## The Concept of Entropy: Relationship to the Energy Level Spectrum of a System

- The first law of thermodynamics allows the definition of heat and work in terms of energy changes.
- The first law of thermodynamics also restricts the class of possible processes to those that conserve energy.
- But processes that conserve energy do not necessarily occur.
- The first law does not predict whether a process will actually occur.
- For example, consider a box with two compartments.
  - Each compartment is filled with a different gas.
  - A value is opened between the compartments.

- Continued:
  - The gases mix and energy is conserved.
  - But demixing of the gases is also consistent with the first law.
    - Yet it is never observed.
- Consider an adiabatic bomb calorimeter filled with H<sub>2</sub> and O<sub>2</sub>.
  - By the first law, energy is conserved since energy is unable to leave the system as work or heat.
  - The reaction:

$$\mathsf{H}_2 + \frac{1}{2} \mathsf{O}_2 = \mathsf{H}_2 \mathsf{O}$$

is vigorously exothermic and can be initiated with a slight perturbation (such as a spark).

- Continued:
  - The first law is unable to predict whether this reaction will be occur in a given set of conditions.
- Consider two systems in contact through a diathermal wall, but otherwise isolated.
  - Such systems are observed to spontaneously reach a common temperature.
  - Although it is consistent with the first law, it is never observed that the systems spontaneously change such that the warmer system becomes hotter and the cooler system cools further.
- Knowing the energy change of the system associated with a process is insufficient to predict the direction of the process.

- There are many spontaneous processes that are either exothermic or endothermic.
  - Mixing of water with sulfuric acid is exothermic.
  - Mixing of water with ammonia is endothermic.
- Criteria in addition to the first law is required to predict spontaneity.
  - The thermodynamic function of entropy is needed.
  - The second law of thermodynamics describes equilibrium in terms of entropy.
  - Derivatives of entropy with respect to the parameters that describe the constraints of the system determine the stability of equilibrium.
  - If the energy is constant, entropy determines whether or not a process is spontaneous.

- The second law of thermodynamics is considered from two points of view.
  - One approach will be with respect to the redistribution of a population of molecules over energy levels as energy enters or leaves the system as heat.
    - How much information about the microscopic states of a system contained by the specification of the macroscopic parameters will be considered.
    - Also considered will be degeneracy of the energy spectrum. (Degeneracy is related the number of distributions that have the same energy.)
    - Statistical mechanics deals with the most probable distributions that are consistent with a particular energy.

- Continued:
  - Statistical mechanics shows that in most cases the most probable distribution is sharply peaked.
  - It also shows that the macroscopic properties are somewhat insensitive to the details of the energy spectrum.
- The second law will then be considered from a macroscopic perspective.

The Relationship between Average Properties and Molecular Motion in an N-Molecule System: Time Averages and Ensemble Averages

Macroscopic properties have been related to averages of microscopic properties.

- Three questions arise:
  - Why is averaging used?
  - Which type of average is correct?
  - Do different averaging processes give the same description of the system?
- Averaging is used because a thermodynamic system of many molecules is described by a few macroscopic variables.
  - The thermodynamic description is consistent with some type of averaging.
  - The thermodynamic description is coarser than the microscopic description.

- To discern the type of averaging to be used and whether the type of average affects the result requires careful consideration of how measurements are made.
- Already considered have been:
  - The treatment of all molecules as independent particles.
  - The momentum transferred by one molecule per unit area per unit time.
  - The sum of the contributions all molecules moving in the appropriate direction to momentum transport per unit time per unit area.
    - To do this, the distribution function  $f(\mathbf{v})$  is assumed to be independent of time.

- Assuming that the distribution function  $f(\mathbf{v})$  is independent of time is equivalent to following the trajectory of a single molecule for a very long time and averaging the momentum transported across the plane each time it crosses the plane.
- But, what exactly does this type of equivalency mean?
- Successive crossings of the plane by different molecules are not uniform in time.
  - Instantaneous rates of momentum vary with time.
  - But at equilibrium, the average rate of crossing the plane must be independent of time.
- Consider the time average of momentum transfers occurring in some long time interval S.

- Continued:
  - If ℑ is short (i.e. the interval between crossing is comparable to ℑ, then averages over that time interval will fluctuate with that time scale.
  - If ℑ is large (i.e. the interval between crossings is small relative to ℑ), then the average over ℑ is independent of ℑ.
- Now consider following the trajectory of a single molecule in a gas.
  - If it is followed long enough, it will approach arbitrarily close to each point within the volume.
  - It will also approach arbitrarily close to each velocity in the velocity distribution.
  - This is the quasi-ergodic hypothesis.

- If the gas is dilute, collisions between molecules are so infrequent that they may be ignored.
  - In this case it is feasible to follow the trajectory of a particular molecule sufficiently long to compute the time average of a mechanical quantity.
  - The distance that the molecule travels in time t grows linearly with t.
  - The contributions to momentum transport across a plane could be summed and then divided by t.
  - Then taking the limit as t goes to infinity becomes the equivalent to averaging over a distribution function.
- If the gas is not dilute, then the molecule is almost always within the force field of another molecule.
- The trajectory is very complicated.

- In such cases, calculation of the trajectory is computationally impossible.
- An alternative method is needed to relate molecular properties to macroscopic properties.
- The alternative approach was proposed independently by Gibbs and by Einstein.
- Recall that for a given macroscopic state of the system, there are many microscopic states that are consistent with the macroscopic state.
- Instead of one system in a microscopic state consistent with the macroscopic state, many such systems in different microstates are constructed.
  - This collection of systems encompasses the entire distribution of microstates that match the macrostate.

- Continued:
  - Each member system of the collection is a replica system.
  - The entire collection is called an *ensemble*.
- Averages may be calculated by considering the quantity of interest for each of the replicas, then averaging over the entire ensemble.
- Statistical mechanics takes as a postulate that the ensemble average is equal to the time average in the limit of infinitely long time.
- Ensemble averages are easier to calculate than are time averages.
- This postulate follows from the quasi-ergodic hypothesis.

- To understand the quasi-ergodic hypothesis, consider a geometric visualization of molecular dynamics.
  - Classical mechanics will be used.
  - Assume that the molecules have no internal structure.
  - Consider a many dimensional coordinate system that describes the position and momentum of N particles in volume V.
    - $\bullet$  6*N* axes are required.
    - There are 3N position coordinates

 $x_1, y_1, z_1, \ldots, x_N, y_N, z_N$ .

There are 3N momentum coordinates

 $p_{x_1}, p_{y_1}, p_{z_1}, \ldots, p_{x_N}, p_{y_N}, p_{z_N}$ 

This space is called the *phase space* of the N molecule system.

Phase space is assumed to be Cartesian with distances between two points given by:

$$D(w, w^*) = \left[\sum_{j=1}^{6N} (w_j - w_j^*)^2\right]^{1/2}$$

where  $w_j$  and  $w_j^*$  are the *j* elements of the vector of coordinates and momentum describing point *w* or  $w^*$  in 6N dimensional phase space.

- For a given value of energy, the possible values of coordinates and momentum will describe a surface in phase space.
  - For a perfect gas, energy depends only on the momenta of the particles.

- Continued:
  - The total energy is:

$$E = \frac{(p_{x_1}^2 + \dots p_{z_N}^2)}{2m}$$

which describes a sphere in 3N dimensions.

- If the molecules interact, then the energy depends also on the instantaneous positions.
  - The total energy expression still describes a surface, but that surface is much more complicated.
  - If a trajectory on an isolated system is considered, then the trajectory moves on the surface in phase space that is defined by energy conservation.

- Consider the difference between time averaging and ensemble averaging.
  - The trajectory moving over the surface defined by energy conservation will sample coordinates and momenta consistent with the total energy.
    - The time average will average over these.
  - For an ensemble, each replica system has the same value of E, V and N.
    - Therefore the momenta and coordinates will be a representative point on the same surface considered for the time averaging.
    - Different replicas will will have different representative points, but all points lie on the same surface.
    - The possible points will densely cover the surface.

- Unless the time average covers this surface in the same way as the ensemble, the averages will be different.
  - There exist conditions for which they are equivalent.
- The ensemble average is the fundamental concept in the description of equilibrium.
  - By definition, a macroscopic property of a system is to be identified with the ensemble average of the corresponding microscopic dynamical property.
  - This definition can be justified by the comparison of theory and observation.
- Ergodic theory as applied to statistical mechanics explores the equivalence of time and ensemble averages.

- The ergodic hypothesis as originally formulated by Boltzmann is incorrect.
  - Boltzmann postulated that, given enough time, a trajectory representing the time evolution of the system would pass through every point on the energy surface.
  - This cannot occur because:
    - A solution to an equation in mechanics has a unique solution which never crosses itself.
    - The trajectory is of lower dimensionality than the surface and so can thus never fill the higher dimensional energy system.
- The quasi-ergodic hypothesis makes a weaker statement about the trajectory on the energy surface.

- Birkhoff (1931) proved that if a boundary on an energy surface could not be constructed such that a trajectory originating from a representative point would lie entirely on one side of the boundary then the trajectory will pass arbitrarily close to every point on the energy surface.
- The quasi-ergodic hypothesis is valid only in classical mechanics.
- It cannot be rigorously proven,
- There are other difficulties in basing a description of equilibrium on ergodicity.
  - Any microscopic description of a system moving to equilibrium should have a time-independent description of the equilibrium state.

- That a system is quasi-ergodic is necessary, but not sufficient, to give a time independent average.
  - A quasi-ergodic trajectory can also be quasi-periodic, such as in the case of couples oscillators with an irrational ratio of frequencies.
- Two trajectories can start at points close together on the energy surface.
  - As they evolve, they remain close together.
  - The distance between them grows smoothly with time.
  - If reversibility is to be avoided, more turbulent trajectories are needed.
  - These turbulent trajectories are associated with mixing and diverge exponentially with time.

- Continued:
  - The trajectory is chaotic and does not return to the initial state.
  - Thus mixing implies quasi-ergodicity.
  - Simulation studies have demonstrated mixing and quasi-ergodicity.
  - For general mechanical systems, there exist energy regions which exhibit dynamical chaos.
  - In the limit of thermodynamic size ( $N \approx 10^{23}$ ), ensemble averages satisfactorily describe equilibrium properties.
- To use ensemble averages in place of time averages, a number of issues must be considered.

- Continued:
  - The mixing property has been established only for classical mechanics.
  - Quantum ergodic theory is not well developed.
  - The use of ensemble averages is valid both quantally and classically.
  - Equilibrium is defined as being invariant with time.
    - This neglects fluctuations about equilibrium.
    - Ensemble averages permit the study of these fluctuations.
  - The type of the equilibrium that exists depends on the constraints.
    - Constraints are more easily implemented in ensembles than in trajectories.

**Ensembles and Probability Distributions** 

- Consider tossing a coin:
  - It can land either head or tails.
  - Which it will be cannot be predicted with certainty.
  - If the coin is balanced, then head and tails have equal probability.
  - For a large number of tosses, the number of heads should be approximately equal to the number of tails.
  - But other outcomes are possible, although not as likely.
- For a single toss of the balanced coin, the probability of heads is  $\frac{1}{2}$ .
- The probability of tails is also  $\frac{1}{2}$ .

- Consider *n* tosses.
  - The probability that  $n_1$  will be heads is:

$$\frac{n!}{n_1!(n-n_1)!} \left(\frac{1}{2^n}\right)$$

where  $n!/n_1!(n-n_1)!$  is the number of ways that  $n_1$  heads could occur regardless of order and  $2^n$  is the number of possible sequences of heads and tails.

- For 4 tosses this predicts:
  - 1/16 will be all heads and 1/16 will be all tails.
  - 4/16 will be 3 heads and 1 tail and 4/16 will be 1 head and 3 tails.
  - 6/16 will be 2 heads and 2 tails

- For 400 tosses, the probability that 200 will be heads is  $5 \times 10^{22}$  more likely than 100 of 400 tosses being heads.
- Now consider this in the context of molecules in a gas.
  - Molecules of a gas are in motion.
  - The number of molecules in a fixed volume element will vary from one moment to the next.
  - Consider a perfect gas of N molecules in a volume
    V.
  - Now consider some volume element  $\omega$  within the container.
  - $\omega/V$  is the fraction of the total volume occupied by  $\omega$ .
  - Assume that the gas is uniformly distributed.
  - The probability of finding a particular molecule within  $\omega$  is  $\omega/V$

- The probability of all N molecules being within  $\omega$  is  $(\omega/V)^N$ .
- If  $\omega$  is small with linear dimensions comparable to molecular separations, then the number of molecules in  $\omega$  would most likely be 0,1, or 2.
- If  $\omega$  was 0.1 of the total volume, then N/10 molecules (with small fluctuations) would be most likely to be found within  $\omega$ .
- $P(N_1)$  is the probability distribution that describes the probability of finding  $N_1$  in  $\omega$  and  $N N_1$  in  $V \omega$ .

$$P(N_1) = \frac{N!}{(N-N_1)!N!} \left(\frac{\omega}{V}\right)^{N_1} \left(\frac{V-\omega}{V}\right)^{N-N_1}$$

- The relative fluctuation in the number of molecules in  $\omega$  decreases as  $\omega$  increases and is given by  $(N\omega/V)^2$ .
  - The relative deviation is a volume of 1 mm<sup>3</sup> is of the order of  $10^{-8}$  at room temperature and pressure.
  - Macroscopic density does not vary perceptibly from point to point in a gas at equilibrium.
- In applying probability to the study of molecules the following must be considered:
  - The relationship between the definition of the probability distribution and the class of events being described.
  - The relationship between the probability and the fundamental classical or quantum description of the system.

- The relationship between an ensemble and the probability distribution must be considered.
  - An ensemble is a collection of replica systems.
  - The following must be specified:
    - The nature of the collection
    - The set of possible states for the objects composing the collection
    - Any other relevant details.
  - The probability of finding a characteristic is the fraction of replicas that possess the characteristic.
  - The probability depends on the nature of the ensemble.
  - Replicas composing the ensemble are consistent with the constraints.

- Consider an ensemble composed of pennies:
  - Whether they are heads up or tails up does not need to be specified since they are included in the properties of a penny.
- Consider an ensemble of containers of gas having rigid adiabatic walls and the same density of molecules.
  - Do not need to state whether the pressures in all containers are the same.
- There is a relationship between the external constraints defining a macroscopic system and the nature of the corresponding ensemble.
  - This allows the establishment of correspondence between macroscopic and microscopic approaches to the behaviour of matter.

- Consider the number of replicas  $\mathcal{N}$  within the ensemble to be sufficiently large that that the limit  $\mathcal{N} \to \infty$  may be taken.
  - This means that the probability distribution function may be treated as continuous and may be considered in terms of a probability density.
    - ✓ For a discrete probability function, the probability of x occurring is considered.
    - For a continuous probability function, the probability that x is between a and b is considered.
    - This probability is expressed in terms of an integral over a probability density,  $\mathcal{P}(x)$ :

$$P(x_1 \le x \le x_2) = \int_{x_1}^{x_2} \mathcal{P}(x) dx$$

• If  $x_2 = x_1 + dx$  then:

$$P(x_1 \le x \le x_1 + dx) = \mathcal{P}(x)dx$$

• Note that P(x) is dimensionless, but  $\mathcal{P}$  has units  $x^{-1}$ .

It is possible to relate this to a discrete distribution by dividing x into arbitrarily small intervals  $\Delta$  and labelling each with an index i. Then:

$$P(x_i) = \mathcal{P}(x_i)\Delta$$

This is valid as long as  $\Delta$  is small enough for  $\mathcal{P}$  to be treated as a constant over the interval.

Analogously to continuous distribution functions, averages can be determined using discrete probability functions.

- Let x be a discrete variable from the set  $x_1, \ldots, x_n$  with probabilities  $P(x_1), \ldots, P(x_N)$ .
- The average value of x (also known as the arithmetic average or the mean or expectation value) is:

$$\langle x \rangle = \frac{x_1 P(x_1) + x_2 P(x_2) + \dots + x_N P(x_N)}{P(x_1) + P(x_2) + \dots + P(x_N)}$$

$$=\frac{\sum_{i} x_i P(x_i)}{\sum_{i} P(x_i)}$$

• The mean value of f(x) is:

$$\langle f(x) \rangle = \frac{\sum_{i} f(x_i) P(x_i)}{\sum_{i} P(x_i)}$$

## Continued:

- If  $(f(x) = x^n$ , the  $\langle f(x) \rangle$  is the *n*th moment of P(x)
- For a continuous variable x and continuous f(x), the equations become:

$$\langle x \rangle = \frac{\int x \mathcal{P}(x) dx}{\int \mathcal{P}(x) dx}$$
$$\int f(x) \mathcal{P}(x) dx$$

$$\langle f(x) \rangle = \frac{\int f(x) \mathcal{P}(x) dx}{\int \mathcal{P}(x) dx}$$

From this follows relations:

$$\langle f(x) + g(x) \rangle = \langle f(x) \rangle + \langle g(x) \rangle$$
  
 $\langle cf(x) \rangle = c \langle f(x) \rangle$ 

Probability distributions are often normalized:

$$\sum_{i} P(x_i) = 1$$
$$\int \mathcal{P}(x) dx = 1$$

- Normalization is not necessary if only relative probabilities are of interest.
- The spread of a probability density distribution  $\mathcal{P}(x)$  is given by  $\langle x^2 \rangle \langle x \rangle^2$ 
  - Except when  $\mathcal{P}(x)$  is a delta function,  $\langle x^2 \rangle > \langle x \rangle^2$ where  $\langle x^2 \rangle = \int x^2 \mathcal{P}(x) dx$

**428** • The Concept of Entropy: Relationship to the Ene



Figure 15.1 (a) A typical probability density distribution with  $\langle x \rangle \neq 0$ . (b) A typical symmetric probability density distribution with  $\langle x \rangle = 0$ .
- One implication of a distribution having width is the possibility of fluctuations.
  - There is a nonzero probability of finding a value of x that differs from the average value of x.
  - The probability of a fluctuation depends on its deviation from the mean value.
  - These fluctuations show up in fluctuations of the macroscopic variables.
- Another property of probability distributions that is important is the concept of joint probability.
  - Consider two variables, x and y, with probability density distributions  $\mathcal{P}_1(x)$  and  $\mathcal{P}_2(y)$  respectively.
  - The joint probability distribution is  $\mathcal{P}(x, y)dxdy = \mathcal{P}_1(x)\mathcal{P}_2(y)dxdy$

- Continued:
  - This gives the probability of finding x between x and x + dx and y between y and y + dy if  $\mathcal{P}_1(x)$  and  $\mathcal{P}_2(y)$  are independent of each other.
- If  $\mathcal{P}_1(x)$  and  $\mathcal{P}_2(y)$  are not independent but rather are correlated, then the joint probability includes a correlation function:

$$\mathcal{P}(x,y)dxdy = \mathcal{P}_1(x)\mathcal{P}_2(y)g(x,y)dxdy$$

or

$$\mathcal{P}(x,y)dxdy = \mathcal{P}_1(x)\mathcal{P}_2(y)[1+h(x,y)]dxdy$$

where g(x, y) and h(x, y) are the correlation functions.

• When x and y are independent, g(x, y) = 1 and h(x, y) = 0

Some Properties of a System with Many Degrees of Freedom: Elements of the Statistical Theory of Matter at Equilibrium

- Consider a sample containing a large number of molecules, N, in volume V.
- The energy of the system is between E and E + dE with dE/E << 1.
- An energy spectrum exists for the system.
  - The details of the spectrum do not need to be known.
- There are an enormous number of quantum states consistent with the macroscopic constraints of E, V, N.
- There are many distributions over the energy levels that are consistent with E, V, N.

- The equations of motion for N molecules cannot be solved exactly (classically or quantally).
  - Therefore the exact mechanical behaviour of the system is not determined and is not available for a macroscopic system.
  - This is not of interest in macroscopic thermodynamics.
- $\Omega(E, V, N)$  is the number of states with energy between *E* and E + dE.
  - Each solution of the N molecule Schrödinger equation gives a small number of the  $\Omega(E,V,N)$  states.
  - The properties of the macroscopic variables depend only on  $\Omega(E, V, N)$ , not the microscopic details.

The fundamental postulate of equilibrium statistical mechanics is:

"All possible quantum states of an isolated system consistent with a given set of macroscopic parameters of constraint are to be considered as equally probable".

- This is also known as the postulate of equal a priori probability.
- This is an assumption which has been validated by the success of statistical mechanics in producing results consistent with observations.
- To apply this postulate an ensemble of systems is considered.
- A large number of replica systems is constructed, each consistent with the macroscopic variables E, V, N.

- All other properties are allowed to vary freely.
- Suppose that all possible quantum states consistent with the definition of the ensemble are represented in the ensemble.
  - The relative frequency definition of probability is in agreement with the assumption of equal *a priori* probability of all quantum states consistent with *E*, *V*, *N*.
  - Therefore the probability of a random choice of a replica from the ensemble being the same as an arbitrarily chosen member of the ensemble is 1/N when there are N replicas in the ensemble.
- Consider now the constraints used to define the ensemble.

- Continued:
  - The equilibrium macroscopic properties of an isolated system are independent of time.
  - Therefore the distribution over the energy levels is independent of time.
  - Constants of motion include total energy, total linear momentum, and total angular momentum of the system.
  - In an isolated system, no energy is transferred across the borders and thus no forces act upon the system.
    - Therefore there is no change in either linear or angular momentum.
  - The constraints make it possible to define an appropriate probability distribution.

- Continued:
  - Often it is sufficient to use only one of the constants of motion, typically the total energy (since it is used to define the ensemble).
    - The other constants of motion are allowed to vary freely.
- Consider an ensemble of replica systems, each with volume V and number of molecules N.
- The ensemble is specified by the requirement that the energy be between E and E + dE.
  - The number of quantum states with energy less than E is  $\Gamma(E, V, N)$ .
  - Therefore the number of quantum states with energy between E and E + dE is:

## $\Omega(E, dE, V, N) = \Gamma(E + dE, V, N) - \Gamma(E, V, N)$

- $\Omega(E, dE, V, N)$  describes the energy spectrum including degeneracy and dependence on volume.
  - The dependence on V is due to the effect of the boundary conditions on the energy spectrum of the isolated system.
- In large systems, the dependence of  $\Omega$  on the energy interval dE is insignificant.
  - As the system becomes larger the dependence of  $\Omega$  on dE is increasingly insignificant.
  - This is a consequence of the Schrödinger equation, the solution of which depends on the form of the potential and the boundary conditions.

- The solutions to the Schrödinger equation for particles in a box are of the form  $\sin kx$  and  $\cos kx$ .
  - The boundary conditions assume that the walls of the box are infinitely repulsive (there is zero probability of the particle being outside the box).
  - These boundary conditions force k and consequently the energy to have finite values.
  - The larger the box, the greater number of finite energies allowed in the spectrum.
  - In the limit of an infinite box (i.e. a free particle), the allowed values of k become continuous and the energy spectrum becomes a continuum.
- The fact that a macroscopic system contain a large number of molecules allows the analysis to be simplified.

- Divide the energy scale into intervals of dE with dE << E
  - For a large system the interval dE contains many energy levels.
  - The number of states between *E* and E + dE is  $\Omega(E)$ .
  - $\Omega(E)$  varies with *E* and obeys the relation:

$$\Omega(E) = \left(\frac{\partial\Gamma}{\partial E}\right)dE = \omega(E)dE$$

- $\omega(E)$  is the density of states and is characteristic of the system.
- The sensitivity of  $\Omega(E)$  and  $\omega(E)$  to the energy *E* of the system will now be considered.

- It can be shown that  $\Omega(E)$  is insensitive to the details of the nature of the energy spectrum in the limit of a large system.
  - This is a characteristic of a macroscopic parameter.
  - $\Omega(E)$  connects the microscopic properties of the system to the macroscopic system.
- Let a system of energy E be described by  $\nu$  quantum numbers.
- The energy per degree of freedom is:

$$\epsilon = \frac{E}{\nu}$$

• For a perfect gas with 3N degrees of freedom:

$$\epsilon_{\text{perfect gas}} = \frac{1}{2}k_BT$$

- In classical mechanics, the total energy is divided among the degrees of freedom such that the average energy per degree of freedom is  $\frac{1}{2}k_BT$ .
- In quantum mechanics, this is true if  $k_BT$  is large relative to the energy spacings, but not when  $k_BT$  is small relative to the energy spacings.
  - For real molecules at room temperature,  $k_BT$  is often small relative to the spacing of vibrational levels.
- The equipartition of energy ( $\epsilon = E/\nu$ ) will be used as an approximation to further explore the properties of  $\Omega(E)$  for an arbitrary system with  $\nu$  degrees of freedom.

- Consider  $\Gamma(E)$ , the total number of quantum states with energy less than *E*.
  - The energy is separable into contributions from  $\nu$  degrees of freedom.
  - Each of the possible contributions contributes a state to  $\Gamma(E)$ .
  - $E_i$  is the energy of the *i*th degree of freedom.
  - $\Gamma(E_i)$  is the number of states of the *i*th degree of freedom with energy less than  $E_i$ .
  - Then  $\prod_{i=1}^{\nu} \Gamma_i(E_i)$  is the total number of states with energy less than *E* for a particular subdivision of energy.
  - For all possible subdivisions of E, the total number of states with energy less than E is:

$$\Gamma(E) = \sum_{E_i} \prod_{i=1}^{\nu} \Gamma_i(E_i)$$

where  $E = \sum_{i} E_{i}$ .

- Note that the summation over E<sub>i</sub> is over all possible ways of subdividing the energy that are consistent with the constraint of conservation of energy.
- To estimate  $\Gamma(E)$  require that each of the  $E_i$  be the average energy  $\epsilon$ .
  - This is equivalent to choosing the one term in the sum over all the subdivisions of energy that has uniform distribution of energy over all the degrees of freedom.
  - This gives:

$$\Gamma(E) = \prod_{i=1}^{\nu} \Gamma_i(\epsilon) = \left[\Gamma_1(\epsilon)\right]^{\nu}$$

- Although crude, this can give an adequate order of magnitude estimate.
- It is assumed that all degrees of freedom are sufficiently alike that the same average behaviour may be ascribed to them.
- Expansion in a Taylor series gives:

$$\Omega(E) = \frac{\partial \Gamma}{\partial E} dE = \frac{\partial}{\partial E} \left\{ \left[ \Gamma_1(\epsilon) \right]^{\nu} \right\}$$

$$=\nu\Gamma_1^{\nu-1}\frac{\partial\Gamma_1}{\partial(\nu\epsilon)}dE = \Gamma_1^{\nu-1}\frac{\partial\Gamma_1}{\partial\epsilon}dE$$

- $\Gamma_1(\epsilon)$  increases as *E* increases.
  - Since  $\nu$  is very large in a macroscopic system,  $\Omega(E)$  increases rapidly with *E*.
  - The rate of increase is evident when  $\Omega(E)$  is rewritten as:

$$\ln \Omega(E) = (\nu - 1) \ln \Gamma_1(\epsilon) + \ln \left(\frac{\partial \Gamma_1}{\partial \epsilon} dE\right)$$

- Recall that dE is much larger than the separation of the energy levels.
- This means that  $\ln (\partial \Gamma_1 / \partial \epsilon) dE$  is negligible relative to the first term of the expression.
  - Since  $\Gamma_1(\epsilon)$  is proportional to  $\epsilon$ ,  $(\partial \Gamma_1/\partial \epsilon)$  is  $\Gamma_1(\epsilon)/\epsilon$ .

- Continued:
  - For simple model systems,  $\Gamma_1(\epsilon)$  is proportional to  $\epsilon^{\alpha}$  where  $\alpha$  is small.
    - For a harmonic oscillator,  $\alpha = 1$
    - For a particle in a box,  $\alpha = 1/2$ .
  - This means that  $\ln (\partial \Gamma_1 / \partial \epsilon) dE$  is a factor of  $\nu$  smaller than  $(\nu 1) \ln \Gamma_1(\epsilon)$
- The magnitude of  $(\nu 1) \ln \Gamma_1(\epsilon)$  can be estimated.
  - $\Delta$  is the average spacing between energy levels.
  - Therefore  $\Gamma_1(\epsilon)$  is of the order of  $\epsilon/\Delta$  and

$$\ln \Omega(E) = \nu \ln \Gamma_1(\epsilon)$$

• This means that  $\Omega$  is of order magnitude of  $\nu$  or better for *E* well above the ground state.

## The Influence of Constraints on the Density of States

- The role of constraints in defining the density of states  $\omega(E)$  or the number of states  $\Omega(E)$  between *E* and E + dE is now examined.
- Consider a perfect gas, described as N particles in a cubical box of volume  $V = a^3$ 
  - The wave function for a single particle in a cubical box is:

$$\Psi_j = A \sin \frac{n_{jx} \pi x}{a} \sin \frac{n_{jy} \pi y}{a} \sin \frac{n_{jx} \pi z}{a}$$

for 0 < x < a, 0 < y < a, 0 < z < a, where</li>
j = 1,..., N labels the particles,
A is the normalization constant.

• The quantum numbers  $n_{jx}$ ,  $n_{jy}$ ,  $n_{jz}$  satisfy:

$$n_{jx}^{2} + n_{jy}^{2} + n_{jz}^{2} = \frac{2m\epsilon_{j}}{\pi^{2}\hbar^{2}}a^{2}$$

where  $\epsilon_j$  is the energy of particle *j*.

- The values of  $n_{jx}, n_{jy}, n_{jz}$  are restricted to positive energies.
- The total energy of N particles is:

$$E = \sum_{j=1}^{N} \epsilon_j$$

This may be rewritten as:

$$\sum_{j=1}^{N} (n_{jx}^2 + n_{jy}^2 + n_{jz}^2) = \frac{2mE}{\pi^2\hbar^2}a^2$$

- The total number of states with energy below E can be determined by the number of states with integer coordinates lying within the 3N dimensional hyperspherical surface with radius  $R_s$  of  $(2mEa^2/\pi^2\hbar^2)^{1/2}$ 
  - The dimensionality of 3N comes from the allowed values of the quantum numbers n<sub>jl</sub> where

j = 1, ..., N and l = x, y, z.

When the box is large, the spacing between energy levels is small and the volume enclosed by the hyperspherical surface is:

$$\frac{\pi^{3N/2}}{(3N/2)!} R_s^{3N} = \frac{\pi^{3N/2}}{(3N/2)!} \left(\frac{2mEa^2}{\pi^2\hbar^2}\right)^{3N/2}$$

Since only positive values of  $n_{jl}$  are allowed, the volume of interest is the positive orthant which is  $(\frac{1}{2})^{3N}$  of the total volume. Therefore:

$$\Gamma(E) = \frac{1}{(3N/2)!} \left(\frac{mEa^2}{2\pi\hbar^2}\right)^{3N/2}$$

• The number of states between E and E + dE is:

$$\Omega(E) = \left[\frac{\partial\Gamma(E)}{\partial E}\right] dE = \frac{E^{3N/2-1}}{((3N/2) - 1)!} \left(\frac{ma^2}{2\pi\hbar^2}\right)^{3N/2} dE$$

Therefore, the density of states is:

$$\omega(E) = \frac{E^{3N/2-1}}{((3N/2) - 1)!} \left(\frac{ma^2}{2\pi\hbar^2}\right)^{3N/2}$$

- Note that  $(a^2)^{3N/2}$  is  $V^N$  and it is the boundary condition that defines the energy spectrum.
- In more general cases, other macroscopic variables (besides V) can affect the energy spectrum.
- Consider a macroscopic system described by the set of variable:

$$y_1 = \alpha_1, y_2 = \alpha_2, \dots, y_n = \alpha_n$$

 There exists a corresponding dependence of the energy level spectrum on these variables. In this case, the number of states between E and E + dE is:

$$\Omega = \Omega(E, y_1, y_2, \dots, y_n)$$

when  $y_i$  is between  $y_i$  and  $y_i + dy_i$ 

If a constraint is removed, then the number of states is increased:

$$\Omega(E, y_1, y_2, \dots, y_{n-1}) > \Omega(E, y_1, y_2, \dots, y_n)$$

- In most physical processes, constraints are altered instead of being removed.
  - How does  $\Omega(E, y)$  change in such cases?
  - Consider N particles in a box. The constraint is the volume of the box.

## By definition, relaxation of a constraint always leads to:

 $\Omega_f(E, y) > \Omega_i(E, y)$ 

- Consider an isolated system at equilibrium with a particular set of constraints.
  - This system has  $\Omega_i$  equally accessible states.
- Some constraints are removed or relaxed by an external change involving no work.
- The new system thus created has  $\Omega_f$  equally accessible states.
- Therefore:

$$\Omega_f \ge \Omega_i$$

- Consider an ensemble of systems that are in equilibrium with the constraints.
  - All  $\Omega_i$  accessible states are equally probable.
- Let one constraint be relaxed or removed.
  - At the instant that the constraint is changed, the system is still in one of the  $\Omega_i$  states.
  - The system is not at equilibrium.
- The approach to equilibrium requires that the  $\Omega_f$  states be occupied with equal probability.
- The system changes until a new equilibrium is achieved, consistent with the remaining constraints.
- Now consider the case in which an additional constraint is imposed.

- The system cannot go to an equilibrium consistent with these constraints unless work is done on the system.
- Consider the particle in a box model of the perfect gas.
- As shown in Figure 15.2(a), the gas occupies half the volume of an isolated system.
  - The system is separated into two equal volumes with the other half of the system is evacuated.
- The barrier is removed by the expenditure of a negligibly small amount of work.
- The gas expands to fill the entire volume  $V = 2V_i$ .
- For this process:

$$\Omega_f \ge \Omega_i$$



**Figure 15.2** Schematic illustration demonstrating that restoration of a previously relaxed constraint without execution of work does not regenerate the initial state of the system.

- Now consider reinsertion of the barrier.
- The system does not return spontaneously to its initial state.
- In this case the relationship between  $\Omega_f$  and  $\Omega_i$  is not the inverse foe the previous case.
- Recall:

$$\Omega = \left[\frac{\partial\Gamma(E)}{\partial E}\right] dE = \frac{E^{3N/2-1}}{((3N/2) - 1)!} \left(\frac{ma^2}{2\pi\hbar^2}\right)^{3N/2} dE$$

Therefore

$$\Omega(E, V, N) = CV^N \left(\frac{E}{N}\right)^{3N/2} dE$$

where C is a constant independent of E and V.

This was derived using the Stirling Approximation.

$$N! \approx N^N \exp(-N)$$

- For the initial state for 15.2b, the particles are anywhere within volume V.
- For the final state for 15.2, N/2 particles are in each of the two subvolumes V/2.
- The energy per particle has not changed in this process.
- There are [N!/(N/2)!(N/2)!] ways that N/2 particles can each be placed in the subvolumes.



$$\Omega_f(E,V,N) =$$

$$C \frac{N!}{\left(\frac{N}{2}\right)! \left(\frac{N}{2}\right)!} \left(\frac{V}{2}\right)^{N/2} \left(\frac{E/2}{N/2}\right)^{3N/4} \left(\frac{V}{2}\right)^{N/2} \left(\frac{E/2}{N/2}\right)^{3N/4} dE$$

$$= CV^N \left(\frac{E}{N}\right)^{3N/2} dE$$

- This means that  $\Omega_f = \Omega_i$  and the insertion of the barrier has not changed the system.
- To restore the system to the initial state given in 15.2a, the gas must be removed from one of the compartments.
  - Compress the gas into a subvolume by a sliding wall.

- This would involve energy being put into the system as work and would result in a temperature change.
- There is no way to get back to the original state of 15.2a without transferring work or heat across the boundary of the system.
- Once the barrier is removed and the molecules distribute themselves over the  $\Omega_f$  states, the reimposition of the boundary condition does not cause the system to spontaneously return to the initial state.
  - This is an irreversible process.
- The groundwork has now been laid for the comparison of statistical mechanical and the thermodynamic descriptions of a spontaneous process.

- Consider a process in an isolated system that takes the system from an initial to a final state.
- If this final state is such that the imposition or relaxation of constraints without the requirement of external work cannot recreate the initial state, the process is irreversible.
- If the imposition or relaxation of constraints without external work recreates the initial state, the process is reversible.
- For processes at constant energy and constant volume.
  - If some of the constraints defining an isolated system are relaxed,  $\Omega_f \ge \Omega_i$
  - If  $\Omega_f = \Omega_i$ , the systems of the ensemble are distributed over the same accessible states

- Continued:
  - before and after the constraint is relaxed. The system is in equilibrium at all steps of the process and the transition  $i \rightarrow f$  is reversible.
  - If  $\Omega_f > \Omega_i$ , the transition  $i \to f$  is irreversible.
- In Chapter 13, a reversible process was defined in terms of intensive variables being continuous across the boundary of the system.
  - This involves the system being in contact with some reservoirs.
  - How is a reversible process defined for an isolated system, which by definition is not in contact with any reservoirs?
- Consider the system illustrated in Figure 13.3.



21

50 HAND

- The system is subdivided into two subsystems, separated by a movable piston upon which weights rest confining subsystem 1.
- The weights can be moved by a pulley arrangement between the piston and a ledge at the same height.
  - Therefore moving the weight involves no net work.
  - The pulley arrangement is therefore a device to change constraints inside an otherwise isolated system.
- If the weights are infinitesimally small, the pressure will be continuous across the piston as subsystem 1 expands and subsystem 2 is compressed.
  - Subsystem 2 may be considered the surroundings of subsystem 1.
- The thermodynamic definition of a reversible process requires that every point on the path be infinitesimally close to an equilibrium state of the system.
  - At every point along the path, the relevant intensive variables are continuous across the boundary of the system.
  - Therefore the extensive variables of the system must also be infinitesimally close in value in two states that are infinitesimally close.
  - This is equivalent to  $\Omega_f = \Omega_i$  since the extensive variables usually describe the constraints or boundary conditions defining  $\Omega$ .

## The Entropy: A Potential Function for the Equilibrium State

- Consider the properties of the number of accessible states for a composite system.
  - The total energy may be distributed over parts of the system.
  - The most probable distribution of the total energy over the system will be shown to be equivalent to systems in equilibrium having equal temperatures.
- This will be the basis of the definition of entropy.
  - It will be shown that it is related to work and internal energy.
  - Entropy may be considered as providing a relationship between microscopic and macroscopic descriptions of the system.

- Consider two macroscopic systems, A and B with energies  $E_A$  and  $E_B$  respectively.
- Let  $\Omega_A(E_A)$  and  $\Omega_B(E_B)$  be the number of states between  $E_A$  and  $E_A + dE_A$  and between  $E_B$  and  $E_B + dE_B$  respectively.
- *N<sub>A</sub>* and *N<sub>B</sub>* are the numbers of *A* and *B* molecules and are fixed.
- The ensemble is specified by the requirement that  $E_T = E_A + E_B$  is constant.
- The ensemble consists of pairs of systems, with the replicas having different distributions of E<sub>T</sub> between A and B.
- The volumes  $V_A$  and  $V_B$  are independently varied as are any other constraints.

- The ensemble is defined by the value of  $E_T$ .
- If system A of a replica pair has energy  $E_A$ , then system B has an energy of  $E_T E_A$ .
- When system A has energy  $E_A$  it can be in any one  $\Omega_A(E_A)$  equally likely state while system B can simultaneously be in any one of  $\Omega_B(E_T E_B)$  states.
- Every possible state of A can be combined with every possible state of B, so the total number of states is:

$$\Omega_T(E_T, E_A) = \Omega_A(E_A)\Omega_B(E_T - E_B)$$

- Since  $E_T$  is constant,  $\Omega(E_T, E_A)$  is a function of  $E_A$ .
- Now consider the contribution to  $\Omega_T(E_A) = \Omega_T(E_T, E_A)$ from different subdivisions of  $E_T$  between A and B.

• The probability of finding A + B with the energy of A between  $E_A$  and  $E_A + dE_A$  is:

$$\frac{\Omega_T(E_A)}{\sum_{E_A} \Omega_T(E_A)}$$

where  $\Omega_T(E_A)$  is the total number of states accessible to the total system for a given  $E_A$  taken over all possible values of  $E_A$ .

🥒 Let

$$\sum_{E_A} \Omega_T(E_A) \equiv C^{-1}$$

• Therefore the probability of finding A + B in a state with energy between  $E_A$  and  $E_A + dE_A$  is:

## $P(E_A) = C\Omega_A(E_A)\Omega_B(E_T - E_B)$

- As  $E_A$  increases,  $\Gamma_A(E_A)$  increases but  $\Gamma_B(E_T E_A)$  decreases.
- However  $P(E_A \text{ has a maximum at some } E_A^*$ .
  - Because  $\Gamma_A(E_A)$  and  $\Gamma_B(E_T E_A)$  are rapidly varying functions, the maximum will be sharp.
- If  $\Gamma_A$  and  $\Gamma_B$  are treated as continuous functions, then the maximum may be found by differentiation:

$$\left(\frac{\partial P(E_A)}{\partial E_A}\right)_{V,N} = 0$$

and

$$C\Omega_B(E_T - E_B)\left(\frac{\partial\Omega_A}{\partial E_A}\right) + C\Omega_A(E_A)\left(\frac{\partial\Omega_B}{\partial E_A}\right) = 0$$

• Dividing by  $P(E_A)$  and using  $E_A = E_T - E_B$ ,

$$\left(\frac{\partial \ln \Omega_A}{\partial E_A}\right)_{V,N} = \left(\frac{\partial \ln \Omega_B}{\partial E_B}\right)_{V,N}$$



$$\beta = \left(\frac{\partial \ln \Omega}{\partial E}\right)_{V,N}$$

- Therefore  $\beta_A = \beta_B$  (which has the same properties as temperature).
  - It can be shown that  $\beta = (k_B T)^{-1}$ .

## By definition

$$S = k_B \ln \Omega$$

where S is entropy.