a process is spontaneous.

• The second law of thermodynamics can be considered
from two points of view.
• One approach will be with respect to the

redistribution of a population of molecules over
energy levels as energy enters or leaves the system as
heat.
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• How much information about the microscopic states of a
system is contained by the specification of the
macroscopic parameters will be considered.

• Also considered will be degeneracy of the energy
spectrum. (Degeneracy is related the number of
distributions that have the same energy.)

• Statistical mechanics deals with the most probable
distributions that are consistent with a particular energy.

• Statistical mechanics shows that in most cases the most
probable distribution is sharply peaked.

• It also shows that the macroscopic properties are
somewhat insensitive to the details of the energy
spectrum.

• The second law will then be considered from a
macroscopic perspective.
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The Relationship between Average Properties and
Molecular Motion in an N-Molecule System: Time
Averages and Ensemble Averages

• Macroscopic properties have been related to averages of
microscopic properties.

• Three questions arise:
• Why is averaging used?
• Which type of average is correct?
• Do different averaging processes give the same

description of the system?

• Averaging is used because a thermodynamic system of
many molecules is described by a few macroscopic
variables.
• The thermodynamic description is consistent with

some type of averaging.
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• The thermodynamic description is coarser than the
microscopic description.

• To discern the type of averaging to be used and whether
the type of average affects the result requires careful
consideration of how measurements are made.

• Already considered have been:
• The treatment of all molecules as independent

particles.
• The momentum transferred by one molecule per unit

area per unit time.
• The sum of the contributions all molecules moving in

the appropriate direction to momentum transport
per unit time per unit area.
• To do this, the distribution function f(v) is

assumed to be independent of time.
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• Assuming that the distribution function f(v) is
independent of time is equivalent to following the
trajectory of a single molecule for a very long time and
averaging the momentum transported across the plane
each time it crosses the plane.

• But, what exactly does this type of equivalency mean?

• Successive crossings of the plane by different molecules
are not uniform in time.
• Instantaneous rates of momentum vary with time.
• But at equilibrium, the average rate of crossing the

plane must be independent of time.

• Consider the time average of momentum transfers
occurring in some long time interval =.
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• Continued:
• If = is short (i.e. the interval between crossing is

comparable to =, then averages over that time
interval will fluctuate with that time scale.

• If = is large (i.e. the interval between crossings is
small relative to =), then the average over = is
independent of =.

• Now consider following the trajectory of a single
molecule in a gas.
• If it is followed long enough, it will approach

arbitrarily close to each point within the volume.
• It will also approach arbitrarily close to each velocity

in the velocity distribution.
• This is the quasi-ergodic hypothesis.
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• If the gas is dilute, collisions between molecules are so
infrequent that they may be ignored.
• In this case it is feasible to follow the trajectory of a

particular molecule sufficiently long to compute the
time average of a mechanical quantity.

• The distance that the molecule travels in time t
grows linearly with t.

• The contributions to momentum transport across a
plane could be summed and then divided by t.

• Then taking the limit as t goes to infinity becomes
the equivalent to averaging over a distribution
function.

• If the gas is not dilute, then the molecule is almost
always within the force field of another molecule.

• The trajectory is very complicated.
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• In such cases, calculation of the trajectory is
computationally impossible.

• An alternative method is needed to relate molecular
properties to macroscopic properties.

• The alternative approach was proposed independently by
Gibbs and by Einstein.

• Recall that for a given macroscopic state of the system,
there are many microscopic states that are consistent
with the macroscopic state.

• Instead of one system in a microscopic state consistent
with the macroscopic state, many such systems in
different microstates are constructed.
• This collection of systems encompasses the entire

distribution of microstates that match the
macrostate.
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• Continued:
• Each member system of the collection is a replica

system.
• The entire collection is called an ensemble.

• Averages may be calculated by considering the quantity
of interest for each of the replicas, then averaging over
the entire ensemble.

• Statistical mechanics takes as a postulate that the
ensemble average is equal to the time average in the
limit of infinitely long time.

• Ensemble averages are easier to calculate than are time
averages.

• This postulate follows from the quasi-ergodic hypothesis.
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• To understand the quasi-ergodic hypothesis, consider a
geometric visualization of molecular dynamics.
• Classical mechanics will be used.
• Assume that the molecules have no internal

structure.
• Consider a many dimensional coordinate system that

describes the position and momentum of N particles
in volume V .
• 6N axes are required.
• There are 3N position coordinates
x1, y1, z1, . . . , xN , yN , zN .

• There are 3N momentum coordinates
px1 , py1 , pz1 , . . . , pxN , pyN , pzN .

• This space is called the phase space of the N
molecule system.
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• Phase space is assumed to be Cartesian with distances
between two points given by:

D(w,w∗) =




6N∑

j=1

(wj − w∗j )2




1/2

where wj and w∗j are the j elements of the vector of

coordinates and momentum describing point w or w∗ in
6N dimensional phase space.

• For a given value of energy, the possible values of
coordinates and momentum will describe a surface in
phase space.
• For a perfect gas, energy depends only on the

momenta of the particles.
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• The total energy is:

E =
(p2
x1

+ . . . p2
zN )

2m

which describes a sphere in 3N dimensions.

• If the molecules interact, then the energy depends also
on the instantaneous positions.
• The total energy expression still describes a surface,

but that surface is much more complicated.
• If a trajectory on an isolated system is considered,

then the trajectory moves on the surface in phase
space that is defined by energy conservation.

• Consider the difference between time averaging and
ensemble averaging.
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• The trajectory moving over the surface defined by energy
conservation will sample coordinates and momenta
consistent with the total energy.
• The time average will average over these.

• For an ensemble, each replica system has the same value
of E, V and N .

• Therefore the momenta and coordinates will be a
representative point on the same surface considered for
the time averaging.

• Different replicas will will have different representative
points, but all points lie on the same surface.

• The possible points will densely cover the surface.

• Unless the time average covers this surface in the same
way as the ensemble, the averages will be different.
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• There exist conditions for which they are equivalent.

• The ensemble average is the fundamental concept in the
description of equilibrium.
• By definition, a macroscopic property of a system is

to be identified with the ensemble average of the
corresponding microscopic dynamical property.

• This definition can be justified by the comparison of
theory and observation.

• Ergodic theory as applied to statistical mechanics
explores the equivalence of time and ensemble averages.

• The ergodic hypothesis as originally formulated by
Boltzmann is incorrect.
• Boltzmann postulated that a trajectory representing

the time evolution of the system would pass through
every point on the energy surface.
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• This cannot occur because:
• A solution to an equation in mechanics has a unique

solution which never crosses itself.
• The trajectory is of lower dimensionality than the

surface and so can thus never fill the higher
dimensional energy system.

• The quasi-ergodic hypothesis makes a weaker statement
about the trajectory on the energy surface.

• Birkhoff (1931) proved that if a boundary on an energy
surface could not be constructed such that a trajectory
originating from a representative point would lie entirely
on one side of the boundary then the trajectory will pass
arbitrarily close to every point on the energy surface.

• The quasi-ergodic hypothesis is valid only in classical
mechanics.
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• The quasiergodic hypothesis cannot be rigorously proven,

• There are other difficulties in basing a description of
equilibrium on ergodicity.
• Any microscopic description of a system moving to

equilibrium should have a time-independent
description of the equilibrium state.

• That a system is quasi-ergodic is necessary, but not
sufficient, to give a time independent average.
• A quasi-ergodic trajectory can also be quasi-periodic,

such as in the case of couples oscillators with an
irrational ratio of frequencies.

• Two trajectories can start at points close together on
the energy surface.
• As the trajectories evolve, they remain close

together.
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• The distance between them grows smoothly with time.

• If reversibility is to be avoided, more turbulent
trajectories are needed.

• These turbulent trajectories are associated with mixing
and diverge exponentially with time.
• The trajectory is chaotic and does not return to the

initial state.
• Thus mixing implies quasi-ergodicity.
• Simulation studies have demonstrated mixing and

quasi-ergodicity.
• For general mechanical systems, there exist energy

regions which exhibit dynamical chaos.
• In the limit of thermodynamic size (N ≈ 1023),

ensemble averages satisfactorily describe equilibrium
properties.
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• To use ensemble averages in place of time averages, a
number of issues must be considered.
• The mixing property has been established only for

classical mechanics.
• Quantum ergodic theory is not well developed.
• The use of ensemble averages is valid both quantally

and classically.
• Equilibrium is defined as being invariant with time.
• This neglects fluctuations about equilibrium.
• Ensemble averages permit the study of these

fluctuations.
• The type of the equilibrium that exists depends on

the constraints.
• Constraints are more easily implemented in

ensembles than in trajectories.
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Ensembles and Probability Distributions

• Consider tossing a coin:
• It can land either head or tails.
• Which it will be cannot be predicted with certainty.
• If the coin is balanced, then head and tails have

equal probability.
• For a large number of tosses, the number of heads

should be approximately equal to the number of tails.
• But other outcomes are possible, although not as

likely.

• For a single toss of the balanced coin, the probability of
heads is 1

2 .

• The probability of tails is also 1
2 .

. – p.219/283



• Consider n tosses.
• The probability that n1 will be heads is:

n!

n1!(n− n1)!

(
1

2n

)

where n!/n1!(n− n1)! is the number of ways that n1

heads could occur regardless of order and 2n is the
number of possible sequences of heads and tails.

• For 4 tosses this predicts:
• 1/16 will be all heads and 1/16 will be all tails.
• 4/16 will be 3 heads and 1 tail and 4/16 will be 1

head and 3 tails.
• 6/16 will be 2 heads and 2 tails

• For 400 tosses, the probability that 200 will be heads is
5× 1022 more likely than 100 of 400 tosses being heads.. – p.220/283



• Now consider this in the context of molecules in a gas.
• Molecules of a gas are in motion.
• The number of molecules in a fixed volume element

will vary from one moment to the next.
• Consider a perfect gas of N molecules in a volume
V .

• Now consider some volume element ω within the
container.

• ω/V is the fraction of the total volume occupied by
ω.

• Assume that the gas is uniformly distributed.
• The probability of finding a particular molecule

within ω is ω/V
• The probability of all N molecules being within ω is

(ω/V )N .
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• If ω is small with linear dimensions comparable to
molecular separations, then the number of molecules in
ω would most likely be 0,1, or 2.

• If ω was 0.1 of the total volume, then N/10 molecules
(with small fluctuations) would be most likely to be
found within ω.

• P (N1) is the probability distribution that describes the
probability of finding N1 in ω and N −N1 in V − ω.

P (N1) =
N !

(N −N1)!N !

(
ω

V

)N1
(
V − ω
V

)N−N1

• The relative fluctuation in the number of molecules in ω
decreases as ω increases and is given by (Nω/V )2.

• The relative deviation is a volume of 1 mm3 is of the
order of 10−8 at room temperature and pressure.. – p.222/283



• The relationship between an ensemble and the
probability distribution must be considered.

• Macroscopic density does not vary perceptibly from
point to point in a gas at equilibrium.

• In applying probability to the study of molecules the
following must be considered:
• The relationship between the definition of the

probability distribution and the class of events being
described.

• The relationship between the probability and the
fundamental classical or quantum description of the
system.

• An ensemble is a collection of replica systems.

• The following must be specified:
• The nature of the collection. . – p.223/283



• Continued:
• The set of possible states for the objects composing

the collection
• Any other relevant details.

• The probability of finding a characteristic is the fraction
of replicas that possess the characteristic.

• The probability depends on the nature of the ensemble.

• Replicas composing the ensemble are consistent with the
constraints.

• Consider an ensemble composed of pennies:
• Whether they are heads up or tails up does not need

to be specified since they are included in the
properties of a penny.

• Consider an ensemble of containers of gas having rigid
adiabatic walls and the same density of molecules. . – p.224/283



• It is not necessary to state whether the pressures in all
containers are the same.

• There is a relationship between the external constraints
defining a macroscopic system and the nature of the
corresponding ensemble.
• This allows the establishment of correspondence

between macroscopic and microscopic approaches to
the behaviour of matter.

• Consider the number of replicas N within the ensemble
to be sufficiently large that that the limit N →∞ may
be taken.
• This means that the probability distribution function

may be treated as continuous and may be considered
in terms of a probability density.
• For a discrete probability function, the probability

of x occurring is considered. . – p.225/283



• For a continuous probability function, the probability
that x is between a and b is considered.

• This probability is expressed in terms of an integral over
a probability density, P(x):

P (x1 ≤ x ≤ x2) =
∫ x2

x1

P(x)dx

• If x2 = x1 + dx then:

P (x1 ≤ x ≤ x1 + dx) = P(x)dx

• Note that P (x) is dimensionless, but P has units
x−1.

• It is possible to relate this to a discrete distribution by
dividing x into arbitrarily small intervals ∆ and labelling
each with an index i. . – p.226/283



• Then:
P (xi) = P(xi)∆

This is valid as long as ∆ is small enough for P to be
treated as a constant over the interval.

• Analogously to continuous distribution functions,
averages can be determined using discrete probability
functions.

• Let x be a discrete variable from the set x1, . . . , xn with
probabilities P (x1), . . . , P (xN ).

• The average value of x (also known as the arithmetic
average or the mean or expectation value) is:

〈x〉 =
x1P (x1) + x2P (x2) + · · · xNP (xN )

P (x1) + P (x2) + · · ·P (xN )
=

∑
i xiP (xi)∑
i P (xi)
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• The mean value of f(x) is:

〈f(x)〉 =

∑
i f(xi)P (xi)∑

i P (xi)

• If (f(x) = xn, the 〈f(x)〉 is the nth moment of P (x)

• For a continuous variable x and continuous f(x), the
equations become:

〈x〉 =

∫
xP(x)dx
∫ P(x)dx

〈f(x)〉 =

∫
f(x)P(x)dx
∫ P(x)dx

. – p.228/283



• From this follows relations:

〈f(x) + g(x)〉 = 〈f(x)〉+ 〈g(x)〉

〈cf(x)〉 = c〈f(x)〉
• Probability distributions are often normalized:

∑

i

P (xi) = 1

∫
P(x)dx = 1

• Normalization is not necessary if only relative
probabilities are of interest.

• The spread of a probability density distribution P(x) is
given by 〈x2〉 − 〈x〉2
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• Except when P(x) is a delta function, 〈x2〉 > 〈x〉2 where
〈x2〉 =

∫
x2P(x)dx

• One implication of a distribution having width is the
possibility of fluctuations.
• There is a nonzero probability of finding a value of x

that differs from the average value of x.
• The probability of a fluctuation depends on its

deviation from the mean value.
• These fluctuations show up in fluctuations of the

macroscopic variables.

• Another property of probability distributions that is
important is the concept of joint probability.
• Consider two variables, x and y, with probability

density distributions P1(x) and P2(y) respectively.
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• The joint probability distribution is
P(x, y)dxdy = P1(x)P2(y)dxdy

• This gives the probability of finding x between x and
x+ dx and y between y and y + dy if P1(x) and P2(y)
are independent of each other.

• If P1(x) and P2(y) are not independent but rather are
correlated, then the joint probability includes a
correlation function:

P(x, y)dxdy = P1(x)P2(y)g(x, y)dxdy

or P(x, y)dxdy = P1(x)P2(y)[1 + h(x, y)]dxdy

where g(x, y) and h(x, y) are the correlation functions.
• When x and y are independent, g(x, y) = 1 and
h(x, y) = 0

. – p.232/283



Some Properties of a System with Many Degrees
of Freedom: Elements of the Statistical Theory of
Matter at Equilibrium

• Consider a sample containing a large number of
molecules, N , in volume V .

• The energy of the system is between E and E + dE with
dE/E << 1.

• An energy spectrum exists for the system.
• The details of the spectrum do not need to be

known.

• There are an enormous number of quantum states
consistent with the macroscopic constraints of E, V,N .

• There are many distributions over the energy levels that
are consistent with E, V,N .
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• The equations of motion for N molecules cannot be
solved exactly (classically or quantally).
• Therefore the exact mechanical behaviour of the

system is not determined and is not available for a
macroscopic system.

• This is not of interest in macroscopic
thermodynamics.

• Ω(E, V,N) is the number of states with energy between
E and E + dE.
• Each solution of the N molecule Schrödinger

equation gives a small number of the Ω(E, V,N)
states.

• The properties of the macroscopic variables depend
only on Ω(E, V,N), not the microscopic details.
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• The fundamental postulate of equilibrium statistical
mechanics is:
“All possible quantum states of an isolated system
consistent with a given set of macroscopic parameters of
constraint are to be considered as equally probable”.
• This is also known as the postulate of equal a priori

probability.
• This is an assumption which has been validated by

the success of statistical mechanics in producing
results consistent with observations.

• To apply this postulate an ensemble of systems is
considered.

• A large number of replica systems is constructed, each
consistent with the macroscopic variables E, V,N .

• All other properties are allowed to vary freely.
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• Suppose that all possible quantum states consistent with
the definition of the ensemble are represented in the
ensemble.
• The relative frequency definition of probability is in

agreement with the assumption of equal a priori
probability of all quantum states consistent with
E, V,N .

• Therefore the probability of a random choice of a
replica from the ensemble being the same as an
arbitrarily chosen member of the ensemble is 1/N
when there are N replicas in the ensemble.

• Consider the constraints used to define the ensemble.

• The equilibrium macroscopic properties of an isolated
system are independent of time.

• Therefore the distribution over the energy levels is
independent of time. . – p.236/283



• Constants of motion include total energy, total linear
momentum, and total angular momentum of the system.

• In an isolated system, no energy is transferred across the
borders and thus no forces act upon the system.
• Therefore there is no change in either linear or

angular momentum.

• The constraints make it possible to define an appropriate
probability distribution.

• Often it is sufficient to use only one of the constants of
motion, typically the total energy (since it is used to
define the ensemble).
• The other constants of motion are allowed to vary

freely.

• Consider an ensemble of replica systems, each with
volume V and number of molecules N .
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• The ensemble is specified by the requirement that the
energy be between E and E + dE.
• The number of quantum states with energy less than
E is Γ(E, V,N).

• Therefore the number of quantum states with energy
between E and E + dE is:

Ω(E, dE, V,N) = Γ(E + dE, V,N)− Γ(E, V,N)

• Ω(E, dE, V,N) describes the energy spectrum including
degeneracy and dependence on volume.
• The dependence on V is due to the effect of the

boundary conditions on the energy spectrum of the
isolated system.

• In large systems, the dependence of Ω on the energy
interval dE is insignificant.
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• In large systems, the dependence of Ω on the energy
interval dE is insignificant.
• As the system becomes larger the dependence of Ω

on dE is increasingly insignificant.
• This is a consequence of the Schrödinger equation,

the solution of which depends on the form of the
potential and the boundary conditions.

• The solutions to the Schrödinger equation for particles in
a box are of the form sin kx and cos kx.
• The boundary conditions assume that the walls of

the box are infinitely repulsive (there is zero
probability of the particle being outside the box).

• These boundary conditions force k and consequently
the energy to have finite values.

• The larger the box, the greater number of finite
energies allowed in the spectrum. . – p.239/283



• In the limit of an infinite box (i.e. a free particle), the
allowed values of k become continuous and the energy
spectrum becomes a continuum.

• The fact that a macroscopic system contain a large
number of molecules allows the analysis to be simplified.

• Divide the energy scale into intervals of dE with
dE << E
• For a large system the interval dE contains many

energy levels.
• The number of states between E and E + dE is

Ω(E).
• Ω(E) varies with E and obeys the relation:

Ω(E) =

(
∂Γ

∂E

)
dE = ω(E)dE
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• ω(E) is the density of states and is characteristic of the
system.

• The sensitivity of Ω(E) and ω(E) to the energy E of the
system will now be considered.

• It can be shown that Ω(E) is insensitive to the details of
the nature of the energy spectrum in the limit of a large
system.
• This is a characteristic of a macroscopic parameter.
• Ω(E) connects the microscopic properties of the

system to the macroscopic system.

• ν quantum numbers describe a system of energy E.

• The energy per degree of freedom is:

ε =
E

ν
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• For a perfect gas with 3N degrees of freedom:

εperfect gas =
1

2
kBT

• In classical mechanics, the total energy is divided among
the degrees of freedom such that the average energy per
degree of freedom is 1

2kBT .

• In quantum mechanics, this is true if kBT is large
relative to the energy spacings, but not when kBT is
small relative to the energy spacings.
• For real molecules at room temperature, kBT is

often small relative to the spacing of vibrational
levels.

• The equipartition of energy (ε = E/ν) will be used as an
approximation to further explore the properties of Ω(E)
for an arbitrary system with ν degrees of freedom.
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• Consider Γ(E), the total number of quantum states with
energy less than E.
• The energy is separable into contributions from ν

degrees of freedom.
• Each of the possible contributions contributes a

state to Γ(E).
• Ei is the energy of the ith degree of freedom.
• Γ(Ei) is the number of states of the ith degree of

freedom with energy less than Ei.
• Then

∏ν
i=1 Γi(Ei) is the total number of states with

energy less than E for a particular subdivision of
energy.

• For all possible subdivisions of E, the total number
of states with energy less than E is:
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Γ(E) =
∑

Ei

ν∏

i=1

Γi(Ei)

where E =
∑
iEi.

• Note that the summation over Ei is over all possible
ways of subdividing the energy that are consistent with
the constraint of conservation of energy.

• To estimate Γ(E) require that each of the Ei be the
average energy ε.
• This is equivalent to choosing the one term in the

sum over all the subdivisions of energy that has
uniform distribution of energy over all the degrees of
freedom.

• This gives:
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Γ(E) =
ν∏

i=1

Γi(ε) = [Γ1(ε)]ν

• Although crude, this can give an adequate order of
magnitude estimate.

• It is assumed that all degrees of freedom are sufficiently
alike that the same average behaviour may be ascribed
to them.

• Expansion in a Taylor series gives:

Ω(E) =
∂Γ

∂E
dE =

∂

∂E

{
[Γ1(ε)]ν

}

= νΓν−1
1

∂Γ1

∂(νε)
dE = Γν−1

1

∂Γ1

∂ε
dE
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• Γ1(ε) increases as E increases.
• Since ν is very large in a macroscopic system, Ω(E)

increases rapidly with E.
• The rate of increase is evident when Ω(E) is

rewritten as:

ln Ω(E) = (ν − 1) ln Γ1(ε) + ln

(
∂Γ1

∂ε
dE

)

• Recall that dE is much larger than the separation of
the energy levels.

• This means that ln (∂Γ1/∂ε) dE is negligible relative
to the first term of the expression.
• Since Γ1(ε) is proportional to ε, (∂Γ1/∂ε) is

Γ1(ε)/ε.
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• For simple model systems, Γ1(ε) is proportional to εα

where α is small.
• For a harmonic oscillator, α = 1
• For a particle in a box, α = 1/2.

• This means that ln (∂Γ1/∂ε) dE is a factor of ν smaller
than (ν − 1) ln Γ1(ε)

• The magnitude of (ν − 1) ln Γ1(ε) can be estimated.
• ∆ is the average spacing between energy levels.
• Therefore Γ1(ε) is of the order of ε/∆ and

ln Ω(E) = ν ln Γ1(ε)

• This means that Ω is of order magnitude of ν or
better for E well above the ground state.
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The Influence of Constraints on the Density of
States

• The role of constraints in defining the density of states
ω(E) or the number of states Ω(E) between E and
E + dE is now examined.

• Consider a perfect gas, described as N particles in a
cubical box of volume V = a3

• The wave function for a single particle in a cubical
box is:

Ψj = A sin
njxπx

a
sin

njyπy

a
sin

njxπz

a

for 0 < x < a, 0 < y < a,0 < z < a, where
• j = 1, . . . , N labels the particles,
• A is the normalization constant.
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• The quantum numbers njx, njy, njz satisfy:

n2
jx + n2

jy + n2
jz =

2mεj

π2h̄2 a
2

where εj is the energy of particle j.
• The values of njx, njy, njz are positive.

• The total energy of N particles is:

E =
N∑

j=1

εj

• This may be rewritten as:

N∑

j=1

(n2
jx + n2

jy + n2
jz) =

2mE

π2h̄2 a
2
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• The total number of states with energy below E can be
determined by the number of states with integer
coordinates lying within the 3N dimensional
hyperspherical surface with radius Rs of

(2mEa2/π2h̄2)1/2

• The dimensionality of 3N comes from the allowed
values of the quantum numbers njl where
j = 1, . . . , N and l = x, y, z.

• When the box is large, the spacing between energy levels
is small and the volume enclosed by the hyperspherical
surface is:

π3N/2

(3N/2)!
R3N
s =

π3N/2

(3N/2)!

(
2mEa2

π2h̄2

)3N/2
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• Since only positive values of njl are allowed, the volume

of interest is the positive orthant which is ( 1
2)3N of the

total volume. Therefore:

Γ(E) =
1

(3N/2)!

(
mEa2

2πh̄2

)3N/2

• The number of states between E and E + dE is:

Ω(E) =

[
∂Γ(E)

∂E

]
dE =

E3N/2−1

((3N/2)− 1)!

(
ma2

2πh̄2

)3N/2

dE

• Therefore, the density of states is:

ω(E) =
E3N/2−1

((3N/2)− 1)!

(
ma2

2πh̄2

)3N/2

. – p.251/283



• Note that (a2)3N/2 is V N and it is the boundary
condition that defines the energy spectrum.

• In more general cases, other macroscopic variables
(besides V ) can affect the energy spectrum.

• Consider a macroscopic system described by the set of
variable:

y1 = α1, y2 = α2, . . . , yn = αn

• There exists a corresponding dependence of the
energy level spectrum on these variables.

• In this case, the number of states between E and
E + dE is:

Ω = Ω(E, y1, y2, . . . , yn)

when yi is between yi and yi + dyi
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• If a constraint is removed, then the number of states is
increased:

Ω(E, y1, y2, . . . , yn−1) > Ω(E, y1, y2, . . . , yn)

• In most physical processes, constraints are altered
instead of being removed.
• How does Ω(E, y) change in such cases?
• Consider N particles in a box. The constraint is the

volume of the box.
• By definition, relaxation of a constraint always leads

to:
Ωf (E, y) > Ωi(E, y)

• Consider an isolated system at equilibrium with a
particular set of constraints.
• This system has Ωi equally accessible states.
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• Some constraints are removed or relaxed by an external
change involving no work.

• The new system thus created has Ωf equally accessible
states.

• Therefore:
Ωf ≥ Ωi

.

• Consider an ensemble of systems that are in equilibrium
with the constraints.
• All Ωi accessible states are equally probable.

• Let one constraint be relaxed or removed.
• At the instant that the constraint is changed, the

system is still in one of the Ωi states.
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• The system is not at equilibrium.

• The approach to equilibrium requires that the Ωf states
be occupied with equal probability.

• The system changes until a new equilibrium is achieved,
consistent with the remaining constraints.

• Now consider the case in which an additional constraint
is imposed.

• The system cannot go to an equilibrium consistent with
these constraints unless work is done on the system.

• Consider the particle in a box model of the perfect gas.

• As shown in Figure 15.2(a), the gas occupies half the
volume of an isolated system.
• The system is separated into two equal volumes with

the other half of the system is evacuated.
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• The barrier is removed by the expenditure of a negligibly
small amount of work.

• The gas expands to fill the entire volume V = 2Vi.

• For this process:
Ωf ≥ Ωi

• Now consider reinsertion of the barrier.

• The system does not return spontaneously to its initial
state.

• In this case the relationship between Ωf and Ωi is not
the inverse foe the previous case.

• Recall:

Ω =

[
∂Γ(E)

∂E

]
dE =

E3N/2−1

((3N/2)− 1)!

(
ma2

2πh̄2

)3N/2

dE
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• Therefore

Ω(E, V,N) = CV N
(
E

N

)3N/2

dE

where C is a constant independent of E and V .

• This was derived using the Stirling Approximation.

N ! ≈ NN exp(−N)

• For the initial state for 15.2b, the particles are anywhere
within volume V .

• For the final state for 15.2, N/2 particles are in each of
the two subvolumes V/2.

• The energy per particle has not changed in this process.
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• There are [N !/(N/2)!(N/2)!] ways that N/2 particles
can each be placed in the subvolumes.

• Therefore:
Ωf (E, V,N) =

C
N !(

N
2

)
!
(
N
2

)
!

(
V

2

)N/2 (E/2
N/2

)3N/4 (
V

2

)N/2 (E/2
N/2

)3N/4

dE

= CV N
(
E

N

)3N/2

dE

• This means that Ωf = Ωi and the insertion of the barrier
has not changed the system.

• To restore the system to the initial state given in 15.2a,
the gas must be removed from one of the compartments.
• Compress the gas into a subvolume by a sliding wall.
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• This would involve energy being put into the system as
work and would result in a temperature change.

• There is no way to get back to the original state of
15.2a without transferring work or heat across the
boundary of the system.

• Once the barrier is removed and the molecules distribute
themselves over the Ωf states, the reimposition of the
boundary condition does not cause the system to
spontaneously return to the initial state.
• This is an irreversible process.

• The groundwork has now been laid for the comparison of
statistical mechanical and the thermodynamic
descriptions of a spontaneous process.

• Consider a process in an isolated system that takes the
system from an initial to a final state.
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• If this final state is such that the imposition or relaxation
of constraints without the requirement of external work
cannot recreate the initial state, the process is
irreversible.

• If the imposition or relaxation of constraints without
external work recreates the initial state, the process is
reversible.

• For processes at constant energy and constant volume.
• If some of the constraints defining an isolated system

are relaxed, Ωf ≥ Ωi

• If Ωf = Ωi, the systems of the ensemble are
distributed over the same accessible states before
and after the constraint is relaxed.

• The system is in equilibrium at all steps of the
process and the transition i→ f is reversible.
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• If Ωf > Ωi, the transition i→ f is irreversible.

• In Chapter 13, a reversible process was defined in terms
of intensive variables being continuous across the
boundary of the system.
• This involves the system being in contact with some

reservoirs.
• How is a reversible process defined for an isolated

system, which by definition is not in contact with
any reservoirs?

• Consider the system illustrated in Figure 13.3.
• The system is subdivided into two subsystems,

separated by a movable piston upon which weights
rest confining subsystem 1.

• The weights can be moved by a pulley arrangement
between the piston and a ledge at the same height.
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• Therefore moving the weight involves no net work.

• The pulley arrangement is therefore a device to change
constraints inside an otherwise isolated system.

• If the weights are infinitesimally small, the pressure will
be continuous across the piston as subsystem 1 expands
and subsystem 2 is compressed.
• Subsystem 2 may be considered the surroundings of

subsystem 1.

• The thermodynamic definition of a reversible process
requires that every point on the path be infinitesimally
close to an equilibrium state of the system.
• At every point along the path, the relevant intensive

variables are continuous across the boundary of the
system.
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• Therefore the extensive variables of the system must also
be infinitesimally close in value in two states that are
infinitesimally close.

• This is equivalent to Ωf = Ωi since the extensive
variables usually describe the constraints or boundary
conditions defining Ω.

The Entropy: A Potential Function for the
Equilibrium State

• Consider the properties of the number of accessible
states for a composite system.
• The total energy may be distributed over parts of

the system.
• The most probable distribution of the total energy

over the system will be shown to be equivalent to
systems in equilibrium having equal temperatures.. – p.265/283



• This will be the basis of the definition of entropy.
• It will be shown that it is related to work and

internal energy.
• Entropy may be considered as providing a

relationship between microscopic and macroscopic
descriptions of the system.

• Consider two macroscopic systems, A and B with
energies EA and EB respectively.

• Let ΩA(EA) and ΩB(EB) be the number of states
between EA and EA + dEA and between EB and
EB + dEB respectively.

• NA and NB are the numbers of A and B molecules and
are fixed.

• The ensemble is specified by the requirement that
ET = EA + EB is constant.
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• The ensemble consists of pairs of systems, with the
replicas having different distributions of ET between A
and B.

• The volumes VA and VB are independently varied as are
any other constraints.

• The ensemble is defined by the value of ET .

• If system A of a replica pair has energy EA, then system
B has an energy of ET − EA.

• When system A has energy EA it can be in any one
ΩA(EA) equally likely state while system B can
simultaneously be in any one of ΩB(ET − EB) states.

• Every possible state of A can be combined with every
possible state of B, so the total number of states is:

ΩT (ET , EA) = ΩA(EA)ΩB(ET − EB)
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• Since ET is constant, Ω(ET , EA) is a function of EA.

• Now consider the contribution to ΩT (EA) = ΩT (ET , EA)
from different subdivisions of ET between A and B.

• The probability of finding A+ B with the energy of A
between EA and EA + dEA is:

ΩT (EA)
∑
EA ΩT (EA)

where ΩT (EA) is the total number of states accessible
to the total system for a given EA taken over all possible
values of EA.

• Let ∑

EA

ΩT (EA) ≡ C−1
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• Therefore the probability of finding A+ B in a state
with energy between EA and EA + dEA is:

P (EA) = CΩA(EA)ΩB(ET − EB)

• As EA increases, ΓA(EA) increases but ΓB(ET − EA)
decreases.

• However P (EA has a maximum at some E∗A.
• Because ΓA(EA) and ΓB(ET − EA) are rapidly

varying functions, the maximum will be sharp.

• If ΓA and ΓB are treated as continuous functions, then
the maximum may be found by differentiation:

(
∂P (EA)

∂EA

)

V,N

= 0 and
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CΩB(ET − EB)

(
∂ΩA

∂EA

)
+ CΩA(EA)

(
∂ΩB

∂EA

)
= 0

• Dividing by P (EA) and using EA = ET − EB,

(
∂ ln ΩA

∂EA

)

V,N

=

(
∂ ln ΩB

∂EB

)

V,N

• Define

β =

(
∂ ln Ω

∂E

)

V,N

• Therefore βA = βB (which has the same properties as
temperature).

• It can be shown that β = (kBT )−1.
• By definition S = kB ln Ω where S is entropy.
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Entropy: A Summary
• A statement of the Second Law of Thermodynamics is:

“The Entropy of the Universe is increasing.”

• More formal statements include:
• Clausius: It is impossible to devise a continuously

cycling engine that transfers heat from a colder to a
hotter body without doing work on the system.

• Kelvin: It is impossible to devise a continuously
cycling engine that produces no effect other than the
extraction of heat from a reservoir at one
temperature and the performance of an equal
amount of mechanical work.

• Caratheodory: In the neighbourhood of every
equilibrium state of a closed system, there are states
that cannot be reached from the first state along
any adiabatic path by any spontaneous process or
reversible limit of a spontaneous process. . – p.274/283



• This means that reversible adiabats do not cross each
other. (Neither do reversible isotherms.)

• The Second Law gives the condition for spontaneity of a
process.
• Spontaneous processes maximize entropy.

• In Chapter 15, entropy may be defined as:

S = kB ln Ω

• Entropy may also be defined as:

dS =
d̄qrev
T

• Recall that dU = d̄q +d̄w or ∆U = q + w.
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• Entropy is a state function, so if the path of the process
is not convenient for the calculation of the change in
entropy, a convenient alternate path may be selected.
• Any two points in pV space may be joined by a

combination of up to two of the following:
• A reversible adiabat
• A reversible isotherm
• A reversible isobar
• A reversible isochor

Calculation of entropy on various paths.

• Reversible adiabat

d̄qrev = 0;
d̄qrev
T

= 0; dS = 0
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• Reversible isotherm

d̄qrev = dU −d̄w; dS =
dU + pdV

T

• Reversible isobar

d̄qrev = CpdT ; dS =
Cp
T
dT

• Reversible isochore

d̄qrev = CV dT ; dS =
CV
T
dT

• The change in internal energy may be expressed in terms
of entropy: dU = TdS − pdV where T and S are a
conjugate pair of variables. (We have previously
encountered p and V as a conjugate pair). . – p.277/283



• This equation is also known as the master equation of
thermodynamics.

Thermodynamic Potentials

• There are four thermodynamic potentials:
• U internal energy
• H enthalpy
• A Helmholtz free energy
• G Gibbs free energy

• They are related through the pairs of conjugate variables.
• H = U + PV ; dH = dU + pdV + V dp = TdS + V dp
• A = U − TS;
dA = dU − TdS − SdT = −SdT − pdV

• G = U − TS + PV ;
dG = dU −TdS−SdT + pdV +V dp = −SdT +V dp
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• U , H, A, and G are also known as Legendre transforms.

Thermodynamic Potentials as State Functions

• State functions have exact differentials
• This means that cross derivatives are equal
• Consider U .

dU =

(
∂U

∂S

)

V

dS +

(
∂U

∂V

)

S

dV

∂

∂V

(
∂U

∂S

)
=

∂

∂S

(
∂U

∂V

)

• But dU = TdS − pdV . Therefore:

(
∂U

∂S

)

V

= T ;

(
∂U

∂V

)

S

= −p
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• and (
∂T

∂V

)

S

= −
(
∂p

∂S

)

V

• Similarly from the expressions for dH, dA, and dG may
be shown respectively:

(
∂T

∂p

)

S

=

(
∂V

∂S

)

p

(
∂S

∂V

)

T

=

(
∂p

∂T

)

V

−
(
∂S

∂p

)

T

=

(
∂V

∂T

)

p

• These are known as the Maxwell relations.
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The Third Law
• A popular statement of the Third Law of

Thermodynamics is:
“It is impossible to reach absolute zero.”

• More formal statements include:
• In any system in internal equilibrium undergoing an

isothermal process between two states, the entropy
change of the process approaches zero as the
temperature of the system approaches zero.

• The entropy of any system vanishes in the state for
which

T =

(
∂U

∂S

)

V

= 0
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Recommended Reading
• The rest of Chapter 15

• In Chapter 16
• Section 16.1 about statements of the Second Law
• Section 16.2 about reversible processes and cycles
• Section 16.3
• Section 16.4 about the Carnot cycle.

• In Chapter 17
• Section 17.1 about H, A and G.
• Section 17.3 and 17.4 about calculating ∆S for

reversible and irreversible processes.
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