
The First Law of Thermodynamics
What do

Energy
Work
Heat

mean in thermodynamics?

From a microscopic view energy is defined in terms of
quantum mechanics.

Both microscopic and macroscopic views of the perfect
gas will be considered.

Also considered are:
Nature of intensive and extensive variables.
Quasi-static and reversible processes.
Nature of constraints.
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Microscopic and Macroscopic Energy in a Perfect Gas

The First Law of Thermodynamics may be expressed in
terms of conservation of energy.

Consistent with the treatment of energy conservation in
classical and quantum mechanics.

The kinetic energy of a single particle is 1
2mv

2.

The potential energy is defined in terms of
intermolecular potential.

Total energy is conserved throughout the system.
NOT the energy of the individual particles.

But thermodynamics is concerned with macroscopic
properties of the system.
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What does “energy” mean in the context of
thermodynamics.

How is energy related to p, ρ, and T?
How do mechanical and thermodynamic concepts of
energy relate to each other?

Consider the mechanical description of a system:
The positions and velocities of the particles can be
controlled by the manipulation of forces.
The work associated with moving a particle can be
determined by controlling movement of that particle
and all other particles in the system.
The motion of the individual particles is followed as
closely as possible.
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In contrast, consider the thermodynamic description:
Only macroscopic variables, such as volume, are
controlled.
Work is performed when the systems boundaries are
displaced.

Positions and velocities of individual molecules
can change freely so long as the average
properties of the system are consistent with the
macroscopic properties.

These uncontrolled molecular motions account for the
differences between thermodynamic and mechanical
energy.

But there is a connection between the
thermodynamic and mechanical quantities.
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Continued:
The thermodynamic quantities are related to the
averages over large number of molecules (or over a
long time) of the mechanical quantities.
Already encountered has been the relationship
between the temperature and kinetic energy of
molecules.

Consider a monatomic gas from a quantum mechanical
perspective:

Consider a system of N noninteracting particles in
cubic box of volume V .
This is a closed system.
The possible energies of the particles in the box are
quantized.
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The energy spectrum for a particle in a 3-D cubic box is
given by:

εn1,n2,n3 =
π2h2

2mV 2/3

(
n2

1 + n2
2 + n2

3

)

where n2
1, n2

2, and n2
3 are the quantum numbers for the

x, y, and z axes of the cube.

The larger the cube is, the more closely spaced are the
energy levels.

The total energy of the system is the number of
particles in each energy state, summed over all states.

E =
∑

n1,n2,n3

Nn1,n2,n3εn1,n2,n3
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Now consider a change in the size of the box such that
it is still a cube.

How does this change the energy?

dεn1,n2,n3 = − π2h2

3mV 5/3

(
n2

1 + n2
2 + n2

3

)
dV

= −2εn1,n2,n3

3V
dV

This means that increasing the volume makes the
spacing of the energy levels smaller.
The energy spectrum changes when the
macroscopic coordinate of V is altered.

But does changing the volume of the system change its
energy?
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Whether or not changing the volume changes the
energy of the system depends on how the change is
made.

A perturbation of the wall of the system will lead to
transitions among the energy levels of the system.
If the perturbation is carried out infinitely slowly, then
the process is adiabatic and no transitions will take
place.
Such a process is adiabatic.

In an adiabatic process, same number of particles are in
each energy level before and after the volume change.

But the spacing of the energy levels has changed.
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dE =
∑

n1,n2,n3

Nn1,n2,n3dεn1,n2,n3

= − 2

3V

[ ∑

n1,n2,n3

Nn1,n2,n3εn1,n2,n3

]
dV = −2

3

E

V

The only way the particles in the box can have energy is
as kinetic energy.

If the occupation number (Nn1,n2,n3) does not change,
but the energy of the level does change as the volume
changes, then the total kinetic energy of the system
changes.

This means that there will be a temperature change
in the gas.
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The change in the volume does not have to be carried
out in such away that no transitions in the energy of
individual particles occurs.

Since the molecules are indistinguishable, all that is
necessary is the average population of the energy
levels remains unchanged.
Populations of the energy levels fluctuate around
their average values.
Equilibrium thermodynamics can be used at any
point on the path if the fluctuations are small.

The adiabatic process carried out very slowly is referred
to as reversible or “quasi-static”.

The system never deviates significantly from
equilibrium at any point in the process.
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The First Law of Thermodynamics requires that energy
be conserved.

Therefore if the energy of the system changes, then the
energy of the surroundings must change is such a way
as to conserve energy.

Energy is some form is transferred to or from the
particles from or to the surroundings.
Work is one of the ways that this energy transfer can
occur.
To compress a box, an external force must be
applied to it.

By definition, work is force times distance.
The applied pressure times the area is the force.
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The inward displacement of the container is the
distance. This distance may be obtained by dividing the
volume by the area to which the force has been applied.

Therefore:

Work = −pappA
dV

A
= −pappdV

This work represents the energy transferred from
the surroundings in the case of compression
(dV < 0).
In the case of expansion (dV > 0), energy is
transferred to the surroundings as work.

Is this energy change in the surroundings the same size
as the energy change in the system?
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In the case of particles in the box, the box imposes the
boundary conditions at which the wave function
vanishes.

This is how quantum mechanics describes particles
being inside the box, but not outside.

If the volume of the box is changed, then this is a
change in the boundary conditions for the
wavefunctions describing the particles.

This means that the energy levels change.

Therefore energy crosses the walls of the system in the
form of work.

The walls are adiabatic so work is the only way of
changing the energy of the system.
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How do real systems differ from the ideal system?
The walls of a real system are made up of
molecules.
These molecules can vibrate.
Energy can be transferred across the walls to the
gas molecules on the other side without doing work.
This energy is transferred across the walls as heat.
Such walls are diathermal.

Thermodynamics answers the question of how much
energy is transferred as heat and how much energy is
transferred as work.

Mechanics uses the trajectories of the individual
particles to figure out how much energy is
transferred as work.
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Continued:
Thermodynamics considers work in terms of the
energy that crosses the boundaries of a system and
describes it in terms of the surroundings.

Description of Thermodynamic States

In order to develop thermodynamic definitions of work
and heat, a thermodynamic state must be described
precisely.

Two thermodynamic states are identical if they are
described by sets of macroscopic variables that have
the same values for each state.

How are relevant thermodynamic variables chosen?
How many can be constrained or fixed?
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Only variables that can be independently chosen can
be selected as constraints.

A thermodynamic state is uniquely defined by
specifying a complete set of thermodynamic variables.

Each set of values for such variables corresponds to
a distinct state of the system.

Consider an equation of state for a pure substance.
p and v (specific volume) would be a set of
independent variables in that the temperature T
would be determined once their values were chosen.
Any two of p, v and T can be chosen independently
and constrain the value of the third coordinate.
Geometrically, the equation of state defines a
surface in p, v, T space.
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The surface can be defined by:

p = f1(v, T ) or v = f2(p, T ) or T = f3(p, v)

where the forms of the function are determined by the
equation of state.

The surface is illustrated in Figures 13.1 and 13.2.

Fixing one of the thermodynamic coordinates is
equivalent to taking a cut through the surface parallel to
appropriate axis.

All points on the surface correspond to an equilibrium
thermodynamic state.

All points in p, v, T space that do not lie on the surface
are nonexistent states of the system.
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A nonequilibrium state of the system requires more
than p, v, T to describe it fully.

Some examples of nonequilbrium systems are:
A one component, one phase system that is spatially
inhomogeneous.
A system with a nonequilibrium velocity distribution.
A system in which a chemical reaction is occurring.
A steady state system through which energy or
mass is flowing.
Any system in which a change is being carried out at
a perceptible rate.

A quasi-static or reversible process is carried out so
slowly that all points on the path lie on (or very near) the
surface described by the equation of state.
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The Concept of Work in Thermodynamics

Consider the mechanical definition of work:

dw = F · ds = Fsds

where:
F is force.
s is the displacement
Fs is the component of F in the direction of ds.

If the object is displaced from point 1 to point 2, the
work done is determined by evaluating the line integral:

w12 =

∫ 2

1
F · ds =

∫ 2

1
Fsds
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The value of a line integral depends on the path taken
between point 1 and point2.

Line integrals are also known as path integrals.

Therefore if different paths are taken between point 1
and point 2, different amounts of work are involved.

Work is defined only with respect to motion.
It is a process variable that passes between
systems.

An object does not contain work.
That is the system does not contain one amount of
work at the beginning of the process and another
amount at the end.
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There are some important distinctions between
mechanical and thermodynamic work.

In mechanical work, force is typically related to the
interaction potential.

F · ds = Fxdx+ Fydy + Fzdz

is an exact differential.
This means that the cross derivatives are equal:

(
∂Fy
∂x

)
=

(
∂Fx
∂y

)
,

(
∂Fz
∂y

)
=

(
∂Fy
∂z

)
,

(
∂Fx
∂z

)
=

(
∂Fz
∂x

)

If this condition is met, the mechanical system is
conservative and the mechanical work can be
determined just from the initial and final positions.
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If this condition is not met, then the mechanical system
is dissipative.

A typical thermodynamic system is dissipative.
It is possible to define thermodynamics potentials
that are related to the work that a thermodynamic
system can do under specific conditions.

Thermodynamic work involved in the expansion or
compression of a fluid.

Consider a volume of fluid in a container with
movable walls.
This fluid exerts pressure p on the walls.
The pressure applied to the walls form the
surroundings is papp.
papp can be any force applied to the container.
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When the system is at equilibrium p = papp.

If papp is increased then the volume of the fluid must
decrease.

Consider a small element of the surface of the container
with area dA which moves inward by infinitesimal
distance dxi.

The work done on the system as the result of the
force exerted on the ith element of area is

d̄wi = Fi dxi = (papp)i dAi dxi = (papp)i dVi

where dVi = dAi dxi is the change in volume of the
system.
This summed over the entire surface area of the
container will give the work done on the system.
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The sign convention for work:
w > 0 when dV < 0.
w < 0 when dV > 0.
This is expressed as

d̄w = −pappdV

The total work done on a system for a finite volume
change is:

w = −
∫ V2

V1

papp dV

where V1 and V2 are the initial and final volumes
respectively and papp is the effective pressure exerted
by the surroundings.
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If work is to be done at a measurable rate (i.e. not
quasi-statically), then papp must differ from p.

Either p or papp can be varied independently of the
volume.
For example, papp can be varied by changing the
weight placed on a piston.
p could be altered by changing the temperature.
There are an infinite number of paths between state
1 and state 2.

Therefore work cannot be determined unless the
path is specified.
Work cannot be determined solely by the initial
and final point of the path.
This is why the differential of work is represented
by d̄w. ( d̄ denotes an inexact differential.)
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Some properties of inexact differentials:

Consider ∫ 2

1
d̄X

There exists no function X of which d̄X is the differential
and which has a unique value in either the initial or final
state.

Therefore a thermodynamic system does not contain
work.

Work cannot be defined as a function of the variables
that determine the state of a thermodynamic system.

Only state functions can be expressed in terms of
state variables (p, v, T ).
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Work is a path function.

Work has many forms:
Mechanical w =

∫ x2

x1
Fdx

Pressure-volume work w = −
∫ V2

V1
pappdV

Electrical work to charge a capacitor w =
∫ Q2

Q1
EdQ

A general definition of work that can be applied in
principle is: “The performance of work is equivalent to
the lifting of a mass in a gravitational field.”

Applied to pressure-volume work this gives:

−w =

∫ 2

1
pappdV =

∫ 2

1

(mg
A

)
(Adh) = mg

∫ 2

1
dh
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All of this assumes that work is a form of energy and that
energy can be converted in form.

Work has the units of energy.

What is the difference between mechanical and
thermodynamic work?

Thermodynamic work deals with a wider range of
variables.

Mechanical work is concerned with the trajectories of
the individual particles that make up the system.

Thermodynamic work is concerned with what crosses
the boundaries of the system.

In principle, this thermodynamic work can be
converted into lifting a mass.
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Continued:
Thermodynamics is not concerned with what is
happening with that energy before or after it crosses
the boundary of the system.
It is concerned with how much of that energy is work.

Intensive and Extensive Variables

Intensive variables are independent of the mass of the
system.

Some examples of intensive variables are T and p.

Extensive variables depend on the mass of the system.
Internal energy and volume are examples of
extensive variables.
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Consider intensive and extensive variables in the
context of two identical systems.

The two systems are combined by removing a
barrier between them.
The intensive variables, p and T , do not change.
The extensive variables such as U or V do change,
to twice their initial values.

Work is expressed in terms of an intensive variable and
an extensive variable.

These pairs of variables are conjugate variables.
What they are depends on what type of work is
involved.
When the members of these conjugate pairs are
multiplied together, the result has units of energy.
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Generally:
d̄w = XdY

where X is an intensive variable that has the same
value inside and outside the system and Y is the
conjugate extensive variable such that an infinitesimal
change dY does work d̄w.

There are many such pairs of variables (see Table
13.1).
Pairs of conjugate variables also appear in
mechanics as generalized coordinates and
generalized forces.

The potential energy of the mechanical system
can often be expressed as a function of the
generalized coordinates i.e. U = U(q1, q2, . . . , qn).
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Continued:
If this is true of the potential then

The generalized force Qi conjugate to the
particular generalized coordinate qi is the negative
partial derivative of the potential with respect to
that generalized coordinate:

Qi = −
(
∂U

∂qi

)

The differential work is d̄w =
∑

iQiqi.

Thus X = −(∂U/∂Y ) where X and Y are conjugate
variables.

Note that the product of the conjugate variables has
dimensions of energy.
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The boundaries of the system determine whether or not
work can be performed.

If the boundary is movable, expansion work may be
done.
If the boundary is rigid, then no expansion work can
be done.
If the boundary is conducting, then electrical work
may be done.
If the boundary is insulating, then no electrical work
may be done.

Work of a given type is always associated with a change
in the extensive variable until the intensive variable has
the same value on both sides of the boundary i.e. when
the system attains equilibrium with the surroundings.
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Consider a system where a portion of the boundary is
displaceable.

When the boundary moves outward, the volume
changes in both the system and the surroundings.
The moving boundary may be thought of as
“transmitting” pressure, since the change occurs
until the pressure (the variable conjugate to volume)
is the same in both the system and the surroundings.

If the boundary is rigid, then pressure volume-work
cannot be performed.

When the system attains equilibrium, the pressure
(intensive variable) can have different values in the
system and the surroundings.
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If a system at equilibrium is to undergo a change in
state, energy must be able to cross its boundaries as
either heat or work.
Quasi-static and Reversible Processes

The path by which a change in state occurs must be
carefully considered.

The change in the state function depends on the
initial and final states and not the path.
The path by which the change in state occurs
determines how much heat or work is transferred by
the process.

Two categories of paths will be considered:
reversible
irreversible
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Consider a reversible path followed by a system
between the initial and final states.

Every point of the path can be described by the
equation of state.
But a system at equilibrium cannot change with time.
Any real process that occurs at a measurable rate is
not a reversible process.
The reversible process represents the limiting case
of a real change in state carried out at an
infinitesimal rate of change.
The process carried out at an infinitesimal rate of
change is carried out quasi-statically.
A given change of state can be carried out
quasi-statically by infinitely many routes.
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Not all quasi-static processes are reversible.
The limiting behaviour depends on the conditions or
constraints.

Consider a reversible quasi-static processes.
In the limit of an infinitely slow process, a system
undergoing a reversible, quasi-static process moves
through a continuous sequence of equilibrium states.
But is this of any practical use?

Many real processes have characteristics so close
to that of a reversible process, that the process
may be assumed to be reversible for the purposes
of calculating useful quantities.
This implies that any deviation from equilibrium
tends to zero more rapidly than the rate of change.
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Consider an irreversible path between initial and final
states.

It is possible to calculate work if the relationship
between papp and the volume is known.

Consider now the example of the expansion of a perfect
gas from V1 to V2.

This may be carried out quasi-statically with a
frictionless piston.
Initially the pressure papp is equal to the internal
pressure p.
The pressure is changed by a small amount ∆p and
the gas expands.
Maintaining the relationship papp = p−∆p, the
process continues until the final volume is reached.
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Now consider repeating the process with a smaller ∆p.
Since ∆p is smaller, the force will be less and the
process will occur more slowly.
In the limit ∆p→ 0, the rate is infinitesimal with
papp = p throughout (i.e. the reversible expansion of
the gas).
If this is the case and the gas is perfect, then:

w = −
∫ V2

V1

pappdV = −
∫ V2

V1

p dV

= −
∫ V2

V1

nRT

V
dV = −nRT ln

V2

V1
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Work may be thought of as the area under the curve in
(p, V ) space as illustrated in Fig. 13.4.

It is to be noted in this case that:
expansion work is performed.
The intensive variable associated with this work,
pressure, has the same value on both sides of the
barrier during this reversible process.

The complete definition of a reversible process is:
It takes place at an infinitesimal (quasi-static) rate.
It passes through a continuous sequence of
equilibrium states.
At every point in the process, the intensive variable
corresponding to the type of work involved is
continuous in value.
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A reversible path can be traversed in either direction.
The result is identical in magnitude but not in sign.
The direction of the process is determined by the
direction of the infinitesimal change in the intensive
variable.

If papp < p, then expansion occurs.
if papp > p, then compression occurs.
If the work done in the forward process is
wf = −

∫ V2

V1
pdV , then the work in the reverse

process wr = −
∫ V1

V2
pdV = −wf .

wf = −wr is valid only for reversible paths.

A system undergoing a reversible quasi-static process
differs from a system at equilibrium in that the latter
does not exchange work or heat with the surroundings.
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Consider an irreversible process.
Can no longer assume that papp = p.
The driving force will be A(papp − p) and the change
will occur at a nonzero rate.
The work performed is not given by w = −

∫ V2

V1
pdV

but by w = −
∫ V2

V1
pappdV

The substitution papp = nRT/V is not valid for an
irreversible process.
To calculate work, the actual papp must be known.
If papp were constant, then w = −papp

∫ V2

V1
dV

If papp were zero, the system would expand without
doing any work.

More about irreversible work in Chapter 16.
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A process can be quasi-static without being reversible.

Consider Fig. 13.5c.
A fluid is confined by a piston held in place by a
series of pegs.
There is a vacuum above the piston, so papp = 0.
Removal of the lowest peg results in the fluid
expanding irreversibly until the piston hits the next
peg.
The process is repeated for the remaining pegs.
If the spacing of the pegs is made infinitesimal, then
the process becomes quasi-static, but not reversible.

Another example of quasi-static irreversible expansion
involves the case of piston moving with friction.
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The First Law: Internal Energy and Heat

Consider a system with adiabatic walls.
Recall that all real walls have some thermal
conductivity, but real systems exist which
approximate this ideal system.

The first law may be stated formally:

“If the state of an otherwise isolated system is changed
from A to B by the performance of work, the amount of
work required depends solely on the initial state A and
the final state B, and not on the means by which the
work is performed, nor the intermediate stages through
which the system passes between the initial and final
states.”
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Note that the initial and final states must be equilibrium
states.

The internal energy U of a system is defined by the
statement:

“If an otherwise isolated system is brought from one
state to another by the performance upon it of an
amount of work wad, the change in the system’s internal
energy in the process is defined to be the amount ∆U
exactly equal to wad”

Note that wad is adiabatic work.

Therefore ∆U = UB − UA = wad where A and B
designate respectively, the initial and final states

∆U > 0 when work is done on the system.
∆U < 0 when work is done by the system.
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This relationship holds for both reversible and
irreversible adiabatic processes.

Note that the definition refers only to the change in
internal energy.

It does not establish the zero of the energy scale.
The zero of the energy scale is arbitrary.

When a given equilibrium system is used to fix the
value of U0, then the value of U for any other equilibrium
system is uniquely determined.

∆U is independent of the path, i.e. U is a state function.

Therefore for a fluid: U = U1(p, v) = U2(p, T ) = U3(v, T )
and have the same value for any equilibrium state of the
fluid (even though the functions differ in form).
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Consider a system with diathermal walls.
Now energy can be exchanged with the surrounding
as heat and as work.

For a given change in state in this case, w will differ
from wad.

Diathermal work depends on the path.
q, the heat transferred can be defined in terms of w
and wad:

q ≡ wad − w
.
But ∆U = wad, therefore:

q = ∆U − w or ∆U = q + w

.
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Thus heat may be determined in terms of the change of
state (i.e. change in internal energy) and the work
performed on or by the system.

As in the case of the sign convention for work, heat is
positive when energy is transferred to the system as
heat and negative when energy leaves the system as
heat.

Heat is anything that enters or leaves the system by a
means other than work.

Internal energy U is a state function and has exact
differential dU

Heat q and work w are path functions and have inexact
differentials d̄q and d̄w and dU = d̄q +d̄w.
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One consequence of the definition of a state function is
that: ∮

dU = 0

Therefore
∮
d̄w +

∮
d̄q = 0 but:

∮
d̄w = 0 and

∮
d̄q = 0

is not necessarily true.

What are
∮
d̄w and

∮
d̄q ?

Consider first a cycle that follows a reversible path
from state A to state B and then returns from state B
to state A along the same reversible path.
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Continued:
∆Uf = −∆Ur
wf = −wr
Therefore qf = −qr.

If on the other hand, the path from state B to A is not
the exact reverse of the path taken from A to B, then

∆Uf = −∆Ur

wf 6= −wr
Therefore qf 6= −qr.

Consider Fig. 13.6 and a cyclic path from A to B by
adiabatic path ACB and from B back to A by path BFA.

The work associated with ACB, wACB, is
proportional to the area enclosed by ACBDEA.
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Continued:
wACB is positive since the process is a compression.
qACB is zero because the path is adiabatic.

Now consider BFA.
The work associated with BFA, wBFA is proportional
to the area enclosed by BFAED.
wBFA is negative since the process is an expansion.
Due to the first law, the heat associated with this
portion of the path plus the work must UA − UB: i.e.
∆UBA = wBFA + qBFA.
But ∆UBA = −∆UAB = −wACB and
wBFA + qBFA = −wACB. Therefore
qBFA = −wACB − wBFA which is proportional to the
area enclosed by ACBFA.
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Continued:
qBFA is negative because wACB is larger in
magnitude than wBFA.

The net work of the cycle is wACB + wBFA (also the
area enclosed by the cycle.

Overall: ∮
dU =

∮
d̄q +

∮
d̄w = 0

∮
d̄w = −

∮
d̄q = wACB + wBFA

.

If a system is undergoing only reversible processes,
then the first law may be written in general form:

. – p.58/74



dU = d̄q −
∑

i

XidYi

where Xi, Yi are the conjugate pairs of intensive and
extensive variables.

Thus Xi, the intensive variable, can be defined as:

Xi =

(
∂U

∂Yi

)

rev ad, Yj ,j 6=i

Note that the first law applies to all processes.
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Some Historical Notes

Our understanding of the first law is ∼ 200 years old.

That work can be converted to heat was shown in many
ways.

Rumford (1798) showed that mechanical work
involved in the boring of cannons could be
continuously converted to heat
Davy (1799) rubbed two ice cubes together and
caused them to melt.
Mayer (1842) formulated the principles of
equivalence of different kinds of energy and of
conservation of total energy.
Joule (circa 1850s) provided the qualitative basis for
the law of the conservation of energy.

. – p.60/74



Joule produced heat from work in various ways.
Water was heated by the rotation of a paddle wheel
in liquid with the paddle wheel driven by a fallen
weight.
Measured heat produced by passing electrical
current through a resistor.
Measured heat produced by rubbing bodies together.
Measured heat produced by expansion and
contraction of air.
Established the value of J , the mechanical
equivalent of heat:

w = Jq

Work and heat were measured in different units
(work as footpounds and heat as calories).
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A calorie was defined as the heat required to raise the
temperature of 1 g of water from 14.5◦C to 15.5◦C and
is denoted as cal15.

Joule experiments established that 1 cal15 = 4.15 J,
superseding Mayer’s value of 3.6 J/cal15.

Modern measurements give 1 cal15 = 4.1855 J.

The thermochemical calorie is now, by definition, 1 calth =
4.1840 J.

Once the equivalency of heat and work was
established, a thermodynamic system could be
considered as a reservoir of energy.

Work and heat are how energy crosses the
boundary of the system.
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Microscopic Interpretation of Internal Energy and Heat

The thermodynamic definition of internal energy is
based on adiabatic work processes.

The adiabatic perturbation of quantum mechanics
corresponds to the reversible adiabatic process of
thermodynamics,

In the microscopic equivalent of the adiabatic work
process, the change in the system’s internal energy is
the change in the mechanical energy of the particles in
the system.

The distribution of particles over the energy levels is
not changed.

Nonadiabatic process and the associated heat transfer
will now be considered.
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When a system exchanges both work and heat with the
surroundings, the microscopic energy spectrum is
changed and the distribution of particles over the
energy levels are changed.

Consider the expansion of a perfect gas at constant
temperature.

The energy spectrum depends on the size of the
box. Therefore when the size of the box is increased,
the energy of each level decreases.
If the kinetic energy of the particles remains the
same, then some particles move to higher energy
levels.
In an adiabatic expansion, the kinetic energy of the
particles decreases.
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Continued:
In an isothermal expansion, some energy is added
from the surroundings as heat to promote some
particles to higher energy levels.

In summary:
Energy entering or leaving the system as reversible
adiabatic work changes the energy levels, but not
the population of the energy levels.
Energy entering or leaving the system reversibly as
heat changes the population of the energy levels but
not the energy levels.
Energy entering or leaving the system as irreversible
work changes both the energies levels and the
populations of the energy levels.
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It will be demonstrated later that these conclusions hold
for real systems.

Needed first will be a macroscopic measure of the
distribution of particles and the concept of entropy.

Consider the internal energy U of a perfect gas from a
microscopic perspective.

The volume of the box is changed while the
temperature is held constant.
If it is a perfect monatomic gas, then the only way
the molecules can have energy is as kinetic energy.
The number of molecules is constant, therefore the
total energy of the gas is independent of the volume
of the box in a constant temperature process.
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Thus the result is the same for the quantum mechanical
perfect gas as for the classical mechanical gas.

U =
3

2
nRT

where U can be identified with the thermodynamic
internal energy.

The internal energy of a gas depends only on
temperature and is independent of density or pressure.

This statement allows the definition of a perfect gas
without reference to microscopic assumptions.

If was previously concluded that the work associated
with the reversible expansion of an ideal gas is:
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w = −
∫ V2

V1

pappdV = −
∫ V2

V1

pdV = −
∫ V2

V1

nRT

V
dV = −nRT ln

V2

V1

But U = q + w, therefore:

q = −w = nRT ln
V2

V1

Also recall that for a reversible adiabatic process:

dE

dV
= −2

3

E

V

But U is the same as E. Therefore:
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dU = −2

3

U

V
dV = −2

3

(
3

2
nRT

)
dV

V
= −nRT

V
dV = −pdV

dU = −pdV is true for the reversible adiabatic expansion
of any fluid.

This is consistent with dU = d̄w for reversible
adiabatic work.

Constraints, Work, and Equilibrium

Constraints are the boundary conditions defining a
thermodynamic system.

A change in boundary conditions can change the
equilibrium state of the system.

Consider Figure 13.7.
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Consider a gas enclosed in a rigid cylinder with
adiabatic walls.

A sliding piston divides the gas into two volumes, V1

and V2.
If the piston is adiabatic and fixed in place, then the
two subsystems are isolated and pressures, p1 and
p2, and temperatures, T1 and T2 can completely
different.
There are four independent variables.

Now replace the fixed adiabatic piston with a fixed
diathermal piston.

The system is no longer at equilibrium.
The piston cannot move, so energy may be
transferred only as heat.
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Continued:
When a new equilibrium is attained, the
temperatures will be the same but the pressures can
be different.
There are three independent variables.

Now allow the piston to move.
When the equilibrium is attained, both the pressures
and the temperatures will be the same.
The system has two independent variables.

Now allow the piston to be moved by coupling it to an
external machine.

If work is done on the surroundings adiabatically,
then the internal energy of the system will decrease
and the temperature will decrease.
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Each constraint imposed on the system means that an
additional independent variable is needed to describe
the system.

The type of equilibrium attained by the system is
defined by the constraints.

The nature of the work performed by the system is
determined by the constraints under which the work is
performed.

When a given constraint is removed, the system
becomes able to perform a particular kind of work.
To restore the system to the original state,
reimposing the constraint, work must be performed
on it.
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Continued:
In figure 13.7, pV work can be done when the
constraint of a fixed barrier is removed.
Work must be performed to restore the barrier to its
original position.
Spontaneous attainment of equilibrium reduces
internal energy.

In Chapter 19, minimization of internal and potential
energy will be explore further.

The first law of thermodynamics is not enough to
indicate whether the process is possible or not.
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