Thermochemistry and Its Applications

#® Some consequences of the first law will now be
explored.

s Thermochemistry deals with how changes in
temperature and energy are related.

s Conditions under which the process occurs must be
defined carefully.
s Heat released by a chemical processes will vary
according to the constraints of the process.
s This is because heat is a path function.

s Specific types of energy changes will be defined.
s Standard states will be defined.

» Also considered will be the molecular interpretation
of thermochemical data.
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Heat Capacity and Enthalpy

# Consider a vessel with rigid and adiabatic walls, filled
with fluid.

»

»

o

The system is isolated except for a heater.
At equilibrium the temperature of the fluid is T3.

Current is passed through the heater for a specified
time and the electrical energy is dissipated as
guantity of heat gq.

A new equilibrium is established at 75.

s Vessel is rigid, therefore constant V' process.

The heat capacity at constant V may be defined as:

Y 4
Cv = Al%rgo (AT)V
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o By the first law of thermodynamics:
AU = qy

since pV work is zero at constant V.

oU
Cv = (a—T>V

# Now consider the same process, but now allow one wall
of the container to be a freely moving, but adiabatic,
piston.

s The volume of the system can change as heat is
added.

® Therefore
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® Continued:

s The process will occur at constant p if external
pressure is fixed at p,,, and heat is added so slowly
(I.e. reversibly) that at all points p = pgypp-

s The heat capacity at constant p may be defined as:

_ o (94
Cp = AIJI”IEO (AT)p
# Heat capacity may also be defined with respect to other
constraints, but C), and C'y, are the most widely used.

» Heat capacities are extensive (J K™1).

s Often defined with respect to particular amounts of a
substance:
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o Continued:
s Molar heat capacity is the heat capacity per mole (J
K=1 mol=1).
s Specific heat is (usually) heat capacity per gram (J
K=1g=1h.
# Molar heat capacity (once the path has been specified)

can be treated as a state function characteristic of the
particular substance.

s It depends on the energy spectrum of the substance.

# The convention of the text is to use uppercase letters
for extensive quantities and lower case for the molar

guantities.
s U Is internal energy.
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® Continued:

s u is the molar internal energy. (Other texts use U for
molar internal energy.)

# Consider a constant pressure experiment in which the
fluid is allowed to expand.

s Work, w,, is negative since work is done on the
surroundings.

s Therefore adding a given quantity of energy to the
system causes a smaller internal energy change
than in the case when the volume is held constant
and no work is done on the surroundings.

s Inthe constant volume case, all the heat added to
the system is used to increase the internal energy
of the system.
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® Thus for the same value of ¢, (AU), < (AU)y,
(AT)p < (AT)V, and Op > (.

# For a constant volume process (dU)y = CydT.
#® From the first law in differential form:

(dU), = C, dT — p dV

which describes a reversible constant pressure process
of a system that can do only pV" work.

s This can be rewritten as C,dT = (dU + pdV),.

s This in turn suggests a new thermodynamic variable,
H, or enthalpy:

H=U+pV
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#® The differential of H at constant p:

(dH), = (dU + pdV'), = C,dT

oOH
Cp = (8_T>

and the heat transferred in a constant pressure process
IS:

and thus

Qp — (AH)p

#® Because U and pV are also state functions, H is a state
function.

# Enthalpy is convenient as a state function to describe
processes carried out at constant pressure.
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# Enthalpy along paths other than constant p many be
considered.

s For example for constant V,
(dH)y = (dU)y +d(pV )y = CydT + Vdp

o Enthalpy is usually determined with a calorimeter.
» Calorimetry can also be used to determine heat
capacity.
s C, and Cy are usually determined as functions of

temperature and pressure over the ranges of
interest.

s C, and Cy are related to each other.
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# For a perfect gas:

OH oU
o= =(5r),~ (5r),

(5,3,
[0,

# In the gas phase, C), — Cy can be significant.

# In condensed phases, pV' is much smaller than nRT', so
C, and Cy are similar.

o (), — Cy will be explored further in Chapter 17.
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# Heat capacities are usually dependent on temperature
and are expressed in the form:

cp =a+bT + cT?

for the phase of interest.

Energy and Enthalpy Changes in Chemical Reactions

o Consider a general chemical reaction of the form:
aA+bB+---=IL+mM + --.

# This may be rewritten as:
L+mM+----aA-bB----=5%"_ X, =0
where X; represents the species and v; represents the
stoichiometric coefficients.
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® Continued:

s By convention v; < 0 for reactants and v; > 0 for
products. Thus for

%H2+%C|2=HC|

£ VHC = 1
1

£ VH, = )
1

$ VCIQ = 9

#® [n terms of this notation, the condition of conservation
of mass becomes:

T
AM = Z v, M; = 0
1=1

where M; is the molar mass of substance ;.
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o Consider now internal energy U and enthalpy H

r

AU = Z ViUg

1=1

r

AH = Z v;h;

1=1
where u; and h; are the internal energy and enthalpy
per mole of component ;.
» Note now that AU and AH are with respect to the
stoichiometry of the reaction.

# The text then goes on to connect this to Hess’s Law.
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Thermochemistry of Physical Processes

# Consider the changes in U and H for a fluid initially in
equilibrium at p1, V4,77 moving to a new equilibrium at
p2, Vo, 1s.

s U and H are state functions, therefore the values of
AU and AH are independent of the path between
the initial and final state.

o Consider a path from the initial state and the final state
that consists of two steps:

o An isochor: the fluid is heated or cooled at constant
V to 15.

s An isotherm: the fluid is held at constant temperature
T> and the volume is changed until 5 is reached.

# AU may be calculated on this path.
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An infinitesimal change in U is given by:

oU oU
—(Z) ar+ (Z) 4
v (aT)Vd +<aV)T v

where dT' and dV are the infinitesimal changes in 7" and
V.

AU can be determined by integrating over this path:

AU = U(Ty, Vo) — U(T1, V1)

15,1 15,Vo
o Gr)yre [ (o),
T1,V1 oT 1% 15,V4 oV T
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# The first step takes place at constant V. Therefore:

15,V1 oU 15,V1
AUﬁrst step — / (a—T) dl' = / CvdT
T1,V4 V T1,V4

#® The second step takes place at constant 7. Therefore:

15,V
Ve (U
AUsecond step — /T%V1 (W>Tdv

s To evaluate this, (0U/0V), needs to be determined.

OUN _p(9) _
ov ). “\or), 7
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# Thus for the total internal energy change:

T5,V4 T5,V4
AU:/ (a—U> dT:/ Oy dT
11,V1 or V 17,V1

L), g

# This can be evaluated if the heat capacity Cy and the
equation of state are known.

# [f the equation of state is not known, then
measurements of p and T' at constant IV may be used to
evaluate (OU/0V ).
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# To determine the enthalpy change, a different two step
path is more convenient:

» An isobar: the fluid is heated or cooled at constant p
to T2.

s Anisotherm: the fluid is held at constant temperature
and the pressure is changed until ps is reached.

# An infinitesimal change in H is given by:

OH oH
H = — T — d
: <8T>Pd +(3P)T P

® |t can be shown that:

(), (3
op ) ¢ oT .
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# Thus the total enthalpy change, AH, may be
determined:

AH = H(T3,p2) — H(T1,p1)
1T2,p$1 15,p2 H
- [, (Gr), e (5,
T1,p1 orT D T2,p1 dp T

T5,p$1
_ / C,dT

T1,p1

. /Tm {V(p,T) o (avg?p))p} i

T5,p1
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#® When work other than pV work is involved:

AU =dq +dw,y +dwy

® Hess’s Law applies to the heat capacities, C), and Cy..

Introduction to Phase Changes

# This section will be omitted (for now).
Standard States

# This section is to be reviewed, but not in class.
Thermochemistry of Solutions

#® This section is to be reviewed, but not in class.
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Molecular Interpretation of Physical Processes

® This section is to be reviewed, but not in class.

Bond Energies

® This section is to be reviewed, but not in class.

Some Energy Effects in Molecular Structures

® This section is to be reviewed, but not in class.

Lattice Energies of lonic Crystals

® This section is to be reviewed, but not in class.

.= p.24/29



LT RFR T e L Elm 'I-I'I..Iiﬂ.lIELr L-ULIWF‘LFI.I“G LAF Fﬂl.ll. HlUﬂﬂlulE,_ Al R

A I
|
A
P
liquid

Figure 14.4 A typical phase diagram for a simple substance. The Fi
lines represent the locus of pressure and temperature for which two (a
phases can coexist, for example liquid and vapor along the line sh
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the critical point for the substance (see Chapter 24). 1m
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