
BEYOND THIS POINT BE DRAGONS
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BEYOND THIS POINT BE EQUATIONS!
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Some things to know from the prerequisites:

First Year Chemistry

Significant figures
Manipulation of units
Fundamental units and derived units
The Ideal Gas Law
Van der Waals Gas Law
Enthalpy
Entropy
Free Energy
Hess’s Law
Equilibrium Coefficients
Activity
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Some things to know from the prerequisites (continued):

First Year Calculus (and High School Math)

How to manipulate an equation algebraically
Derivatives of one variable
Integrals of one variable
Power series
Properties of logarithms and exponentials
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What is Physical Chemistry?

Physics of Chemistry

What is Thermodynamics?

THERMO - heat, energy

DYNAMICS - changes

Consider
PV = nRT

Rewrite as:

P =
nRT

V
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What can cause P to change?
V - volume (

∂P

∂V

)

n,T

= −nRT
V 2

n - number of moles of gas
(
∂P

∂n

)

V,T

=
RT

V

T - temperature
(
∂P

∂T

)

n,V

=
nR

V

. – p.6/76



How do we describe the change if all three are changing at once?

dP =

(
∂P

∂V

)

n,T

dV +

(
∂P

∂n

)

V,T

dn+

(
∂P

∂T

)

n,V

dT

Note carefully the difference between ∂ and d
∂ describes the partial change due to the change in
a particular variable
d describes the total change

Some other ways of describing changes (useful for
numerical applications)

∆ - a finite change
δ - an infinitesimal change
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UNITS

Even when represented by a symbol, physical
quantities have units.

Verification of units can help detect mistakes in a
derivation.

P - force per unit area. The SI unit is the Pascal (Pa).
1 Pa = 1 N m−2 = 1 kg m s−2 m−2

1 Pa = 1 kg m−1 s−2 (fundamental units)

V - volume
m3 (fundamental units)

n -number of moles
mol (fundamental units)
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R - Gas Constant
8.314 J K−1 mol−1 = 8.314 kg m2 s−2 K−1 mol−1

(1 J = 1 kg m2 s−2 (fundamental units))
(1 J = 1 Pa m3 or 1 Pa = 1 J m−3)

T K (fundamental units)
temperature is on absolute Kelvin scale.

UNITS ARE YOUR FRIENDS!!
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The Perfect Gas

A dilute gas is the simplest type of matter.
Molecules are far apart.
Molecules do not interact with one another.
Properties observed are related to the properties of
the individual gas molecules.

An ideal gas is a perfect gas.

In the limit of low pressure, real gases behave as
perfect gases.

The behaviour of a substance is described the equation
of state.

The equation of state relates P , V , and T .
Empirically determined for real substances.
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The Kinetic Hypothesis

The kinetic hypothesis assumes:
Individual molecules are continually in motion, even
if the system as a whole is not in motion.
Individual motions are in all directions.
Individual motions are at a variety of speeds.

The net effect is that the contributions of the individual
molecules tend to cancel.

Two consequences of molecular motion:
Kinetic energy of individual molecules contributes to
the internal energy of the system.
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Continued:
The impact of the moving molecules on the wall of
the container contributes to the pressure exerted by
the system on the surroundings.

In a dilute gas only the internal energy and pressure
need to be considered at present.

Consider the case of a monatomic gas such as He, Ne,
or Ar.

No motions of the atoms internal to the molecule
need to be considered.
Motions of the molecules are independent
Molecules exert no forces on each other, except at
impact.
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Continued:
Collisions are elastic with momentum and kinetic
energy being conserved.
If the extremely remote possibility of electronic
excitation of the atom is ignored, then such a gas
may be referred to as perfect.

Most real gases at moderate pressures (such as
atmospheric) are sufficiently dilute to behave as perfect
gases.

A perfect gas is also assumed to be at equilibrium.
Macroscopic properties of the system are not
observed to change with time.
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Continued:
Even though macroscopic properties of the system
are stable, the microscopic positions and velocities
of the individual molecules are constantly changing.
Many different microscopic states (“microstates”)
can correspond to one particular macroscopic state
(“macrostate”).
Macroscopic properties such as P and T are related
to averages of microscopic velocities.
In a particular macrostate, the values of the
microscopic variables fluctuate negligibly about their
average values.
Thus the equilibrium distribution of microscopic
velocities is invariant with time.
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At equilibrium, in the absence of an external field, a gas
is uniform throughout its container.

Measurements of intensive variables such as
pressure and temperature are the same regardless
of where in the system they are made.
Gas is at rest in its container with no flows or
currents.
Kinetic energy per unit volume is the same in every
volume element (that is sufficiently large to contain
very many molecules).

Thus the distribution of velocities is the same
everywhere.
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If the gas as a whole is at rest then:

< v >=
1

N

N∑

i=1

vi = 0

and thus
N∑

i=1

vi = 0

The bold vi indicates velocity which is a vector.
The average velocity of the system at rest is zero.
Recall that speed is a scalar and has magnitude
only.
The average molecular speed is not zero.
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A density is any quantity per unit volume.
Mass density, ρ, is mass per unit volume.
Number density, n, is number per unit volume.

Consider N molecules of mass m in volume V :

n =
N

V
and ρ = nm

Energy density is energy per unit volume (and has
units of pressure).

What is the relationship between kinetic energy of
molecules and the pressure of a gas?
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Consider a perfect gas contained in a cubical box of
length l.

Define a cartesian coordinate system with axes normal
to the walls (and parallel to the sides) of the cube.

The walls of the cube reflect molecules elastically.
If a molecule with velocity v and components
vx, vy, vz strikes a wall of the box, then the sign of the
appropriate velocity component is reversed.
Therefore the velocity at some later time is described
by ±vx,±vy,±vz.

Consider motion in the z direction.
S is the face of the box perpendicular to z and has
the area l2.
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In the time between two collisions with S, the molecule
must move to the other end of the box (a distance l
away) and back, travelling a total of 2l between
collisions.

The velocity component perpendicular to S is vz
Therefore the time between collisions with S is 2l/vz

The frequency of collisions is vz/2l

When the molecule collides with S, its momentum
changes from +mvz to −mvz.

An equal and opposite momentum is transferred to
the wall of the container.

The total change in the z component of the momentum
of a single molecule per unit time is:
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[
d(mvz)

dt

]
= 2mvz ·

vz
2l

=
mv2

z

l

Assume the simplest possible velocity distribution.
All molecules have the same velocity components,
±vx,±vy,±vz.

There are N molecules in the volume V = l3

Therefore the total change in momentum per unit
time arising from all collisions with S is:

[
N∑

i=1

d(mvz)

dt

]
=
Nmv2

z

l
=
nVmv2

z

l
= nml2v2

z

(Recall that n is number density.)
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Pressure is defined as force per unit area.

Force is defined as the change in momentum per unit
time.

p is the pressure of the gas
pl2 is the total force on S and

pl2 = nml2v2
z

or
p = nmv2

z
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The pressure of a gas is the same in all directions.
Thus:

v2
x = v2

y = v2
z =

1

3
(v2
x + v2

y + v2
z) =

1

3
v2

where v is the common speed of the molecules.

This gives:

p =
1

3
nmv2

Since the kinetic energy of a single molecule is mv2/2
and n is the number density of molecules, the pressure
is 2/3 of the kinetic energy density.
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The Perfect Gas

What is the relationship between pressure and energy?

The previous treatment is restrictive.
Not all collisions with the wall are elastic.
Molecular speeds are not all the same.
Directions of motion are random.
The container is not a cube.

A more general derivation of the relationship between
the distribution of velocities and the pressure and
energy of a gas.

In most cases the generalized distribution does not
need to be known, but only some of its properties.
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Consider a perfect gas in equilibrium with N molecules
in volume V .

The molecules will move with different velocities.

Let f(v)dv be the number of molecules per unit volume
with velocity between v and v + dv.

f(v) is the velocity distribution function.
The total kinetic energy of all N molecules is finite.
Therefore f(v)→ 0 as v→∞
If the sum of f(v)dv is taken over all possible
velocities then n, the total number of molecules per
unit volume is obtained.
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This may be written as:
∫

v
f(v)dv =

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
f(v)dvxdvydvz = n

Molecular motion at equilibrium is isotropic.
Equal numbers of molecules in any given speed
interval must travel in any direction.
f(v) is independent of direction.
f(v) is a function only of its magnitude, the speed v.
Therefore, a distribution function in terms of v would
be convenient.

Consider f(v)dv as the number of molecules per unit
volume with speeds between v and v + dv.
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Consider the molecular velocity as a point in velocity
space defined velocity coordinates, vx, vy, vz

The volume element is dv = dvxdvydvz

But now the distribution is to be considered in terms of
speed, not velocity.

What is the relationship between dv and dv?
The molecules with the speed between v and v + dv
occupy a spherical shell of radius v and thickness dv.
The volume of this spherical shell is 4πv2dv

Therefore:
f(v) = 4πv2f(v)

(The exact form of f(v) is treated in great detail in
Chem 300.)
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An important property of f(v):
At equilibrium the gas is homogenous, therefore f(v)
is independent of the position within the gas.
This is true for real molecules if the energy of
interaction is independent of velocity.

What is the internal energy of a gas arising from
molecular motion?

A molecule of mass m and speed v has kinetic
energy of mv2/2.
The total number of molecules with speed between v
and v + dv is given by f(v)dv.
Contributions from all values of v are summed.
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The total internal energy U is:

U =

∫

V

∫ ∞

v=0

mv2

2
f(v) dv dV

Since f(v) does not depend on the position, it is
independent of the volume, therefore the integral
over volume can be separated from the integral over
speed:

U =

∫

V
dV

∫ ∞

v=0

mv2

2
f(v) dv

U =
mV

2

∫ ∞

v=0
v2 f(v) dv
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Note that this expression may break down for real
gases.

For polyatomic molecules, there are contributions to
the internal energy from the motions within the
molecules.
Real molecules can have interactions between them
which will also make a contribution to the internal
energy.

What is the relationship between internal energy and
pressure?

Pressure has been defined as force exerted by the
gas per unit area of the wall of the container, i.e. the
rate at which momentum is transferred to the wall.
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But the gas is homogeneous and isotropic.
Therefore the pressure must be the same anywhere
in the gas.

Consider a plane surface S anywhere within the gas.
Molecules hit this surface in the same way as they
hit the walls.
When a molecule with mvz as the z component hits
the surface, momentum 2mvz is transferred to S.
The pressure on S is total momentum transmitted
per unit time and per unit area of S.
The pressure is the same on both sides of S when
the system is at equilibrium.
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Now replace S with an imaginary plane in the same
position.

The molecules will cross this imaginary plane with
momentum mvz.
By definition, pressure is same whether the wall is
there or not.

Thus the pressure normal to the imaginary plane
S is twice the momentum transported from one
side across S per unit time and per unit area.

What is the rate of momentum transfer?
Consider those molecules crossing S in the positive
z direction.
θ is the angle between the molecule’s trajectory and
S.
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F (θ, v)dθdv is the number of molecules with speed
between v and v + dv that cross S per unit time and per
unit area at angles between θ and θ + dθ.

Each molecule has momentum mv with z component
mv cos θ.

Only the z component contributes to the pressure.
The contribution of the other components of the
motion cancel out due to the isotropy of the gas and
make no net contribution to the pressure.

Therefore the contribution to the pressure from the
molecules in the range dvdθ is the number per unit time
per units area multiplied by twice the z component of
the momentum transported per molecule.
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dp = 2mv cos θF (θ, v)dθdv

This is integrated over all possible values of θ and v that
represent molecules crossing z in the positive direction
to give the total pressure:

p =

∫ ∞

v=0

∫ π/2

θ=0
2mv cos θF (θ, v)dθdv

What is F (θ, v)? It is the product of:
the number of molecules per unit volume with speed
between v and v + dv moving with angles between θ
and θ + dθ, i.e. f(θ, v)dθdv.
The volume occupied by all molecules capable of
crossing S per unit time, i.e. the volume of the prism.
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Continued:
The volume of the prism (Figure 12.4) is Avt cos θ for
a base of area A and time t, thus per unit area and
per unit time, this becomes v cos θ

F (θ, v)dθdv = v cos θ f(θ, v)dθdv

Recall that f(v)dv is the total number of molecules
per unit volume with speeds between v and v + dv.

∫

θ
f(θ, v)dθdv = f(v)dv

Recall also that molecular motion is isotropic.
Therefore the integration is over the range of solid
angles between θ and θ + dθ.
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Continued:
f(θ, v)dθdv and f(v)dv are in the same relationship
as are the solid angles between θ + dθ and 4π.

The solid angle between θ and θ + dθ is 2π sin θdθ

f(θ, v)dθdv

f(v)dv
=

2π sin θdθ

4π
=

1

2
sinθdθ

Thus the pressure is:

p =

∫ ∞

v=0

∫ π/2

θ=0
(2mv cos θ)(v cos θ)

(
1

2
sin θdθ

)
f(v)dv

p = m

∫ ∞

v=0
v2f(v)dv

∫ π/2

θ=0
cos2 θ sin θdθ
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The angular integral is of the form:
∫
u2du =

u3

3
+ C

where
u = cos θ and du = − sin θdθ

Therefore
∫ π/2

θ=0
cos2 θ sin θdθ = −1

3

(
cos3(π/2)− cos3(0)

)

= −1

3
(0− (1)3) =

1

3
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Therefore:

p =
m

3

∫ ∞

0
v2f(v)dv

Recall that:

U =

∫

V

∫ ∞

v=0

mv2

2
f(v) dv dV

thus

p =
2

3

U

V

which is consistent with

p =
1

3
nmv2
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Some Comments about Thermodynamics

Thermodynamics deals with relationships among the
macroscopic properties of matter.

Equilibrium thermodynamics deals with relationships
among macroscopic properties of matters at
equilibrium.

The laws of thermodynamics allow these relationships
to be derived.

The laws of thermodynamics are postulates.
These postulates conform with our observations of
the world.
These postulates apply to systems containing a
large number of molecules, i.e. a macroscopic
system.
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Thermodynamics also permits us to interpret
spontaneous processes.

Also aids in the understanding of “time’s arrow” and
irreversible processes.

The laws of thermodynamics make no assumptions
about the microscopic structure of matter.

The laws of thermodynamics allow the construction of a
logically complete and internally self consistent theory.

The properties of real matter appear in the theory,
but thermodynamics is only concerned about the
relationships among these quantities.
These properties of real matter have the values that
they do because of the microscopic interactions of
the molecules.
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For example, the pressure of a gas may be given as a
power series in n, the number density:

P = a0 + a1n+ a2n
2 + a3n

3 + · · ·

where ai are experimentally determined. (This is also
known as a virial equation.)

From thermodynamics, relationships between pressure
and other thermodynamic quantities such as internal
energy, entropy, enthalpy, and free energy are known.

Thus these quantities may be determined in terms of
the values of ai.
The values of ai depend on the interactions of the
molecules.
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Continued:
If the molecular interaction potential is known, then
ai may be determined using the methods of
statistical mechanics.
In principle, the interaction potential can be
determined from quantum mechanics.

The development of the principles of thermodynamics
depends on some basic concepts.

One of these basic concepts is the system.
A system is that part of the world under
consideration.

Everything else is the surroundings.
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Systems may be classified according to their
relationship to the surroundings.

An open system can exchange matter and energy
with the surroundings.
A closed system can exchange energy but not
matter with the surroundings.
An isolated system exchanges neither energy nor
matter with the surroundings.

A thermodynamic system is described by a set of
macroscopic variables or “coordinates”.

These macroscopic variables apply to measurements
made for large number of molecules over a time period
sufficiently long for many interactions of the molecules
and at energies larger than individual quanta.
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The thermodynamic properties of the system can be
completely describe by the set of macroscopic
coordinates.

These variables are typically temperature, pressure,
and volume.

A macroscopic coordinate can be a constraint on the
system when it is fixed in value by the boundary
conditions that define the system.

A system can have constraints other than
macroscopic coordinates.

Classical thermodynamics deals with the properties of a
system at equilibrium.

At equilibrium, none of the macroscopic coordinates
changes with time.
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At equilibrium there is no net energy or matter flow
through the system.

The condition of equilibrium depends upon the
constraints on the system.

These constraints must be specified.
There is only one true equilibrium state for a
particular set of constraints.

Metastable states can be observed not to change
during the time of observation.

This is because the process that would take the
system to equilibrium is so slow relative to the time
of observation.
Nonequilibrium thermodynamics is a growing field.
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A complete set of thermodynamic coordinates uniquely
determines the thermodynamic state.

If the mass is known, a complete set of
thermodynamic coordinates is made up of those
variables that can be independently specified.
For a one component system of fixed mass, two
thermodynamic coordinates are needed.
For comparison, a microscopic system of N particles
would need 6N − 6 microscopic coordinates.
The number of thermodynamic coordinates needed
varies with the number of components and the
number of phases in the system.

Consider a fluid which assumes the shape of its
container such as a liquid or a gas.
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Continued:
The properties of a fluid are independent of its
shape.
For a pure fluid (i.e. only one component) the
thermodynamic state can be completely specified by
just pressure and volume.
This means that any additional thermodynamic
coordinates cannot be independent of the pressure
and volume.

The relationship among pressure, volume, and
thermodynamic coordinate X is the equation of
state:

f(p, V,X) = 0

.
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What is the nature of X?
The thermodynamic coordinate X is more commonly
known as temperature.

The definition of the thermodynamic coordinate of
temperature will be developed only in terms of those
variables required to define the state of thermodynamic
system, i.e. p and V or related quantities.

Temperature θ may be defined by an equation of the
form:

f(p, ρ, θ) = 0

where ρ is the density.
Note that density is related to the volume, but is
intensive rather than extensive.

This equation defines θ.
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What properties should θ have?
Well behaved in that it is finite, continuous, and
single-valued.
Have some relationship to intuitive notions of
temperature.
Mathematically convenient.

Many mathematical functions satisfy these conditions
such as

θ = p/ρ

θ = (p/ρ)2

θ = log (p/ρ)

or multiples thereof.
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To select an appropriate function, express this as a
generality:

g(θ) = ϕ(p, ρ)

Now some concepts about temperature scales must be
considered.

Consider systems 1 and 2.
The systems consists of the same pure fluid.
Initially, the systems are isolated from each other
and are separately at equilibrium at different
temperatures, i.e.

ϕ(p1, ρ1) 6= ϕ(p2, ρ2)
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Continued:
The two systems are brought together so that they
are isolated from the surroundings, but separated
from each other by a rigid barrier B.
B is an adiabatic wall if the systems do not change
from their initial states.

An adiabatic wall does not allow energy to cross.
Isolated systems are surrounded by adiabatic
walls.

Suppose barrier B is rigid (so no work is done), but
does allow energy to cross, i.e. it is diathermal.

The two systems will equilibrate to the same
temperature, i.e. they will come into thermal
equilibrium eventually.
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If the original isolated systems are separately in
equilibrium, the constraint of isolation defines the
equilibrium.

If the constraint is altered, in this case by replacing the
adiabatic wall with a diathermal wall, the system will
move to a new equilibrium.

If two systems have reached thermal equilibrium with
each other, the state of one system cannot be changed
without changing the other.

The overall equilibrium is described by a single
relationship of the independent thermodynamics
coordinates of each system:

F12(p1, ρ1, p2, ρ2) = 0
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Continued:
The exact form of F12 depends on the nature of the
fluids making up the systems and their individual
equations of states.

The Zeroth Law of Thermodynamics

Two systems, each separately in thermal equilibrium
with a third system, are in thermal equilibrium with each
other.

The third system is a thermometer.
This allows us to develop a universal definition of
temperature.
This definition will be in terms of some property
possessed by all objects “at the same temperature”.
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Consider fluids 1, 2, and 3, each described by their only
independent variables, p and ρ.

Fluids 1 and 2 are in mutual equilibrium and are
described by:

F12(p1, ρ1, p2, ρ2) = 0

Fluids 1 and 3 are in mutual equilibrium and are
described by:

F13(p1, ρ1, p3, ρ3) = 0

Both equations may be solved for p1 yielding functions
w12 and w13 :

p1 = w12(ρ1, p2, ρ2) and p1 = w13(ρ1, p3, ρ3)

Therefore: w12(ρ1, p2, ρ2) = w13(ρ1, p3, ρ3).
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But the Zeroth Law requires that if systems 1 and 2 are
in thermal equilibrium and system 2 and 3 are in
thermal equilibrium, then systems 2 and 3 are in
thermal equilibrium.

Therefore there must exist some F23 such that:

F23(p2, ρ2, p3, ρ3) = 0

which completely describes the equilibrium between
systems 2 and 3.

If this equation and w12(ρ1, p2, ρ2) = w13(ρ1, p3, ρ3) is true,
then the variable ρ1 must disappear from w12 and w13.

Therefore w2(p2, ρ2) = w3(p3, ρ3), i.e. wi depends only
on the properties of system i.
Thus: w1(p1, ρ1) = w2(p2, ρ2) = w3(p3, ρ3)
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Given the Zeroth Law, there exists at set of functions wi
which depend only on the state of fluid i and which have
the same value of any number of fluids in equilibrium.

wi must depend on some single property that all i
systems have in equilibrium, regardless of the nature
of the systems.
This single property is the thermodynamic
temperature.
wi(pi, ρi) is equivalent to ϕ(p, ρ).
This means that g(θ) may be defined in terms of a
property that all systems in thermal equilibrium have
in common.
Thus a universal temperature scale may be
constructed.
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Consider a particular system as the standard.

Select one of the system’s temperature functions, g(θ).

Define a numerical value of g(θ) as the temperature θ.

This standard system is the thermometer.

The function used to define the system is the
thermometric property.

The Perfect Gas Temperature Scale

How does this all relate to a usable temperature scale?

Any property of a system that is “well-behaved” can be
used to define the temperature scale.

The choice is arbitrary and is based on convenience.
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Since the choice of thermic properties is arbitrary, it is
convenient that significant changes in the property can
be measured accurately in small systems, i.e. the
thermometer can come into equilibrium with the system
without significantly changing the system.

Many thermometers are based on the volume of a
liquid.

The expansion of the liquid is measured in a
narrow tube attached to a reservoir.

Some thermometers are based on electrical
resistance.
Thermocouples are based on the differential
properties of bimetal strip as measured by
electromotive force at the junction.
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Continued:
Pyrometers measure the intensity of radiation.

It is assumed that the emitted radiation follows the
blackbody distribution.

All of these are calibrated against a thermodynamic
temperature scale.

A thermodynamic temperature scale can be based on
the properties of a very dilute gas.

Pressure and volume (or density) are easily
measured.
The scale can be defined as proportional to the
pressure or proportional to the volume.
Both thermometers (constant volume or constant
pressure) converge to the same low pressure limit.
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The temperature scale needs a reference point.
The triple point of water is such a reference point.

Solid, liquid, and vapour coexist at a unique point
in p, ρ, and temperature.

Consider a system in equilibrium with pure water at
the triple point.

This system has pressure p3 and temperature θ3.
A constant volume temperature scale may be
defined for this system in other conditions.

θ(p) =
p

p3
θ3

θ3 is an arbitrary constant. By convention, θ3 is
273.16 K.
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A constant pressure scale may also be defined with
respect to the triple point.

θ(V ) =
V

V3
θ3

The actual empirical scales depend on the quantity and
nature of the gas.

In the limit of small quantity, both scales approach the
same limiting temperature:

lim
p→ 0

θ(p) = lim
V→ ∞

θ(V ) = θ∗

θ∗ is the perfect gas temperature.
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Thermometers are calibrated with respect easily
reproduced phase equilibria.

Both the constant volume and the constant pressure
temperature scales converge to the same limiting value.

This may be expressed as:

lim
p→ 0

pV

n
= βθ∗

where β(θ∗) is a function only of θ∗

Limits at two different temperatures are proportional to
the perfect gas temperature.

β(θ∗1)

β(θ∗2)
=
θ∗1
θ∗2
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Temperature scales had formerly been defined in terms
of two fixed points.

The Celsius scale had been defined in terms of the
freezing and boiling points of water at a pressure of
1 atm.
The Fahrenheit scale had been defined in terms of
the freezing point of a saturated NaCl solution and
the boiling point of pure water at a pressure of 1 atm.

These scales can be related to the perfect gas scale.
For a constant volume thermometer, the Celsius
temperature t∗ may be defined by:

t∗ = lim
p0→0

100(p− p0)

p100 − p0
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This can be related to the absolute temperature, θ∗ by:

θ∗ = t∗ + θ∗0

where θ∗0 is the ice-point temperature, 273.15 K.

The triple point temperature θ∗3 is by definition 273.16 K.
As a result the boiling point of water is 373.146 K.
(This supersedes the previous definition of Celsius
temperature.)

There are other ways to establish thermodynamic
temperature scales that do not depend on the
properties of a substance.

It can be shown that these scales are equivalent to
the perfect gas scale.
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T will be used to represent the perfect gas temperature.
The thermodynamic temperature T is equal to the
perfect gas temperature θ.

Pressure Units

The SI unit is the Pascal. 1 Pa = 1 N m−2.

Other units are:
In cgs (centimeter gram second), 1 dyne cm−2 = 0.1
Pa.
Common in meteorology is the bar, 1 bar = 105 Pa.
Widely used is atm. By definition, 1 atm = 1.01325
× 105 Pa.
The torr is defined as 1/760 atm or 1 mmHg.
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The perfect gas equation of state is:

pV = nRT

where n is number of moles of gas in volume V .

The universal gas constant is evaluated by:

R = lim
p→0

pV

nT

R is related to the Boltzmann constant kB:

kB =
R

NA

where NA is Avogadro’s number.
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The perfect gas equation of state may be written:

pV = NkBT

where N is the number of molecules in volume V .

Molar mass, M , may be determined by measuring p, ρ,
and T

M = RT lim
p→0

ρ

p

Microscopic and Macroscopic Approaches

What are the essential features of each?

What is general and what is specific to each approach?

How are the two approaches to a perfect gas related?
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The microscopic approach to the perfect gas

The perfect gas is defined entirely in terms of the
properties of the individual molecules that make up the
gas.

Already considered has been the case of monoatomic
molecules which collide elastically with the walls.

What about polyatomic molecules?
What about molecules that interact with one
another?
Statistical mechanics involves the adoption of a
model of the molecular interactions.

Thus the results are specific to that model.
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The macroscopic (or thermodynamic) approach to the perfect gas

This is based on the properties of real gas in the limit of
low pressure.

No assumptions are necessary about the nature of the
interactions of molecules with each other.

This thermodynamic approach is tied directly to
experiment.

How are the two approaches related?

The microscopic approach and kinetic theory leads to

p =
2

3

U

V

where U is the total kinetic energy.
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The macroscopic approach involves only measurable
variables:

p =
nRT

V

Combining these gives:

U =
3

2
nRT =

3

2
NkBT

and the molecular kinetic energy per mole is
proportional to absolute temperature.

This can be shown to be generally true for real
gases.
The microscopic perfect gas has properties chosen
to match those of the thermodynamic perfect gas.
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This basic approach is applicable to other systems.

For a given mass of any fluid, two of p, V and T are
independent.

That is, there exists an equation of state such that
f(p, V, T ) = 0.

The corresponding molecular model must involve p, V
and the molecular energy.

Intramolecular energy (vibrational, rotational, and
electronic) as well as kinetic energy.

Equations of state may be obtained by:
Direct measurement.
Extrapolation from a hypothetical system.
From statistical mechanics.
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Thermodynamics deals with relationships between the
equation of state and measurable quantities and
thermodynamic functions.

These relationships are general and apply
regardless of the equation of state.
It can be shown that:

(
∂U

∂V

)

T

= T

(
∂p

∂T

)

V

− p

is true for all systems, but its actual value depends
on the equation of state.
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