
Spontaneity, Equilibrium, and Entropy

• The First Law of thermodynamics states that energy is conserved.

• We have examined a number of processes, both reversible and irreversible that obey this.

• There are processes which obey the First Law, but which we know from experience are impossible.

• Consider the example of all the molecules of air in the room being in one corner at the same time.

• This would obey the First Law.

• Another example would be that of putting an ice cube in hot water.

• If the ice cube became colder and the water warmer, the First Law would still be obeyed.

• We know that this is not possible.

• Therefore we need more than the First Law.

The Second Law of Thermodynamics

• Must distinguish between natural and unnatural processes.

• Must permit prediction of final equilibrium state of a system as the result of a natural process.

• Characterize a state function, entropy, to quantify this.

• Entropy will be considered from three perspectives:

• Statistical

• Thermodynamically

• Mathematically

A Statistical View of Entropy

• Consider a cubic box of N molecules in a microscopic configuration or microstate characterized by:

• 1/3 moving only in x direction

• 1/3 moving only in y direction

• 1/3 moving only in z direction

• All molecules moving with equal speed

• For this (or any other microstate) the probability of a molecule being in within the volume V of
the box is unity.

W1(V ) = 1

• The probability of molecule being within a subvolume V ′ of the box is:

W1(V ′) =
V ′

V

• The probability of all N particles being within subvolume V ′ is:

WN (V ′) =

(
V ′

V

)N



• Therefore the larger N is the less likely that all N particles are within subvolume V ′.

• Consider properties of W :

• no units since it is a probability.

• double the number of particles, square W .

• Wish to relate W to S.

• S has units.

• S should be additive.

• This suggests:

S = k ln

(
Wf

Wi

)

A Thermodynamic View of Entropy

• Carnot (1824) proposed a cycle, now known as the Carnot cycle, and reached conclusions about the
efficiency of heat engines.

• This work predated the First Law of Thermodynamics by half a century.

• Carnot cycle:

• Step 1: reversible isothermal expansion at T1.

• Step 2: reversible adiabatic expansion during which temperature drops from T1 to T2.

• Step 3: reversible isothermal compression at T2.

• Step 4: reversible adiabatic compression accompanied by temperature rise from T2 to T1.

• For any fluid (ideal gas or other) undergoing a Carnot cycle, we observe:

• U = 0 and qcy = −wcy
• qcy = q1 + q3 (Steps 2 and 4 are adiabatic)

• q1 > 0 (Step 1 is an expansion)

• q3 < 0 (Step 3 is a compression)

• wcy = w1 + w2 + w3 + w4

• w1, w2 < 0 (Steps 1 and 2 are expansions)

• w3, w4 > 0 (Steps 3 and 4 are compressions)

• The net sign of the wcy is negative and work is done on the surroundings while heat is taken from the
surroundings at T1 and discharged to the surrounding at the lower temperature T2.

Efficiency

• Efficiency is defined as:

ε =
work done by system

heat from surroundings

• For the Carnot cycle, this is:

ε =
−wcy
q1

=
q1 + q3

q1
= 1 +

q3

q1



• Since q1 and q3 have opposite signs, ε < 1.

• If the working fluid is an ideal gas, then:

ε = 1− T2

T1

Thermodynamic Temperature Scale

• From the equation for efficiency, we can show:

q3

q1
= −T2

T1

or:
q3

T2
+
q1

T1
= 0

• This has a property associated with a state function, i.e. sums to zero over a cycle.

• q/T is related to entropy and is entropy if the cycle is reversible.

• The thermodynamic definition of entropy is:

dS =
dqrev
T

(in formal differential form).

What is the entropy change associated
with the Joule expansion?

• irreversible process

• isothermal

• ideal gas

• Need to find an imaginary reversible path between the initial and final state such as a reversible isother-
mal expansion.

• Since the gas is ideal and the expansion is isothermal, ∆U = 0, and

dqrev = −dwrev = PdV =
nRT

V
dV

• Therefore:

∆S =

∫ Sf

Si

dS =

∫

path

dqrev
T

= nR

∫ Vf

Vi

dV

V
= nR ln

Vf
Vi

• If we compare this with the equation that we determined from the statistical approach:

∆S = Nk ln (Vf/Vi)

then the two are the same if Nk = nR.



• Therefore
k = R/NA

A Mathematical View of Entropy

• Recall the properties of an exact differential:

∂2z

∂x∂y
=

∂2z

∂y∂x

and that state functions have exact differentials.

• Carathéodory exploited this in his formulation of entropy.

dq = dU − dw

dq =

(
∂U

∂V

)

T

dV +

(
∂U

∂T

)

V

dT − dw

• Specifying a reversible path, along which

dwrev = −PdV

this becomes:

dqrev =

(
∂U

∂T

)

V

dT +

[(
∂U

∂V

)

T

+ P

]
dV

which is not an exact differential.

• Does there exist some function by which both sides of the equation may be multiplied that would allow
the equation to have the properties of an exact differential?

• This function does exist (since the equation has only two variables) and it is 1/T .

• Therefore:

dqrev
T

=
1

T

(
∂U

∂T

)

V

dT +
1

T

[(
∂U

∂V

)

T

+ P

]
dV

dS =
dqrev
T

The Zeroth Law of Thermodynamics

• If system A is in thermal equilibrium with system B, and if B is in thermal equilibrium with system C,
then A and C must also be in thermal equilibrium.

B is a thermometer!

Properties of temperature scales

• Consider an ideal gas.

• The change is PV is empirically proportional to any arbitrary change in temperature.



• Mathematically this is:
PV = α(T ′ + θ)

where T ′ is any arbitrary temperature scale.

The Second Law of Thermodynamics

• Summarizes possible, natural processes.

• Some statements of the second law are:

• ”No process is possible in which the only transfer of heat is as heat transferred from a colder to a
hotter system.” (Clausius 1850)

• ”No cyclic process can transfer a quantity of energy as heat from a reservoir of energy at one
temperature and produce work without some fraction of this energy appearing as heat transferred
to a colder reservoir.” (Thomson, Planck)

• ”From any arbitrary state of any system there are a finite number of states arbitrarily close to the ini-
tial state that cannot be reached by an adiabatic process, reversible or irreversible.” (Carathéodory)

• Consider an ideal gas in the state (Pi, Vi, Ti).

• If the gas expanded reversibly and adiabatically to some Vf then Tf < Ti. This is the minimum
value of Tf .

• If the gas expanded adiabatically and freely (i.e against zero external pressure, then Tf = Ti. This
is the maximum value of Tf .

• Therefore an irreversible adiabatic process will give a final temperature between these values.

• Another, nonadiabatic process is required to access other values of Tf .

• How does this relate to the two other statements of the Second Law?

• Consider a reversible adiabatic process in (T, V ) space (Figure 3.4) that takes the system from state 1
to state 2.

• Now consider an isotherm that takes the system from state 2 to state 3.

• Postulate that there is an adiabatic path from state 3 back to state 1.

• Since this is a cycle
∆U = qcy + wcy = 0

• Since only the isotherm was nonadiabatic,

qcy = q23 = −wcy

• Therefore this equation indicates that all the heat transferred at one temperature.

• Therefore an adiabatic path from 3 to 1 does not exist.

General Properties of Entropy Changes

• Consider some natural irreversible processes:

• Joule expansion

• Equilibration of metal cubes of different temperatures

• The systems are characterized in macroscopic terms, not microscopic terms.



• Macroscopic variables include: P , V , T , n, U , H , and S.

• Entropy change of Joule expansion:

∆S = nR ln

(
Vf
Vi

)

• Entropy change for the equilibration of metal cubes of different temperatures:

• Two identical cubes, on at Ta, the other at Tb.

• Ta > Tb.

• When brought into thermal contact, spontaneously reach the equal temperature, T .

• Cube a transfers heat energy to cube b since Ta > Tb:

• The heat transfer for cube a is:

qa =

∫

path

dqP =

∫ T

Ta

CP dT = CP (T − Ta) < 0

• The energy change for cube b is:

qb =

∫

path

dqP =

∫ T

Tb

CP dT = CP (T − Tb) > 0

• But, because of the first law, heat lost by one cube is gained by the other and qa + qb = 0. Thus:

−CP (T − Ta) = CP (T − Tb)

or:

T =
1

2
(Ta + Tb)

• Now consider the entropy change for one cube:

∆S =

∫ Sf

Si

dS =

∫

path

dqrev
T

• We must now think about the path.

• It is a constant pressure path. Therefore dP = 0 and dq = dqP = CP dT = dH .

• Therefore for cube a:

∆Sa =

∫
dqP
T

=

∫
dH

T
=

∫ T

Ta

CP
T
dT

• Since CP is constant,

∆Sa = CP ln

(
T

Ta

)

• Similarly for cube b:

∆Sb = CP ln

(
T

Tb

)

• and for the entire system:

∆Stot = ∆Sa + ∆Sb = CP ln

(
T 2

TaTb

)



Proof that entropy increases in this case.

• Recall that T = (Ta + Tb)/2.

• Then, T 2/(TaTb) = (Ta + Tb)
2/(4TaTb) which is always greater than 1.

(Ta + Tb)
2

4TaTb
> 1

(T 2
a + 2TaTb + T 2

b )

4TaTb
> 1

(T 2
a + 2TaTb + T 2

b ) > 4TaTb

(T 2
a + T 2

b ) > 2TaTb

(T 2
a − 2TaTb + T 2

b ) > 0

(Ta − Tb)(Ta − Tb) > 0

• Therefore Stot > 0.

Is this the maximum entropy
possible under the circumstances?

• There is a constraint that energy be conserved.

• Consider final temperatures for each of cube a and b, T ′a and T ′b.

• From the first law:
CP (T ′a − Ta) = −CP (T ′b − Tb)

• Therefore:
T ′a = Tb + Ta − T ′b

• The total entropy change is:

∆Stot = Sa + Sb = CP ln

(
T ′aT

′
b

TaTb

)

= CP ln

[
(Ta + Tb − T ′b)T ′b

TaTb

]

• For what values of Ta and Tb is the change in entropy a maximum?

• We need to find the maximum of:

y(x) = ln

(
(A− x)x

B

)

where y(x) = Stot/CP , x = T ′b, A = Ta + Tb, and B = TaTb.

dy

dx
=

2x−A
x2 −Ax

• At a maximum:

0 =
2x−A
x2 −Ax



x =
A

2
=
Ta + Tb

2

• Thus the only process observed (i.e. equal final temperature) is the one in which the energy is
maximized.

• The Second Law of Thermodynamics may be stated as:
“The entropy change in any spontaneous process occurring in an isolated system is positive. Moreover the
process will continue until the entropy has increased to the maximum allowed by the constraints imposed
on the system.”

• Consider a system in contact with surroundings and consider the system with its surroundings as an
isolated super- system. Then:

“The sum of entropy changes in the system and the surroundings can never be negative for any natural
process.”

Entropy and Surroundings

• Consider a cube at temperature, Ti.

• Bring the cube into a room at a warmer temperature, Tf .

• Assume that the room is so large that the cube can be warmed up to Tf without the room changing
temperature.

• The entropy change of the cube is:

∆Scube = CP ln

(
Tf
Ti

)

• From the first law, qcube = −qsurr = CP (Tf − Ti).
• Therefore:

∆Ssurr =
qsurr
Tf

= CP

(
Ti
Tf
− 1

)

• Therefore the total entropy change is:

∆Stot = CP

[
ln

(
Tf
Ti

)
+
Ti
Tf
− 1

]

• It can be shown that ∆Stot ≥ 0:

• Case 1: Ti = Tf ;
∆Scube = 0,∆Ssurr = 0,∆Stot = 0

• Case 2: Ti < Tf ;
∆Scube > 0,∆Ssurr < 0,∆Stot > 0

• Case 3: Ti > Tf ;
∆Scube < 0,∆Ssurr > 0,∆Stot > 0

Thermal Reservoirs

• In thermodynamics, an ideal thermal reservoir transfers heat without changing its state.

• In practice this is achieved by making the reservoir large compared to the system.



• Consider the case of two cubes.

• This time the cubes have different heat capacities.

CaP (T − Ta) = −CbP (T − Tb)

• Solving for T gives:

T =
CaPTa + CbPTb
CaP + CbP

Consequences of Entropy as a State Function

• Entropy has been defined as:

dS =
dqrev
T

• But from the First Law,
dqrev = dU − dwrev

• From the definition of pressure-volume work:

dwrev = −PdV

• Thus

dS =
dU

T
+
P

T
dV

or:
TdS = dU + PdV

dU = TdS − PdV

Master Equation of Thermodynamics

• The Master Equation of Thermodynamics combines the First and Second Law:

dU = TdS − PdV

• Compare this with First Law:
dU = dq + dw

• From the derivation above:
S = S(U, V )

• Therefore:

dS =

(
∂S

∂U

)

V

dU +

(
∂S

∂V

)

U

dV

• Similarly for U :
U = U(S, V )



• Therefore:

dU =

(
∂U

∂S

)

V

dS +

(
∂U

∂V

)

S

dV

• Therefore, from examination of the differential for dS:

(
∂S

∂U

)

V

=
1

T
;

(
∂S

∂V

)

U

=
P

T

• From the differential for dU : (
∂U

∂S

)

V

= T ;

(
∂U

∂V

)

S

= −P

• For an exact differential of U :
∂

∂V

(
∂U

∂S

)
=

∂

∂S

(
∂U

∂V

)

and (
∂T

∂V

)

S

= −
(
∂P

∂S

)

V

• This is a Maxwell relation. (We will see more of these later!)

More “Fun” with the Master Equation

• It can be used to find (∂U/∂V )T from an equation of state. Recall that:

dU =

(
∂U

∂T

)

V

dT +

(
∂U

∂V

)

T

dV

and

dS =
dU

T
+
P

T
dV

• Therefore:

dS =
1

T

(
∂U

∂T

)

V

dT +
1

T

(
∂U

∂V

)

T

dV +
P

T
dV

or:

dS =
1

T

(
∂U

∂T

)

V

dT +
1

T

[(
∂U

∂V

)

T

+ P

]
dV

• But S is a state function and has an exact differential.

∂

∂V

[
1

T

(
∂U

∂T

)

V

]
=

∂

∂T

(
1

T

[(
∂U

∂V

)

T

+ P

])

or:
1

T

∂

∂V

(
∂U

∂T

)

T

= − 1

T 2

[(
∂U

∂V

)

T

+ P

]

+
1

T

[
∂

∂T

(
∂U

∂V

)

T

+

(
∂P

∂T

)

V

]

• This reduces to:

0 = − 1

T 2

[(
∂U

∂V

)

T

+ P

]
+

1

T

(
∂P

∂T

)

V



• multiplying through by T 2:

0 = −
[(

∂U

∂V

)

T

+ P

]
+ T

(
∂P

∂T

)

V

or: (
∂U

∂V

)

T

= T

(
∂P

∂T

)

V

− P

• This is turn can be used to derive an expression for CP − CV starting with:

dS =
1

T

(
∂U

∂T

)

V

dT +
1

T

[(
∂U

∂V

)

T

+ P

]
dV

• Multiplying through by T gives:

TdS =

(
∂U

∂T

)

V

dT +

[(
∂U

∂V

)

T

+ P

]
dV

• But TdS = dqrev and CV = (∂U/∂T )V

• Therefore:

dqrev = CV dT +

[(
∂U

∂V

)

T

+ P

]
dV

differentiating with respect to T at constant P :

(
∂qrev
∂T

)

P

= CV +

(
∂U

∂V

)

T

(
∂V

∂T

)

P

+ P

(
∂V

∂T

)

P

or:

CP − CV =

(
∂U

∂V

)

T

(
∂V

∂T

)

P

+ P

(
∂V

∂T

)

P

but: (
∂U

∂V

)

T

= T

(
∂P

∂T

)

V

− P

therefore:

CP − CV =

(
T

(
∂P

∂T

)

V

− P
)(

∂V

∂T

)

P

+ P

(
∂V

∂T

)

P

or:

CP − CV = T

(
∂P

∂T

)

V

(
∂V

∂T

)

P

• Recall the definition of isobaric bulk thermal expansivity, α:

α ≡ 1

V

(
∂V

∂T

)

P

• Therefore:

CP − CV = TV α

(
∂P

∂T

)

V

• From the cyclic rule: (
∂P

∂T

)

V

= −
(
∂V

∂T

)

P

(
∂P

∂V

)

T



• Recall the definition of isothermal bulk compressibility, κ :

κ = − 1

V

(
∂V

∂P

)

T

• Therefore: (
∂P

∂T

)

V

=
α

κ

and

CP − CV =
TV α2

κ

• since κ is positive, CP > CV .

• Consider the Joule-Thomson coefficient:

µJT =

(
∂T

∂P

)

H

• From the chain rule: (
∂T

∂P

)

H

= − (∂H/∂P )T
(∂H/∂T )P

= − (∂H/∂P )T
CP

• Now need to find an expression for (∂H/∂P )T .

• Starting with the definition of H = U + PV :

dH = dU + PdV + V dP

dU = dH − PdV − V dP

• Substituting in the Master Equation:

TdS − PdV = dH − PdV − V dP

or:

dS =
dH

T
− V

T
dP

• Using the total differential of dH :

dH =

(
∂H

∂T

)

P

dT +

(
∂H

∂P

)

T

dP

we get:

dS =
1

T

(
∂H

∂T

)

P

dT +
1

T

[(
∂H

∂P

)

T

− V
]
dP

• Taking the cross derivatives (which are equal since a state function has an exact differential:

(
∂H

∂P

)

T

= V − T
(
∂V

∂T

)

P

which gives:

µJT =
1

CP

[
T

(
∂V

∂T

)

P

− V
]


