Heat Capacities, Absolute Zero, and the Third Law

We have already noted that heat capacity and entropy have the same units.
We will explore further the relationship between heat capacity and entropy.

We will see that entropy is absolute and explore the Third Law of Thermodynamics.

Variation of Entropy with Temperature

Consider:
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Heat capacities are temperature dependent:

Ty
ASy = / ST gy

Ty
ASp = / CPT(T)dT
T;

Absolute Zero

Consider 10 identical bricks beside a table of height h.

If they are initially at h = 0, then the internal energy is U(n = 0), where n is the number of bricks on
the table.

If n bricks are on the table, then the change in internal energy is:
AUn)=U(n) —U(n =0) =nMgh = ne

where:

e = Mgh
1 way to have n = 0.
10 ways to have n = 1.

45 ways to have n = 2.



e W(n) ways to have n = n where

Win) = nl(N —n)!

e Each specific arrangement is a microstate of the system.

e The entropy associated with the state of the system is:

S(n) =kglnW(n)

e Therefore, the more microscopic states that correspond to a particular macrostate characterized by
macroscopic variables (such as P, V, T, U, and S), the greater the entropy.

e Now split the set of ten bricks into two subsystems, each consisting of five bricks.
e One set of bricks is on the table (U = 5¢).
e One set of bricks is on the floor (U = 0).
e Bring the two systems together. Therefore U = 5e.
e But we still know which five bricks are on the table and which five are on the floor.
e Supposed that there existed an ”interbrick force” by which bricks could trade places.

e Therefore there will still be five bricks on the table and five bricks on the floor (and U = 5¢ ), but
we know longer know which bricks are where.

e This is what happens with molecules. There is chaotic redistribution of molecules among microstates
corresponding to the observed macrostate.

e Now consider molecules instead of bricks in the case where there are only two energy levels available for
each molecule (i.e. a two level system).

e The lower level has an energy of 0 and the higher level has an energy of e.
e Therefore, for the system:

and

A(a) = S(m) = 5(n.=0) = ko (s )

e Consider U(n) plotted against S(n) (Figure 4.2)

e Now remember the Master Equation:
dU =TdS — PdV

e Therefore:

e Applying the chain rule:




e Since U(n) = ne, (OU(n)/0n),, =€
e Now for (9S(n)/on),:
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e Need to use Stirling’s approximation for very large N:

e With Stirling’s approximation:

e we find:

Therefore:

e If n — 0 then T'(n) — 0.
e All the molecules are in their lowest state.
e Internal energy at its lowest value.
e Entropy at its lowest value.
e If n — N/2 then T'(n) — o0
e Molecules evenly split between the two levels.

e Entropy at its maximum value.

e Rearrange

to

(also known as the Boltzmann distribution)
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What is the limiting behaviour of this function?




e Consider the following two questions:

e Are there real molecular systems with only two energy levels?

e What about the dashed part of figure 4.2? If n > N/2, then the temperature would be negative!
e Consider a two level molecular systems:

e For example, consider nuclear spin, which is either ”up” or "down”.

e These levels are degenerate (i.e. have the same energy) if there is no external field.

e If there is an external field, the energy levels are different.

e Negative temperatures occur only in systems with very few energy levels.

e Negative temperature systems are ”hotter” than positive temperature systems associated with
population inversions where the higher energy state is more populated than the lower energy level.

e Population inversions are essential for the operation of lasers.
e It is 1/T that characterizes the degree of "hotness”.

o —1/T — —oo ( Coldest system)

e —1/T—0

e —1/T — oo (Hottest system)

More about heat capacity

e Recall: .
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e Figure 4.4 shows heat capacity as a function of temperature.
e Heat capacity increases then decreases.
e Once a molecule is in the upper of the two states, how can it be further excited?
e Real molecules have many states.

e Therefore heat capacity increases with temperature.

e As temperature increases more energy levels (and other types of energy levels) become available.



Heat Capacity of Solids

Dulong and Petit (1819) observed that C'y for atomic solids was independent of temperature and was
approximately the same for a wide range of atomic solids.

Cy =3R

e This can be interpreted in terms of the vibrations of the atoms within the atomic crystal with each
direction (z,y, z contributing R to the molar heat capacity.

Kopp (1865) devised an empirical scheme for estimating heat capacities of polyatomic solids with the
contribution of each atom empirically determined (Table 4.1).

e The values for C'y range from 0.9R for a carbon atom to 3.02R for other atoms. It works reasonably
well.

How does heat capacity vary with temperature as T — 07

Heat Capacity at Low Temperatures

Recall that the temperature dependence of heat capacity depends roughly on the magnitude of kT
relative to the spacing of quantum levels.

e If the spacing is “too big” that degree of freedom is not “active” at that temperature.
e Therefore we hypothesize that heat capacity approaches zero as T approaches zero.

Debye (1912) modified Einstein’s theory (1907).

e Debye’s Law is:

where O p is the Debye temperature.

e The Debye temperature is related to nuclear motions in the solid and thus the nature of the metal
with soft metals having lower © p than harder metals.

e Electronic states also can contribute to the heat capacity of a metal, but in a different way than do
nuclear motions.

e For electrons:

e Thus the total heat capacity of a metal is:
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Heat Capacity of Liquids

In a liquid the molecules are no longer constrained to motion about one particular site.

Therefore the heat capacity of a liquid is greater than the heat capacity of a solid.

e The heat capacity of a liquid is also greater than that of a gas because of the proximity of the molecules
to each other.

Heat capacities of liquids are empirically determined and are typically around 9R for small molecules.



e For larger molecules, internal degrees of freedom must be considered and the heat capacity is larger.
Heat Capacity of Gases

e Depends on internal structure of the gas.
e If there are IV atoms in the gas there are:
e Three translational degrees of freedom, each contributing R/2 to Cy .
e If the molecule is linear, then there are:
e 2 rotational degrees of freedom, each contributing R/2 to Cy .
e 3N — 5 vibrational degrees of freedom, each contributing R to Cy .
e If the molecule is nonlinear, then there are:
e 3 rotational degrees of freedom, each contributing R/2 to Cy .
e 3N — 6 vibrational degrees of freedom, each contributing R to Cy .
e This is assuming all degrees of freedom are active.
e Heat capacity for gases is determined empirically and is usually expressed as:

Cp(T)

= =a+ b +cT? +dT?

e We must now consider the relationship between Cy and Cp.
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e In the adiabatic expansion, we encountered the ratio vy .
e For an ideal gas v = 5/3.
e Without using the ideal gas equation of state, it can be shown that v = Cp/Cy .

e Assuming that Cp — Cy = nR, « for a polyatomic molecule can indicate the number of atoms and
whether the molecule is linear.

e For a monatomic gas:
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e For a nonlinear molecule in the gas phase:
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e The relationship
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is important for condensed phases.

e o is T dependent for both solids and liquids. Typical values are approximately 10~° K~ for solids
and 1073 to 10~ K~ for liquids.

e £ is not strongly T dependent for and is about 10~ atm ™! for metals and 10~ atm™! for molecular
solids.
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e Since U is a state function, it has an exact differential.
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e Following the same procedure, but starting with H it may be shown that:
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e We have now considered the heat capacity of solids, liquids, and gases.
e We already know how to calculate entropy changes from heat capacity.

e In order to calculate absolute entropy starting from absolute zero to the temperature of interest, we
must now consider the entropy of phase changes.
Phase Transitions

e Some common phase transitions are:

e Solid to solid, i.e. from one crystalline state to another



e H>0O ice I to ice II
e rhombic S to monoclinic S
e Fe phase 1 and Fe phase 2
Solid to liquid (fusion)
Solid to gas (sublimation)
Liquid to gas (vaporization)
During a phase transition, heat is transferred into or out of the system without changing the temperature.

e Since constant P conditions are more easily maintained than constant V' conditions, gp, is usually
measured.

Fusion of water

Consider one mole of ice at 273.15 K and 1 atm.

Transfer energy until ice melts leaving one mole of water.

H,O(s, 1 atm, 273.15 K)— H,0 (1, 1 atm, 273.15 K)

The associated heat transfer is:
q=qp = AH = AH(water) — H (ice)
which is the enthalpy change of fusion, AH f,s, (also known as the heat of fusion).
The standard enthalpy of fusion, Aﬁ;us, is defined with respect to the pressure of 1 bar (not 1 atm).
Similarly defined is the standard enthalpy of vaporization, Aﬁzap.

For a given substance, Aﬁzap is usually greater than AF;US.

e This is because fusion involves partially overcoming intermolecular interactions while vaporization
involves completely overcoming intermolecular interactions.

If a substance goes directly from the solid to the gas phase, the process is called sublimation and Aﬁzub
is the corresponding standard enthalpy.

There are also solid-solid phase transitions between different solid crystalline forms.

e Associated standard enthalpies tend to be small.

Entropy of Phase Transitions

During a phase transition at constant 7" and P, both phases are in equilibrium with each other.

e For a general phase transition, ¢,
q_¢ o AH¢

ASy = =
YT, T,
Standard entropies of phase transitions for water are:
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The Third Law and Absolute Entropy

e Absolute entropy can be assigned to any state.

e Recall the bricks and the microstate where all the bricks were on the floor (or n = 0).

NI
)= o

W(n=0

e Therefore:
Sn=0)=kplnW(n=0)=0

e Since the definition of W does not involve a reference state, the corresponding entropy is absolute.

For a molecular system, all the bricks on the floor would correspond to the molecules arranged in a
perfect crystal.

Statements of the Third Law

” At absolute zero, the entropy of every perfect crystalline equilibrium compound is zero.”

”The entropy of any equilibrium system is zero for the state in which (9U/9S),, = 0.”

”The isotherm T' = 0 and the isentrope S = 0 are the same.”

7Tt is impossible to attain absolute zero by any process with a finite number of steps.”

Therefore it is impossible to reach absolute zero.

Calculation of Absolute Entropy

Consider entropy:
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Consider the entropy change at constant pressure from 7; and T':
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e This would be fine if there were no phase transitions.
e Entropy changes due to phase changes must be explicitly considered.

o If the change from T; and T involves a phase transition from phase I to phase II at Ti:
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e If T; = 0 and every phase transition is considered, absolute entropy of any pure substance at any
temperature may be determined.

e Your text works an example for O.

Here ends Chapter 4



