
The Concept of Entropy: Relationship to the Energy Level
Spectrum of a System

The first law of thermodynamics allows the definition of
heat and work in terms of energy changes.

The first law of thermodynamics also restricts the class
of possible processes to those that conserve energy.

But processes that conserve energy do not necessarily
occur.

The first law does not predict whether a process will
actually occur.

For example, consider a box with two compartments.
Each compartment is filled with a different gas.
A valve is opened between the compartments.
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Continued:
The gases mix and energy is conserved.
But demixing of the gases is also consistent with the
first law.

Yet it is never observed.

Consider an adiabatic bomb calorimeter filled with H2

and O2.
By the first law, energy is conserved since energy is
unable to leave the system as work or heat.
The reaction:

H2 + 1
2 O2 = H2O

is vigorously exothermic and can be initiated with a
slight perturbation (such as a spark).
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Continued:
The first law is unable to predict whether this
reaction will be occur in a given set of conditions.

Consider two systems in contact through a diathermal
wall, but otherwise isolated.

Such systems are observed to spontaneously reach
a common temperature.
Although it is consistent with the first law, it is never
observed that the systems spontaneously change
such that the warmer system becomes hotter and
the cooler system cools further.

Knowing the energy change of the system associated
with a process is insufficient to predict the direction of
the process.
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There are many spontaneous processes that are either
exothermic or endothermic.

Mixing of water with sulfuric acid is exothermic.
Mixing of water with ammonia is endothermic.

Criteria in addition to the first law is required to predict
spontaneity.

The thermodynamic function of entropy is needed.
The second law of thermodynamics describes
equilibrium in terms of entropy.
Derivatives of entropy with respect to the parameters
that describe the constraints of the system
determine the stability of equilibrium.
If the energy is constant, entropy determines
whether or not a process is spontaneous.
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The second law of thermodynamics is considered from
two points of view.

One approach will be with respect to the
redistribution of a population of molecules over
energy levels as energy enters or leaves the system
as heat.

How much information about the microscopic
states of a system contained by the specification
of the macroscopic parameters will be considered.
Also considered will be degeneracy of the energy
spectrum. (Degeneracy is related the number of
distributions that have the same energy.)
Statistical mechanics deals with the most probable
distributions that are consistent with a particular
energy.
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Continued:
Statistical mechanics shows that in most cases the
most probable distribution is sharply peaked.
It also shows that the macroscopic properties are
somewhat insensitive to the details of the energy
spectrum.

The second law will then be considered from a
macroscopic perspective.

The Relationship between Average Properties and Molecular Motion
in an N-Molecule System: Time Averages and Ensemble Averages

Macroscopic properties have been related to averages
of microscopic properties.
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Three questions arise:
Why is averaging used?
Which type of average is correct?
Do different averaging processes give the same
description of the system?

Averaging is used because a thermodynamic system of
many molecules is described by a few macroscopic
variables.

The thermodynamic description is consistent with
some type of averaging.
The thermodynamic description is coarser than the
microscopic description.
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To discern the type of averaging to be used and
whether the type of average affects the result requires
careful consideration of how measurements are made.

Already considered have been:
The treatment of all molecules as independent
particles.
The momentum transferred by one molecule per unit
area per unit time.
The sum of the contributions all molecules moving in
the appropriate direction to momentum transport per
unit time per unit area.

To do this, the distribution function f(v) is
assumed to be independent of time.

. – p.8/80



Assuming that the distribution function f(v) is
independent of time is equivalent to following the
trajectory of a single molecule for a very long time and
averaging the momentum transported across the plane
each time it crosses the plane.

But, what exactly does this type of equivalency mean?

Successive crossings of the plane by different
molecules are not uniform in time.

Instantaneous rates of momentum vary with time.
But at equilibrium, the average rate of crossing the
plane must be independent of time.

Consider the time average of momentum transfers
occurring in some long time interval =.
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Continued:
If = is short (i.e. the interval between crossing is
comparable to =, then averages over that time
interval will fluctuate with that time scale.
If = is large (i.e. the interval between crossings is
small relative to =), then the average over = is
independent of =.

Now consider following the trajectory of a single
molecule in a gas.

If it is followed long enough, it will approach
arbitrarily close to each point within the volume.
It will also approach arbitrarily close to each velocity
in the velocity distribution.
This is the quasi-ergodic hypothesis.
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If the gas is dilute, collisions between molecules are so
infrequent that they may be ignored.

In this case it is feasible to follow the trajectory of a
particular molecule sufficiently long to compute the
time average of a mechanical quantity.
The distance that the molecule travels in time t
grows linearly with t.
The contributions to momentum transport across a
plane could be summed and then divided by t.
Then taking the limit as t goes to infinity becomes the
equivalent to averaging over a distribution function.

If the gas is not dilute, then the molecule is almost
always within the force field of another molecule.

The trajectory is very complicated.
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In such cases, calculation of the trajectory is
computationally impossible.

An alternative method is needed to relate molecular
properties to macroscopic properties.

The alternative approach was proposed independently
by Gibbs and by Einstein.

Recall that for a given macroscopic state of the system,
there are many microscopic states that are consistent
with the macroscopic state.

Instead of one system in a microscopic state consistent
with the macroscopic state, many such systems in
different microstates are constructed.

This collection of systems encompasses the entire
distribution of microstates that match the macrostate.
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Continued:
Each member system of the collection is a replica
system.
The entire collection is called an ensemble.

Averages may be calculated by considering the quantity
of interest for each of the replicas, then averaging over
the entire ensemble.

Statistical mechanics takes as a postulate that the
ensemble average is equal to the time average in the
limit of infinitely long time.

Ensemble averages are easier to calculate than are
time averages.

This postulate follows from the quasi-ergodic
hypothesis.

. – p.13/80



To understand the quasi-ergodic hypothesis, consider a
geometric visualization of molecular dynamics.

Classical mechanics will be used.
Assume that the molecules have no internal
structure.
Consider a many dimensional coordinate system
that describes the position and momentum of N
particles in volume V .

6N axes are required.
There are 3N position coordinates
x1, y1, z1, . . . , xN , yN , zN .
There are 3N momentum coordinates
px1 , py1 , pz1 , . . . , pxN , pyN , pzN .
This space is called the phase space of the N
molecule system.
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Phase space is assumed to be Cartesian with
distances between two points given by:

D(w,w∗) =




6N∑

j=1

(wj − w∗j )2




1/2

where wj and w∗j are the j elements of the vector of
coordinates and momentum describing point w or w∗ in
6N dimensional phase space.

For a given value of energy, the possible values of
coordinates and momentum will describe a surface in
phase space.

For a perfect gas, energy depends only on the
momenta of the particles.
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Continued:
The total energy is:

E =
(p2
x1

+ . . . p2
zN )

2m

which describes a sphere in 3N dimensions.

If the molecules interact, then the energy depends also
on the instantaneous positions.

The total energy expression still describes a surface,
but that surface is much more complicated.
If a trajectory on an isolated system is considered,
then the trajectory moves on the surface in phase
space that is defined by energy conservation.
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Consider the difference between time averaging and
ensemble averaging.

The trajectory moving over the surface defined by
energy conservation will sample coordinates and
momenta consistent with the total energy.

The time average will average over these.
For an ensemble, each replica system has the same
value of E, V and N .

Therefore the momenta and coordinates will be a
representative point on the same surface
considered for the time averaging.
Different replicas will will have different
representative points, but all points lie on the same
surface.
The possible points will densely cover the surface.

. – p.17/80



Unless the time average covers this surface in the same
way as the ensemble, the averages will be different.

There exist conditions for which they are equivalent.

The ensemble average is the fundamental concept in
the description of equilibrium.

By definition, a macroscopic property of a system is
to be identified with the ensemble average of the
corresponding microscopic dynamical property.
This definition can be justified by the comparison of
theory and observation.

Ergodic theory as applied to statistical mechanics
explores the equivalence of time and ensemble
averages.
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The ergodic hypothesis as originally formulated by
Boltzmann is incorrect.

Boltzmann postulated that, given enough time, a
trajectory representing the time evolution of the
system would pass through every point on the
energy surface.
This cannot occur because:

A solution to an equation in mechanics has a
unique solution which never crosses itself.
The trajectory is of lower dimensionality than the
surface and so can thus never fill the higher
dimensional energy system.

The quasi-ergodic hypothesis makes a weaker
statement about the trajectory on the energy surface.
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Birkhoff (1931) proved that if a boundary on an energy
surface could not be constructed such that a trajectory
originating from a representative point would lie entirely
on one side of the boundary then the trajectory will pass
arbitrarily close to every point on the energy surface.

The quasi-ergodic hypothesis is valid only in classical
mechanics.

It cannot be rigorously proven,

There are other difficulties in basing a description of
equilibrium on ergodicity.

Any microscopic description of a system moving to
equilibrium should have a time-independent
description of the equilibrium state.
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That a system is quasi-ergodic is necessary, but not
sufficient, to give a time independent average.

A quasi-ergodic trajectory can also be
quasi-periodic, such as in the case of couples
oscillators with an irrational ratio of frequencies.

Two trajectories can start at points close together on the
energy surface.

As they evolve, they remain close together.
The distance between them grows smoothly with
time.
If reversibility is to be avoided, more turbulent
trajectories are needed.
These turbulent trajectories are associated with
mixing and diverge exponentially with time.
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Continued:
The trajectory is chaotic and does not return to the
initial state.
Thus mixing implies quasi-ergodicity.
Simulation studies have demonstrated mixing and
quasi-ergodicity.
For general mechanical systems, there exist energy
regions which exhibit dynamical chaos.
In the limit of thermodynamic size (N ≈ 1023),
ensemble averages satisfactorily describe
equilibrium properties.

To use ensemble averages in place of time averages, a
number of issues must be considered.
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Continued:
The mixing property has been established only for
classical mechanics.
Quantum ergodic theory is not well developed.
The use of ensemble averages is valid both
quantally and classically.
Equilibrium is defined as being invariant with time.

This neglects fluctuations about equilibrium.
Ensemble averages permit the study of these
fluctuations.

The type of the equilibrium that exists depends on
the constraints.

Constraints are more easily implemented in
ensembles than in trajectories.
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Ensembles and Probability Distributions

Consider tossing a coin:
It can land either head or tails.
Which it will be cannot be predicted with certainty.
If the coin is balanced, then head and tails have
equal probability.
For a large number of tosses, the number of heads
should be approximately equal to the number of tails.
But other outcomes are possible, although not as
likely.

For a single toss of the balanced coin, the probability of
heads is 1

2 .

The probability of tails is also 1
2 .
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Consider n tosses.
The probability that n1 will be heads is:

n!

n1!(n− n1)!

(
1

2n

)

where n!/n1!(n− n1)! is the number of ways that n1

heads could occur regardless of order and 2n is the
number of possible sequences of heads and tails.

For 4 tosses this predicts:
1/16 will be all heads and 1/16 will be all tails.
4/16 will be 3 heads and 1 tail and 4/16 will be 1
head and 3 tails.
6/16 will be 2 heads and 2 tails
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For 400 tosses, the probability that 200 will be heads is
5× 1022 more likely than 100 of 400 tosses being heads.

Now consider this in the context of molecules in a gas.
Molecules of a gas are in motion.
The number of molecules in a fixed volume element
will vary from one moment to the next.
Consider a perfect gas of N molecules in a volume
V .
Now consider some volume element ω within the
container.
ω/V is the fraction of the total volume occupied by ω.
Assume that the gas is uniformly distributed.
The probability of finding a particular molecule within
ω is ω/V
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The probability of all N molecules being within ω is
(ω/V )N .

If ω is small with linear dimensions comparable to
molecular separations, then the number of molecules in
ω would most likely be 0,1, or 2.

If ω was 0.1 of the total volume, then N/10 molecules
(with small fluctuations) would be most likely to be
found within ω.

P (N1) is the probability distribution that describes the
probability of finding N1 in ω and N −N1 in V − ω.

P (N1) =
N !

(N −N1)!N !

(ω
V

)N1
(
V − ω
V

)N−N1
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The relative fluctuation in the number of molecules in ω
decreases as ω increases and is given by (Nω/V )2.

The relative deviation is a volume of 1 mm3 is of the
order of 10−8 at room temperature and pressure.
Macroscopic density does not vary perceptibly from
point to point in a gas at equilibrium.

In applying probability to the study of molecules the
following must be considered:

The relationship between the definition of the
probability distribution and the class of events being
described.
The relationship between the probability and the
fundamental classical or quantum description of the
system.
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The relationship between an ensemble and the
probability distribution must be considered.

An ensemble is a collection of replica systems.
The following must be specified:

The nature of the collection
The set of possible states for the objects
composing the collection
Any other relevant details.

The probability of finding a characteristic is the
fraction of replicas that possess the characteristic.
The probability depends on the nature of the
ensemble.
Replicas composing the ensemble are consistent
with the constraints.
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Consider an ensemble composed of pennies:
Whether they are heads up or tails up does not need
to be specified since they are included in the
properties of a penny.

Consider an ensemble of containers of gas having rigid
adiabatic walls and the same density of molecules.

Do not need to state whether the pressures in all
containers are the same.

There is a relationship between the external constraints
defining a macroscopic system and the nature of the
corresponding ensemble.

This allows the establishment of correspondence
between macroscopic and microscopic approaches
to the behaviour of matter.
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Consider the number of replicas N within the ensemble
to be sufficiently large that that the limit N →∞ may be
taken.

This means that the probability distribution function
may be treated as continuous and may be
considered in terms of a probability density.

For a discrete probability function, the probability
of x occurring is considered.
For a continuous probability function, the
probability that x is between a and b is considered.
This probability is expressed in terms of an
integral over a probability density, P(x):

P (x1 ≤ x ≤ x2) =

∫ x2

x1

P(x)dx

. – p.31/80



If x2 = x1 + dx then:

P (x1 ≤ x ≤ x1 + dx) = P(x)dx

Note that P (x) is dimensionless, but P has units x−1.

It is possible to relate this to a discrete distribution by
dividing x into arbitrarily small intervals ∆ and labelling
each with an index i. Then:

P (xi) = P(xi)∆

This is valid as long as ∆ is small enough for P to be
treated as a constant over the interval.

Analogously to continuous distribution functions,
averages can be determined using discrete probability
functions.
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Let x be a discrete variable from the set x1, . . . , xn with
probabilities P (x1), . . . , P (xN ).

The average value of x (also known as the arithmetic
average or the mean or expectation value) is:

〈x〉 =
x1P (x1) + x2P (x2) + · · · xNP (xN )

P (x1) + P (x2) + · · ·P (xN )

=

∑
i xiP (xi)∑
i P (xi)

The mean value of f(x) is:

〈f(x)〉 =

∑
i f(xi)P (xi)∑

i P (xi)
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Continued:
If (f(x) = xn, the 〈f(x)〉 is the nth moment of P (x)

For a continuous variable x and continuous f(x), the
equations become:

〈x〉 =

∫
xP(x)dx∫
P(x)dx

〈f(x)〉 =

∫
f(x)P(x)dx∫
P(x)dx

From this follows relations:

〈f(x) + g(x)〉 = 〈f(x)〉+ 〈g(x)〉

〈cf(x)〉 = c〈f(x)〉
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Probability distributions are often normalized:
∑

i

P (xi) = 1

∫
P(x)dx = 1

Normalization is not necessary if only relative
probabilities are of interest.

The spread of a probability density distribution P(x) is
given by 〈x2〉 − 〈x〉2

Except when P(x) is a delta function, 〈x2〉 > 〈x〉2
where 〈x2〉 =

∫
x2P(x)dx
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One implication of a distribution having width is the
possibility of fluctuations.

There is a nonzero probability of finding a value of x
that differs from the average value of x.
The probability of a fluctuation depends on its
deviation from the mean value.
These fluctuations show up in fluctuations of the
macroscopic variables.

Another property of probability distributions that is
important is the concept of joint probability.

Consider two variables, x and y, with probability
density distributions P1(x) and P2(y) respectively.
The joint probability distribution is
P(x, y)dxdy = P1(x)P2(y)dxdy
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Continued:
This gives the probability of finding x between x and
x+ dx and y between y and y + dy if P1(x) and P2(y)
are independent of each other.

If P1(x) and P2(y) are not independent but rather are
correlated, then the joint probability includes a
correlation function:

P(x, y)dxdy = P1(x)P2(y)g(x, y)dxdy

or
P(x, y)dxdy = P1(x)P2(y)[1 + h(x, y)]dxdy

where g(x, y) and h(x, y) are the correlation functions.
When x and y are independent, g(x, y) = 1 and
h(x, y) = 0

. – p.38/80



Some Properties of a System with Many Degrees of Freedom:
Elements of the Statistical Theory of Matter at Equilibrium

Consider a sample containing a large number of
molecules, N , in volume V .

The energy of the system is between E and E + dE with
dE/E << 1.

An energy spectrum exists for the system.
The details of the spectrum do not need to be known.

There are an enormous number of quantum states
consistent with the macroscopic constraints of E, V,N .

There are many distributions over the energy levels that
are consistent with E, V,N .
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The equations of motion for N molecules cannot be
solved exactly (classically or quantally).

Therefore the exact mechanical behaviour of the
system is not determined and is not available for a
macroscopic system.
This is not of interest in macroscopic
thermodynamics.

Ω(E, V,N) is the number of states with energy between
E and E + dE.

Each solution of the N molecule Schrödinger
equation gives a small number of the Ω(E, V,N)
states.
The properties of the macroscopic variables depend
only on Ω(E, V,N), not the microscopic details.
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The fundamental postulate of equilibrium statistical
mechanics is:
“All possible quantum states of an isolated system
consistent with a given set of macroscopic parameters
of constraint are to be considered as equally probable”.

This is also known as the postulate of equal a priori
probability.
This is an assumption which has been validated by
the success of statistical mechanics in producing
results consistent with observations.

To apply this postulate an ensemble of systems is
considered.

A large number of replica systems is constructed, each
consistent with the macroscopic variables E, V,N .
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All other properties are allowed to vary freely.

Suppose that all possible quantum states consistent
with the definition of the ensemble are represented in
the ensemble.

The relative frequency definition of probability is in
agreement with the assumption of equal a priori
probability of all quantum states consistent with
E, V,N .
Therefore the probability of a random choice of a
replica from the ensemble being the same as an
arbitrarily chosen member of the ensemble is 1/N
when there are N replicas in the ensemble.

Consider now the constraints used to define the
ensemble.
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Continued:
The equilibrium macroscopic properties of an
isolated system are independent of time.
Therefore the distribution over the energy levels is
independent of time.
Constants of motion include total energy, total linear
momentum, and total angular momentum of the
system.
In an isolated system, no energy is transferred
across the borders and thus no forces act upon the
system.

Therefore there is no change in either linear or
angular momentum.

The constraints make it possible to define an
appropriate probability distribution.
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Continued:
Often it is sufficient to use only one of the constants
of motion, typically the total energy (since it is used
to define the ensemble).

The other constants of motion are allowed to vary
freely.

Consider an ensemble of replica systems, each with
volume V and number of molecules N .

The ensemble is specified by the requirement that the
energy be between E and E + dE.

The number of quantum states with energy less than
E is Γ(E, V,N).
Therefore the number of quantum states with energy
between E and E + dE is:
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Ω(E, dE, V,N) = Γ(E + dE, V,N)− Γ(E, V,N)

Ω(E, dE, V,N) describes the energy spectrum including
degeneracy and dependence on volume.

The dependence on V is due to the effect of the
boundary conditions on the energy spectrum of the
isolated system.

In large systems, the dependence of Ω on the energy
interval dE is insignificant.

As the system becomes larger the dependence of Ω
on dE is increasingly insignificant.
This is a consequence of the Schrödinger equation,
the solution of which depends on the form of the
potential and the boundary conditions.
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The solutions to the Schrödinger equation for particles
in a box are of the form sin kx and cos kx.

The boundary conditions assume that the walls of
the box are infinitely repulsive (there is zero
probability of the particle being outside the box).
These boundary conditions force k and
consequently the energy to have finite values.
The larger the box, the greater number of finite
energies allowed in the spectrum.
In the limit of an infinite box (i.e. a free particle), the
allowed values of k become continuous and the
energy spectrum becomes a continuum.

The fact that a macroscopic system contain a large
number of molecules allows the analysis to be
simplified.
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Divide the energy scale into intervals of dE with
dE << E

For a large system the interval dE contains many
energy levels.
The number of states between E and E+ dE is Ω(E).
Ω(E) varies with E and obeys the relation:

Ω(E) =

(
∂Γ

∂E

)
dE = ω(E)dE

ω(E) is the density of states and is characteristic of
the system.

The sensitivity of Ω(E) and ω(E) to the energy E of the
system will now be considered.
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It can be shown that Ω(E) is insensitive to the details of
the nature of the energy spectrum in the limit of a large
system.

This is a characteristic of a macroscopic parameter.
Ω(E) connects the microscopic properties of the
system to the macroscopic system.

Let a system of energy E be described by ν quantum
numbers.

The energy per degree of freedom is:

ε =
E

ν

For a perfect gas with 3N degrees of freedom:
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εperfect gas =
1

2
kBT

In classical mechanics, the total energy is divided
among the degrees of freedom such that the average
energy per degree of freedom is 1

2kBT .

In quantum mechanics, this is true if kBT is large
relative to the energy spacings, but not when kBT is
small relative to the energy spacings.

For real molecules at room temperature, kBT is often
small relative to the spacing of vibrational levels.

The equipartition of energy (ε = E/ν) will be used as an
approximation to further explore the properties of Ω(E)
for an arbitrary system with ν degrees of freedom.
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Consider Γ(E), the total number of quantum states with
energy less than E.

The energy is separable into contributions from ν
degrees of freedom.
Each of the possible contributions contributes a state
to Γ(E).
Ei is the energy of the ith degree of freedom.
Γ(Ei) is the number of states of the ith degree of
freedom with energy less than Ei.
Then

∏ν
i=1 Γi(Ei) is the total number of states with

energy less than E for a particular subdivision of
energy.
For all possible subdivisions of E, the total number of
states with energy less than E is:
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Γ(E) =
∑

Ei

ν∏

i=1

Γi(Ei)

where E =
∑

iEi.

Note that the summation over Ei is over all possible
ways of subdividing the energy that are consistent with
the constraint of conservation of energy.

To estimate Γ(E) require that each of the Ei be the
average energy ε.

This is equivalent to choosing the one term in the
sum over all the subdivisions of energy that has
uniform distribution of energy over all the degrees of
freedom.
This gives:
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Γ(E) =
ν∏

i=1

Γi(ε) = [Γ1(ε)]ν

Although crude, this can give an adequate order of
magnitude estimate.

It is assumed that all degrees of freedom are sufficiently
alike that the same average behaviour may be ascribed
to them.

Expansion in a Taylor series gives:

Ω(E) =
∂Γ

∂E
dE =

∂

∂E

{
[Γ1(ε)]ν

}

= νΓν−1
1

∂Γ1

∂(νε)
dE = Γν−1

1

∂Γ1

∂ε
dE
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Γ1(ε) increases as E increases.
Since ν is very large in a macroscopic system, Ω(E)
increases rapidly with E.
The rate of increase is evident when Ω(E) is
rewritten as:

ln Ω(E) = (ν − 1) ln Γ1(ε) + ln

(
∂Γ1

∂ε
dE

)

Recall that dE is much larger than the separation of
the energy levels.
This means that ln (∂Γ1/∂ε) dE is negligible relative
to the first term of the expression.

Since Γ1(ε) is proportional to ε, (∂Γ1/∂ε) is Γ1(ε)/ε.
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Continued:
For simple model systems, Γ1(ε) is proportional to εα
where α is small.

For a harmonic oscillator, α = 1
For a particle in a box, α = 1/2.

This means that ln (∂Γ1/∂ε) dE is a factor of ν
smaller than (ν − 1) ln Γ1(ε)

The magnitude of (ν − 1) ln Γ1(ε) can be estimated.
∆ is the average spacing between energy levels.
Therefore Γ1(ε) is of the order of ε/∆ and

ln Ω(E) = ν ln Γ1(ε)

This means that Ω is of order magnitude of ν or
better for E well above the ground state.
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The Influence of Constraints on the Density of States

The role of constraints in defining the density of states
ω(E) or the number of states Ω(E) between E and
E + dE is now examined.

Consider a perfect gas, described as N particles in a
cubical box of volume V = a3

The wave function for a single particle in a cubical
box is:

Ψj = A sin
njxπx

a
sin

njyπy

a
sin

njxπz

a

for 0 < x < a, 0 < y < a,0 < z < a, where
j = 1, . . . , N labels the particles,
A is the normalization constant.
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The quantum numbers njx, njy, njz satisfy:

n2
jx + n2

jy + n2
jz =

2mεj
π2~2

a2

where εj is the energy of particle j.
The values of njx, njy, njz are restricted to positive
energies.

The total energy of N particles is:

E =
N∑

j=1

εj

This may be rewritten as:

. – p.56/80



N∑

j=1

(n2
jx + n2

jy + n2
jz) =

2mE

π2~2
a2

The total number of states with energy below E can be
determined by the number of states with integer
coordinates lying within the 3N dimensional
hyperspherical surface with radius Rs of
(2mEa2/π2~2)1/2

The dimensionality of 3N comes from the allowed
values of the quantum numbers njl where
j = 1, . . . , N and l = x, y, z.

When the box is large, the spacing between energy
levels is small and the volume enclosed by the
hyperspherical surface is:
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π3N/2

(3N/2)!
R3N
s =

π3N/2

(3N/2)!

(
2mEa2

π2~2

)3N/2

Since only positive values of njl are allowed, the volume
of interest is the positive orthant which is (1

2)3N of the
total volume. Therefore:

Γ(E) =
1

(3N/2)!

(
mEa2

2π~2

)3N/2

The number of states between E and E + dE is:

Ω(E) =

[
∂Γ(E)

∂E

]
dE =

E3N/2−1

((3N/2)− 1)!

(
ma2

2π~2

)3N/2

dE
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Therefore, the density of states is:

ω(E) =
E3N/2−1

((3N/2)− 1)!

(
ma2

2π~2

)3N/2

Note that (a2)3N/2 is V N and it is the boundary
condition that defines the energy spectrum.

In more general cases, other macroscopic variables
(besides V ) can affect the energy spectrum.

Consider a macroscopic system described by the set of
variable:

y1 = α1, y2 = α2, . . . , yn = αn

There exists a corresponding dependence of the
energy level spectrum on these variables.
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In this case, the number of states between E and
E + dE is:

Ω = Ω(E, y1, y2, . . . , yn)

when yi is between yi and yi + dyi

If a constraint is removed, then the number of states is
increased:

Ω(E, y1, y2, . . . , yn−1) > Ω(E, y1, y2, . . . , yn)

In most physical processes, constraints are altered
instead of being removed.

How does Ω(E, y) change in such cases?
Consider N particles in a box. The constraint is the
volume of the box.
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By definition, relaxation of a constraint always leads to:

Ωf (E, y) > Ωi(E, y)

Consider an isolated system at equilibrium with a
particular set of constraints.

This system has Ωi equally accessible states.

Some constraints are removed or relaxed by an
external change involving no work.

The new system thus created has Ωf equally accessible
states.

Therefore:
Ωf ≥ Ωi

.
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Consider an ensemble of systems that are in
equilibrium with the constraints.

All Ωi accessible states are equally probable.

Let one constraint be relaxed or removed.
At the instant that the constraint is changed, the
system is still in one of the Ωi states.
The system is not at equilibrium.

The approach to equilibrium requires that the Ωf states
be occupied with equal probability.

The system changes until a new equilibrium is
achieved, consistent with the remaining constraints.

Now consider the case in which an additional constraint
is imposed.
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The system cannot go to an equilibrium consistent with
these constraints unless work is done on the system.

Consider the particle in a box model of the perfect gas.

As shown in Figure 15.2(a), the gas occupies half the
volume of an isolated system.

The system is separated into two equal volumes with
the other half of the system is evacuated.

The barrier is removed by the expenditure of a
negligibly small amount of work.

The gas expands to fill the entire volume V = 2Vi.

For this process:
Ωf ≥ Ωi
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Now consider reinsertion of the barrier.

The system does not return spontaneously to its initial
state.

In this case the relationship between Ωf and Ωi is not
the inverse foe the previous case.

Recall:

Ω =

[
∂Γ(E)

∂E

]
dE =

E3N/2−1

((3N/2)− 1)!

(
ma2

2π~2

)3N/2

dE

Therefore

Ω(E, V,N) = CV N

(
E

N

)3N/2

dE
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where C is a constant independent of E and V .

This was derived using the Stirling Approximation.

N ! ≈ NN exp(−N)

For the initial state for 15.2b, the particles are anywhere
within volume V .

For the final state for 15.2, N/2 particles are in each of
the two subvolumes V/2.

The energy per particle has not changed in this
process.

There are [N !/(N/2)!(N/2)!] ways that N/2 particles can
each be placed in the subvolumes.
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Therefore:
Ωf (E, V,N) =

C
N !(

N
2

)
!
(
N
2

)
!

(
V

2

)N/2(
E/2

N/2

)3N/4(
V

2

)N/2(
E/2

N/2

)3N/4

dE

= CV N
(
E

N

)3N/2

dE

This means that Ωf = Ωi and the insertion of the barrier
has not changed the system.

To restore the system to the initial state given in 15.2a,
the gas must be removed from one of the
compartments.

Compress the gas into a subvolume by a sliding wall.

. – p.67/80



This would involve energy being put into the system as
work and would result in a temperature change.

There is no way to get back to the original state of 15.2a
without transferring work or heat across the boundary of
the system.

Once the barrier is removed and the molecules
distribute themselves over the Ωf states, the
reimposition of the boundary condition does not cause
the system to spontaneously return to the initial state.

This is an irreversible process.

The groundwork has now been laid for the comparison
of statistical mechanical and the thermodynamic
descriptions of a spontaneous process.
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Consider a process in an isolated system that takes the
system from an initial to a final state.

If this final state is such that the imposition or relaxation
of constraints without the requirement of external work
cannot recreate the initial state, the process is
irreversible.

If the imposition or relaxation of constraints without
external work recreates the initial state, the process is
reversible.

For processes at constant energy and constant volume.
If some of the constraints defining an isolated
system are relaxed, Ωf ≥ Ωi

If Ωf = Ωi, the systems of the ensemble are
distributed over the same accessible states
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Continued:
before and after the constraint is relaxed. The
system is in equilibrium at all steps of the process
and the transition i→ f is reversible.
If Ωf > Ωi, the transition i→ f is irreversible.

In Chapter 13, a reversible process was defined in
terms of intensive variables being continuous across
the boundary of the system.

This involves the system being in contact with some
reservoirs.
How is a reversible process defined for an isolated
system, which by definition is not in contact with any
reservoirs?

Consider the system illustrated in Figure 13.3.
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The system is subdivided into two subsystems,
separated by a movable piston upon which weights rest
confining subsystem 1.

The weights can be moved by a pulley arrangement
between the piston and a ledge at the same height.

Therefore moving the weight involves no net work.
The pulley arrangement is therefore a device to
change constraints inside an otherwise isolated
system.

If the weights are infinitesimally small, the pressure will
be continuous across the piston as subsystem 1
expands and subsystem 2 is compressed.

Subsystem 2 may be considered the surroundings of
subsystem 1.

. – p.72/80



The thermodynamic definition of a reversible process
requires that every point on the path be infinitesimally
close to an equilibrium state of the system.

At every point along the path, the relevant intensive
variables are continuous across the boundary of the
system.
Therefore the extensive variables of the system must
also be infinitesimally close in value in two states
that are infinitesimally close.
This is equivalent to Ωf = Ωi since the extensive
variables usually describe the constraints or
boundary conditions defining Ω.
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The Entropy: A Potential Function for the Equilibrium State

Consider the properties of the number of accessible
states for a composite system.

The total energy may be distributed over parts of the
system.
The most probable distribution of the total energy
over the system will be shown to be equivalent to
systems in equilibrium having equal temperatures.

This will be the basis of the definition of entropy.
It will be shown that it is related to work and internal
energy.
Entropy may be considered as providing a
relationship between microscopic and macroscopic
descriptions of the system.
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Consider two macroscopic systems, A and B with
energies EA and EB respectively.

Let ΩA(EA) and ΩB(EB) be the number of states
between EA and EA + dEA and between EB and
EB + dEB respectively.

NA and NB are the numbers of A and B molecules and
are fixed.

The ensemble is specified by the requirement that
ET = EA + EB is constant.

The ensemble consists of pairs of systems, with the
replicas having different distributions of ET between A
and B.

The volumes VA and VB are independently varied as
are any other constraints.
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The ensemble is defined by the value of ET .

If system A of a replica pair has energy EA, then
system B has an energy of ET − EA.

When system A has energy EA it can be in any one
ΩA(EA) equally likely state while system B can
simultaneously be in any one of ΩB(ET − EB) states.

Every possible state of A can be combined with every
possible state of B, so the total number of states is:

ΩT (ET , EA) = ΩA(EA)ΩB(ET − EB)

Since ET is constant, Ω(ET , EA) is a function of EA.

Now consider the contribution to ΩT (EA) = ΩT (ET , EA)
from different subdivisions of ET between A and B.
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The probability of finding A+B with the energy of A
between EA and EA + dEA is:

ΩT (EA)∑
EA

ΩT (EA)

where ΩT (EA) is the total number of states accessible
to the total system for a given EA taken over all possible
values of EA.

Let ∑

EA

ΩT (EA) ≡ C−1

Therefore the probability of finding A+B in a state with
energy between EA and EA + dEA is:
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P (EA) = CΩA(EA)ΩB(ET − EB)

As EA increases, ΓA(EA) increases but ΓB(ET − EA)
decreases.

However P (EA has a maximum at some E∗A.
Because ΓA(EA) and ΓB(ET − EA) are rapidly
varying functions, the maximum will be sharp.

If ΓA and ΓB are treated as continuous functions, then
the maximum may be found by differentiation:

(
∂P (EA)

∂EA

)

V,N

= 0

and
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CΩB(ET − EB)

(
∂ΩA

∂EA

)
+ CΩA(EA)

(
∂ΩB

∂EA

)
= 0

Dividing by P (EA) and using EA = ET − EB,
(
∂ ln ΩA

∂EA

)

V,N

=

(
∂ ln ΩB

∂EB

)

V,N

Define

β =

(
∂ ln Ω

∂E

)

V,N

Therefore βA = βB (which has the same properties as
temperature).

It can be shown that β = (kBT )−1.
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By definition
S = kB ln Ω

where S is entropy.
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