
Heat Capacities, Absolute Zero, and the Third Law

• We have already noted that heat capacity and entropy have the same units.

• We will explore further the relationship between heat capacity and entropy.

• We will see that entropy is absolute and explore the Third Law of Thermodynamics.

Variation of Entropy with Temperature

• Consider:

dS =
dqrev
T

• We have considered constant V and constant P paths, respectively:

CV =
dqV
dT

=

(
∂U

∂T

)

V

CP =
dqP
dT

=

(
∂H

∂T

)

P

• Therefore

dSV =
CV
T
dT =

(
∂S

∂T

)

V

dT

dSP =
CP
T
dT =

(
∂S

∂T

)

P

dT

• Heat capacities are temperature dependent:

∆SV =

∫ Tf

Ti

CV (T )

T
dT

∆SP =

∫ Tf

Ti

CP (T )

T
dT

Absolute Zero

• Consider 10 identical bricks beside a table of height h.

• If they are initially at h = 0, then the internal energy is U(n = 0), where n is the number of bricks on
the table.

• If n bricks are on the table, then the change in internal energy is:

∆U(n) = U(n)− U(n = 0) = nMgh = nε

where:
ε = Mgh

• 1 way to have n = 0.

• 10 ways to have n = 1.

• 45 ways to have n = 2.



...

• W (n) ways to have n = n where

W (n) =
N !

n!(N − n)!

• Each specific arrangement is a microstate of the system.

• The entropy associated with the state of the system is:

S(n) = kB lnW (n)

• Therefore, the more microscopic states that correspond to a particular macrostate characterized by
macroscopic variables (such as P , V , T , U , and S), the greater the entropy.

• Now split the set of ten bricks into two subsystems, each consisting of five bricks.

• One set of bricks is on the table (U = 5ε).

• One set of bricks is on the floor (U = 0).

• Bring the two systems together. Therefore U = 5ε.

• But we still know which five bricks are on the table and which five are on the floor.

• Supposed that there existed an ”interbrick force” by which bricks could trade places.

• Therefore there will still be five bricks on the table and five bricks on the floor (and U = 5ε ), but
we know longer know which bricks are where.

• This is what happens with molecules. There is chaotic redistribution of molecules among microstates
corresponding to the observed macrostate.

• Now consider molecules instead of bricks in the case where there are only two energy levels available for
each molecule (i.e. a two level system).

• The lower level has an energy of 0 and the higher level has an energy of ε.

• Therefore, for the system:
∆U(n) = U(n)− U(n = 0) = nε

and

∆S(n) = S(n)− S(n = 0) = kB ln

(
N !

n!(N − n)!

)

• Consider U(n) plotted against S(n) (Figure 4.2)

• Now remember the Master Equation:
dU = TdS − PdV

• Therefore: (
∂(∆U(n))V
∂(∆S(n))

)

V

=

(
∂U(n)

∂S(n)

)

V

= T (n)

• Applying the chain rule: (
∂U(n)

∂S(n)

)

V

=

(
∂U(n)

∂n

)

V

(
∂n

∂S(n)

)

V



=

(
∂U(n)

∂n

)

V

(
∂S(n)

∂n

)−1

V

• Since U(n) = nε, (∂U(n)/∂n)V = ε

• Now for (∂S(n)/∂n)V :

• Need to use Stirling’s approximation for very large N :

lnN ! = N lnN

• With Stirling’s approximation:

∆S(n) = kB ln

(
N !

n!(N − n)!

)

= kB [lnN !− lnn!− ln(N − n)!]

∼= kB [N lnN − n lnn− (N − n) ln(N − n)]

• we find: (
∂S(n)

∂n

)

V

= kB ln

(
N

n
− 1

)

Therefore:
T (n) =

ε

kB ln
(
N
n − 1

)

What is the limiting behaviour of this function?

• If n→ 0 then T (n)→ 0.

• All the molecules are in their lowest state.

• Internal energy at its lowest value.

• Entropy at its lowest value.

• If n→ N/2 then T (n)→∞
• Molecules evenly split between the two levels.

• Entropy at its maximum value.

• Rearrange

T (n) =
ε

kB ln
(
N
n − 1

)

to

ln

(
N

n
− 1

)
=

ε

kBT

ln

(
N − n
n

)
=

ε

kBT

ln

(
n

N − n

)
= − ε

kBT
(

n

N − n

)
= e−ε/kBT

(also known as the Boltzmann distribution)



• Consider the following two questions:

• Are there real molecular systems with only two energy levels?

• What about the dashed part of figure 4.2? If n > N/2, then the temperature would be negative!

• Consider a two level molecular systems:

• For example, consider nuclear spin, which is either ”up” or ”down”.

• These levels are degenerate (i.e. have the same energy) if there is no external field.

• If there is an external field, the energy levels are different.

• Negative temperatures occur only in systems with very few energy levels.

• Negative temperature systems are ”hotter” than positive temperature systems associated with
population inversions where the higher energy state is more populated than the lower energy level.

• Population inversions are essential for the operation of lasers.

• It is 1/T that characterizes the degree of ”hotness”.

• −1/T → −∞ ( Coldest system)

• −1/T → 0

• −1/T →∞ (Hottest system)

More about heat capacity

• Recall:
T (n) =

ε

kB ln
(
N
n − 1

)

• which was rearranged to: (
n

N − n

)
= e−ε/kBT

• Solving for n gives:

n = N
e−ε/kBT

1 + e−ε/kBT
= N

e−x

1 + e−x

where x = ε/kBT .

• Therefore:

U(T ) = nε = Nε
e−x

1 + e−x

and

CV =

(
∂U(T )

∂T

)

V

= NkBx
2 e−x

(1 + e−x)2

• Figure 4.4 shows heat capacity as a function of temperature.

• Heat capacity increases then decreases.

• Once a molecule is in the upper of the two states, how can it be further excited?

• Real molecules have many states.

• Therefore heat capacity increases with temperature.

• As temperature increases more energy levels (and other types of energy levels) become available.



Heat Capacity of Solids

• Dulong and Petit (1819) observed that CV for atomic solids was independent of temperature and was
approximately the same for a wide range of atomic solids.

CV = 3R

• This can be interpreted in terms of the vibrations of the atoms within the atomic crystal with each
direction (x, y, z contributing R to the molar heat capacity.

• Kopp (1865) devised an empirical scheme for estimating heat capacities of polyatomic solids with the
contribution of each atom empirically determined (Table 4.1).

• The values for CV range from 0.9R for a carbon atom to 3.02R for other atoms. It works reasonably
well.

• How does heat capacity vary with temperature as T → 0?

Heat Capacity at Low Temperatures

• Recall that the temperature dependence of heat capacity depends roughly on the magnitude of kBT
relative to the spacing of quantum levels.

• If the spacing is “too big” that degree of freedom is not “active” at that temperature.

• Therefore we hypothesize that heat capacity approaches zero as T approaches zero.

• Debye (1912) modified Einstein’s theory (1907).

• Debye’s Law is:

CV
R

=
12π4

5

(
T

ΘD

)3

where ΘD is the Debye temperature.

• The Debye temperature is related to nuclear motions in the solid and thus the nature of the metal
with soft metals having lower ΘD than harder metals.

• Electronic states also can contribute to the heat capacity of a metal, but in a different way than do
nuclear motions.

• For electrons:
CV
R

=
T

Θel

• Thus the total heat capacity of a metal is:

CV
R

=
T

Θel
+

12π4

5

(
T

ΘD

)3

Heat Capacity of Liquids

• In a liquid the molecules are no longer constrained to motion about one particular site.

• Therefore the heat capacity of a liquid is greater than the heat capacity of a solid.

• The heat capacity of a liquid is also greater than that of a gas because of the proximity of the molecules
to each other.

• Heat capacities of liquids are empirically determined and are typically around 9R for small molecules.



• For larger molecules, internal degrees of freedom must be considered and the heat capacity is larger.

Heat Capacity of Gases

• Depends on internal structure of the gas.

• If there are N atoms in the gas there are:

• Three translational degrees of freedom, each contributing R/2 to CV .

• If the molecule is linear, then there are:

• 2 rotational degrees of freedom, each contributing R/2 to CV .

• 3N − 5 vibrational degrees of freedom, each contributing R to CV .

• If the molecule is nonlinear, then there are:

• 3 rotational degrees of freedom, each contributing R/2 to CV .

• 3N − 6 vibrational degrees of freedom, each contributing R to CV .

• This is assuming all degrees of freedom are active.

• Heat capacity for gases is determined empirically and is usually expressed as:

Cp(T )

R
= a+ bT + cT 2 + dT 3

• We must now consider the relationship between CV and CP .

• Recall

CP − CV =

(
∂U

∂V

)

T

(
∂V

∂T

)

P

+ P

(
∂V

∂T

)

P

which leads to:

CP − CV =
TV α2

κ

where

α ≡ 1

V

(
∂V

∂T

)

P

and

κ ≡ − 1

V

(
∂V

∂P

)

T

• In the adiabatic expansion, we encountered the ratio γ .

• For an ideal gas γ = 5/3.

• Without using the ideal gas equation of state, it can be shown that γ = CP /CV .

• Assuming that CP − CV = nR, γ for a polyatomic molecule can indicate the number of atoms and
whether the molecule is linear.

• For a monatomic gas:

γ =
5

3

• For a linear molecule in the gas phase:

7

5
≥ γ ≥ 6N − 3

6N − 5



• For a nonlinear molecule in the gas phase:

4

3
≥ γ ≥ 6N − 4

6N − 6

• The relationship

CP − CV =
TV α2

κ

is important for condensed phases.

• α is T dependent for both solids and liquids. Typical values are approximately 10−5 K−1 for solids
and 10−3 to 10−4 K−1 for liquids.

• κ is not strongly T dependent for and is about 10−6 atm−1 for metals and 10−4 atm−1 for molecular
solids.

• Recall (
∂U

∂V

)

T

= T

(
∂P

∂T

)

V

− P

• Since U is a state function, it has an exact differential.

• Therefore:
∂

∂V

(
∂U

∂T

)
=

∂

∂T

(
∂U

∂V

)

• But: (
∂U

∂T

)

V

= CV

and:
∂

∂T

(
∂U

∂V

)
=

∂

∂T

[
T

(
∂P

∂T

)

V

− P
]

= T

(
∂2P

∂T 2

)

V
(
∂CV
∂V

)

T

= T

(
∂2P

∂T 2

)

V

• Following the same procedure, but starting with H it may be shown that:

(
∂CP
∂P

)

T

= −T
(
∂2V

∂T 2

)

P

• We have now considered the heat capacity of solids, liquids, and gases.

• We already know how to calculate entropy changes from heat capacity.

• In order to calculate absolute entropy starting from absolute zero to the temperature of interest, we
must now consider the entropy of phase changes.

Phase Transitions

• Some common phase transitions are:

• Solid to solid, i.e. from one crystalline state to another



• H2O ice I to ice II

• rhombic S to monoclinic S

• Fe phase 1 and Fe phase 2

• Solid to liquid (fusion)

• Solid to gas (sublimation)

• Liquid to gas (vaporization)

• During a phase transition, heat is transferred into or out of the system without changing the temperature.

• Since constant P conditions are more easily maintained than constant V conditions, qP , is usually
measured.

Fusion of water

• Consider one mole of ice at 273.15 K and 1 atm.

• Transfer energy until ice melts leaving one mole of water.
H2O(s, 1 atm, 273.15 K)−→ H2O (l, 1 atm, 273.15 K)

• The associated heat transfer is:

q = qP = ∆H = ∆H(water)−H(ice)

which is the enthalpy change of fusion, ∆Hfus, (also known as the heat of fusion).

• The standard enthalpy of fusion, ∆H
◦
fus, is defined with respect to the pressure of 1 bar (not 1 atm).

• Similarly defined is the standard enthalpy of vaporization, ∆H
◦
vap.

• For a given substance, ∆H
◦
vap is usually greater than ∆H

◦
fus.

• This is because fusion involves partially overcoming intermolecular interactions while vaporization
involves completely overcoming intermolecular interactions.

• If a substance goes directly from the solid to the gas phase, the process is called sublimation and ∆H
◦
sub

is the corresponding standard enthalpy.

• There are also solid-solid phase transitions between different solid crystalline forms.

• Associated standard enthalpies tend to be small.

Entropy of Phase Transitions

• During a phase transition at constant T and P , both phases are in equilibrium with each other.

• For a general phase transition, φ,

∆Sφ =
qφ
Tφ

=
∆Hφ

Tφ

• Standard entropies of phase transitions for water are:

∆S◦vap =
∆H◦vap
Tvap

= 13.10R

∆S◦fus =
∆H◦fus
Tfus

= 2.65R



The Third Law and Absolute Entropy

• Absolute entropy can be assigned to any state.

• Recall the bricks and the microstate where all the bricks were on the floor (or n = 0).

W (n = 0) =
N !

0!N !
= 1

• Therefore:
S(n = 0) = kB lnW (n = 0) = 0

• Since the definition of W does not involve a reference state, the corresponding entropy is absolute.

• For a molecular system, all the bricks on the floor would correspond to the molecules arranged in a
perfect crystal.

Statements of the Third Law

• ”At absolute zero, the entropy of every perfect crystalline equilibrium compound is zero.”

• ”The entropy of any equilibrium system is zero for the state in which (∂U/∂S)V = 0.”

• ”The isotherm T = 0 and the isentrope S = 0 are the same.”

• ”It is impossible to attain absolute zero by any process with a finite number of steps.”

• Therefore it is impossible to reach absolute zero.

Calculation of Absolute Entropy

• Consider entropy:

dSV =
CV (T )

T
dT

dSP =
CP (T )

T
dT

• Consider the entropy change at constant pressure from Ti and Tf :

∆S = S(Tf )− S(Ti) =

∫ Tf

Ti

CP (T )

T
dT

• This would be fine if there were no phase transitions.

• Entropy changes due to phase changes must be explicitly considered.

• If the change from Ti and Tf involves a phase transition from phase I to phase II at Tφ:

∆S = S(Tf )− S(Ti)

=

∫ Tφ

Ti

CIP (T )

T
dT +

∆Hφ

Tφ
+

∫ Tf

Tφ

CIIP (T )

T
dT

• If Ti = 0 and every phase transition is considered, absolute entropy of any pure substance at any
temperature may be determined.

• Your text works an example for O2.

Here ends Chapter 4


