
Spontaneity, Equilibrium, and Entropy

• The First Law of thermodynamics states that
energy is conserved.

• We have examined a number of processes,
both reversible and irreversible that obey
this.

• There are processes which obey the First Law,
but which we know from experience are impos-
sible.

• Consider the example of all the molecules
of air in the room being in one corner at
the same time.

• This would obey the First Law.

• Another example would be that of putting
an ice cube in hot water.

• If the ice cube became colder and the wa-
ter warmer, the First Law would still be
obeyed.

• We know that this is not possible.

• Therefore we need more than the First Law.



The Second Law of Thermodynamics

• Must distinguish between natural and unnatu-
ral processes.

• Must permit prediction of final equilibrium
state of a system as the result of a natural pro-
cess.

• Characterize a state function, entropy, to quan-
tify this.

• Entropy will be considered from three perspec-
tives:

• Statistical

• Thermodynamically

• Mathematically

A Statistical View of Entropy

• Consider a cubic box of N molecules in a micro-
scopic configuration or microstate characterized
by:

• 1/3 moving only in x direction

• 1/3 moving only in y direction

• 1/3 moving only in z direction



• All molecules moving with equal speed

• For this (or any other microstate) the prob-
ability of a molecule being in within the
volume V of the box is unity.

W1(V ) = 1

• The probability of molecule being within a sub-
volume V ′ of the box is:

W1(V ′) =
V ′

V

• The probability of all N particles being within
subvolume V ′ is:

WN (V ′) =

(
V ′

V

)N

• Therefore the larger N is the less likely that all
N particles are within subvolume V ′.

• Consider properties of W :

• no units since it is a probability.

• double the number of particles, square W .

• Wish to relate W to S.

• S has units.

• S should be additive.



• This suggests:

S = k ln

(
Wf

Wi

)

A Thermodynamic View of Entropy

• Carnot (1824) proposed a cycle, now known as
the Carnot cycle, and reached conclusions about
the efficiency of heat engines.

• This work predated the First Law of Ther-
modynamics by half a century.

• Carnot cycle:

• Step 1: reversible isothermal expansion at
T1.

• Step 2: reversible adiabatic expansion dur-
ing which temperature drops from T1 to T2.

• Step 3: reversible isothermal compression
at T2.

• Step 4: reversible adiabatic compression
accompanied by temperature rise from T2

to T1.



• For any fluid (ideal gas or other) undergoing a
Carnot cycle, we observe:

• U = 0 and qcy = −wcy
• qcy = q1 + q3 (Steps 2 and 4 are adiabatic)

• q1 > 0 (Step 1 is an expansion)

• q3 < 0 (Step 3 is a compression)

• wcy = w1 + w2 + w3 + w4

• w1, w2 < 0 (Steps 1 and 2 are expansions)

• w3, w4 > 0 (Steps 3 and 4 are compres-
sions)

• The net sign of the wcy is negative and work
is done on the surroundings while heat is taken
from the surroundings at T1 and discharged to
the surrounding at the lower temperature T2.

Efficiency

• Efficiency is defined as:

ε =
work done by system

heat from surroundings



• For the Carnot cycle, this is:

ε =
−wcy
q1

=
q1 + q3

q1
= 1 +

q3

q1

• Since q1 and q3 have opposite signs, ε < 1.

• If the working fluid is an ideal gas, then:

ε = 1− T2

T1

Thermodynamic Temperature Scale

• From the equation for efficiency, we can show:

q3

q1
= −T2

T1

or:
q3

T2
+
q1

T1
= 0

• This has a property associated with a state func-
tion, i.e. sums to zero over a cycle.

• q/T is related to entropy and is entropy if
the cycle is reversible.

• The thermodynamic definition of entropy is:

dS =
dqrev
T

(in formal differential form).



What is the entropy change associated
with the Joule expansion?

• irreversible process

• isothermal

• ideal gas

• Need to find an imaginary reversible path be-
tween the initial and final state such as a re-
versible isothermal expansion.

• Since the gas is ideal and the expansion is
isothermal, ∆U = 0, and

dqrev = −dwrev = PdV =
nRT

V
dV

• Therefore:

∆S =

∫ Sf

Si

dS =

∫

path

dqrev
T

= nR

∫ Vf

Vi

dV

V
= nR ln

Vf
Vi

• If we compare this with the equation that we
determined from the statistical approach:

∆S = Nk ln (Vf/Vi)

then the two are the same if Nk = nR.



• Therefore
k = R/NA

A Mathematical View of Entropy

• Recall the properties of an exact differential:

∂2z

∂x∂y
=

∂2z

∂y∂x

and that state functions have exact differentials.

• Carathéodory exploited this in his formulation
of entropy.

dq = dU − dw

dq =

(
∂U

∂V

)

T

dV +

(
∂U

∂T

)

V

dT − dw

• Specifying a reversible path, along which

dwrev = −PdV
this becomes:

dqrev =

(
∂U

∂T

)

V

dT +

[(
∂U

∂V

)

T

+ P

]
dV

which is not an exact differential.



• Does there exist some function by which both
sides of the equation may be multiplied that
would allow the equation to have the properties
of an exact differential?

• This function does exist (since the equation
has only two variables) and it is 1/T .

• Therefore:

dqrev
T

=
1

T

(
∂U

∂T

)

V

dT +
1

T

[(
∂U

∂V

)

T

+ P

]
dV

dS =
dqrev
T

The Zeroth Law of Thermodynamics

• If system A is in thermal equilibrium with sys-
tem B, and if B is in thermal equilibrium with
system C, then A and C must also be in thermal
equilibrium.

B is a thermometer!



Properties of temperature scales

• Consider an ideal gas.

• The change is PV is empirically propor-
tional to any arbitrary change in temper-
ature.

• Mathematically this is:

PV = α(T ′ + θ)

where T ′ is any arbitrary temperature
scale.

The Second Law of Thermodynamics

• Summarizes possible, natural processes.

• Some statements of the second law are:

• ”No process is possible in which the only
transfer of heat is as heat transferred from a
colder to a hotter system.” (Clausius 1850)

• ”No cyclic process can transfer a quantity
of energy as heat from a reservoir of energy
at one temperature and produce work with-
out some fraction of this energy appearing



as heat transferred to a colder reservoir.”
(Thomson, Planck)

• ”From any arbitrary state of any system
there are a finite number of states arbitrar-
ily close to the initial state that cannot be
reached by an adiabatic process, reversible
or irreversible.” (Carathéodory)

• Consider an ideal gas in the state (Pi, Vi, Ti).

• If the gas expanded reversibly and adiabat-
ically to some Vf then Tf < Ti. This is the
minimum value of Tf .

• If the gas expanded adiabatically and freely
(i.e against zero external pressure, then
Tf = Ti. This is the maximum value of Tf .

• Therefore an irreversible adiabatic process
will give a final temperature between these
values.

• Another, nonadiabatic process is required
to access other values of Tf .

• How does this relate to the two other state-
ments of the Second Law?



• Consider a reversible adiabatic process in (T, V )
space (Figure 3.4) that takes the system from
state 1 to state 2.

• Now consider an isotherm that takes the
system from state 2 to state 3.

• Postulate that there is an adiabatic path
from state 3 back to state 1.

• Since this is a cycle

∆U = qcy + wcy = 0

• Since only the isotherm was nonadiabatic,

qcy = q23 = −wcy
• Therefore this equation indicates that all

the heat transferred at one temperature.

• Therefore an adiabatic path from 3 to 1
does not exist.

General Properties of Entropy Changes

• Consider some natural irreversible processes:

• Joule expansion

• Equilibration of metal cubes of different
temperatures



• The systems are characterized in macroscopic
terms, not microscopic terms.

• Macroscopic variables include: P , V , T , n,
U , H, and S.

• Entropy change of Joule expansion:

∆S = nR ln

(
Vf
Vi

)

• Entropy change for the equilibration of metal
cubes of different temperatures:

• Two identical cubes, on at Ta, the other at
Tb.

• Ta > Tb.

• When brought into thermal contact, spon-
taneously reach the equal temperature, T .

• Cube a transfers heat energy to cube b since
Ta > Tb:

• The heat transfer for cube a is:

qa =

∫

path

dqP =

∫ T

Ta

CPdT = CP (T − Ta) < 0



• The energy change for cube b is:

qb =

∫

path

dqP =

∫ T

Tb

CPdT = CP (T − Tb) > 0

• But, because of the first law, heat lost by one
cube is gained by the other and qa + qb = 0.
Thus:

−CP (T − Ta) = CP (T − Tb)

or:

T =
1

2
(Ta + Tb)

• Now consider the entropy change for one cube:

∆S =

∫ Sf

Si

dS =

∫

path

dqrev
T

• We must now think about the path.

• It is a constant pressure path. Therefore
dP = 0 and dq = dqP = CP dT = dH.

• Therefore for cube a:



∆Sa =

∫
dqP
T

=

∫
dH

T
=

∫ T

Ta

CP
T
dT

• Since CP is constant,

∆Sa = CP ln

(
T

Ta

)

• Similarly for cube b:

∆Sb = CP ln

(
T

Tb

)

• and for the entire system:

∆Stot = ∆Sa + ∆Sb = CP ln

(
T 2

TaTb

)

Proof that entropy increases in this case.

• Recall that T = (Ta + Tb)/2.

• Then, T 2/(TaTb) = (Ta+Tb)
2/(4TaTb) which is

always greater than 1.

(Ta + Tb)
2

4TaTb
> 1

(T 2
a + 2TaTb + T 2

b )

4TaTb
> 1



(T 2
a + 2TaTb + T 2

b ) > 4TaTb

(T 2
a + T 2

b ) > 2TaTb

(T 2
a − 2TaTb + T 2

b ) > 0

(Ta − Tb)(Ta − Tb) > 0

• Therefore Stot > 0.

Is this the maximum entropy
possible under the circumstances?

• There is a constraint that energy be conserved.

• Consider final temperatures for each of cube a
and b, T ′a and T ′b.

• From the first law:

CP (T ′a − Ta) = −CP (T ′b − Tb)

• Therefore:

T ′a = Tb + Ta − T ′b
• The total entropy change is:

∆Stot = Sa + Sb = CP ln

(
T ′aT

′
b

TaTb

)

= CP ln

[
(Ta + Tb − T ′b)T ′b

TaTb

]



• For what values of Ta and Tb is the change in
entropy a maximum?

• We need to find the maximum of:

y(x) = ln

(
(A− x)x

B

)

where y(x) = Stot/CP , x = T ′b, A = Ta +
Tb, and B = TaTb.

dy

dx
=

2x−A
x2 −Ax

• At a maximum:

0 =
2x−A
x2 −Ax

x =
A

2
=
Ta + Tb

2

• Thus the only process observed (i.e. equal
final temperature) is the one in which the
energy is maximized.

• The Second Law of Thermodynamics may be
stated as:



“The entropy change in any spontaneous process oc-
curring in an isolated system is positive. Moreover
the process will continue until the entropy has in-
creased to the maximum allowed by the constraints
imposed on the system.”

• Consider a system in contact with surroundings
and consider the system with its surroundings
as an isolated super- system. Then:

“The sum of entropy changes in the system and the
surroundings can never be negative for any natural
process.”

Entropy and Surroundings

• Consider a cube at temperature, Ti.

• Bring the cube into a room at a warmer tem-
perature, Tf .

• Assume that the room is so large that the cube
can be warmed up to Tf without the room
changing temperature.

• The entropy change of the cube is:

∆Scube = CP ln

(
Tf
Ti

)



• From the first law, qcube = −qsurr = CP (Tf −
Ti).

• Therefore:

∆Ssurr =
qsurr
Tf

= CP

(
Ti
Tf
− 1

)

• Therefore the total entropy change is:

∆Stot = CP

[
ln

(
Tf
Ti

)
+
Ti
Tf
− 1

]

• It can be shown that ∆Stot ≥ 0:

• Case 1: Ti = Tf ;

∆Scube = 0,∆Ssurr = 0,∆Stot = 0

• Case 2: Ti < Tf ;

∆Scube > 0,∆Ssurr < 0,∆Stot > 0

• Case 3: Ti > Tf ;

∆Scube < 0,∆Ssurr > 0,∆Stot > 0



Thermal Reservoirs

• In thermodynamics, an ideal thermal reservoir
transfers heat without changing its state.

• In practice this is achieved by making the
reservoir large compared to the system.

• Consider the case of two cubes.

• This time the cubes have different heat ca-
pacities.

CaP (T − Ta) = −CbP (T − Tb)

• Solving for T gives:

T =
CaPTa + CbPTb
CaP + CbP

Consequences of Entropy as a State Function

• Entropy has been defined as:

dS =
dqrev
T



• But from the First Law,

dqrev = dU − dwrev

• From the definition of pressure-volume work:

dwrev = −PdV

• Thus

dS =
dU

T
+
P

T
dV

or:
TdS = dU + PdV

dU = TdS − PdV

Master Equation of Thermodynamics

• The Master Equation of Thermodynamics com-
bines the First and Second Law:

dU = TdS − PdV

• Compare this with First Law:

dU = dq + dw

• From the derivation above:

S = S(U, V )



• Therefore:

dS =

(
∂S

∂U

)

V

dU +

(
∂S

∂V

)

U

dV

• Similarly for U :

U = U(S, V )

• Therefore:

dU =

(
∂U

∂S

)

V

dS +

(
∂U

∂V

)

S

dV

• Therefore, from examination of the differential
for dS:

(
∂S

∂U

)

V

=
1

T
;

(
∂S

∂V

)

U

=
P

T

• From the differential for dU :
(
∂U

∂S

)

V

= T ;

(
∂U

∂V

)

S

= −P

• For an exact differential of U :

∂

∂V

(
∂U

∂S

)
=

∂

∂S

(
∂U

∂V

)



and (
∂T

∂V

)

S

= −
(
∂P

∂S

)

V

• This is a Maxwell relation. (We will see more
of these later!)

More “Fun” with the Master Equation

• It can be used to find (∂U/∂V )T from an equa-
tion of state. Recall that:

dU =

(
∂U

∂T

)

V

dT +

(
∂U

∂V

)

T

dV

and

dS =
dU

T
+
P

T
dV

• Therefore:

dS =
1

T

(
∂U

∂T

)

V

dT +
1

T

(
∂U

∂V

)

T

dV +
P

T
dV

or:

dS =
1

T

(
∂U

∂T

)

V

dT +
1

T

[(
∂U

∂V

)

T

+ P

]
dV



• But S is a state function and has an exact dif-
ferential.

∂

∂V

[
1

T

(
∂U

∂T

)

V

]
=

∂

∂T

(
1

T

[(
∂U

∂V

)

T

+ P

])

or:

1

T

∂

∂V

(
∂U

∂T

)

T

= − 1

T 2

[(
∂U

∂V

)

T

+ P

]

+
1

T

[
∂

∂T

(
∂U

∂V

)

T

+

(
∂P

∂T

)

V

]

• This reduces to:

0 = − 1

T 2

[(
∂U

∂V

)

T

+ P

]
+

1

T

(
∂P

∂T

)

V

• multiplying through by T 2:

0 = −
[(

∂U

∂V

)

T

+ P

]
+ T

(
∂P

∂T

)

V

or: (
∂U

∂V

)

T

= T

(
∂P

∂T

)

V

− P



• This is turn can be used to derive an expression
for CP − CV starting with:

dS =
1

T

(
∂U

∂T

)

V

dT +
1

T

[(
∂U

∂V

)

T

+ P

]
dV

• Multiplying through by T gives:

TdS =

(
∂U

∂T

)

V

dT +

[(
∂U

∂V

)

T

+ P

]
dV

• But TdS = dqrev and CV = (∂U/∂T )V

• Therefore:

dqrev = CV dT +

[(
∂U

∂V

)

T

+ P

]
dV

differentiating with respect to T at constant P :

(
∂qrev
∂T

)

P

= CV +

(
∂U

∂V

)

T

(
∂V

∂T

)

P

+ P

(
∂V

∂T

)

P

or:

CP − CV =

(
∂U

∂V

)

T

(
∂V

∂T

)

P

+ P

(
∂V

∂T

)

P



but: (
∂U

∂V

)

T

= T

(
∂P

∂T

)

V

− P

therefore:

CP−CV =

(
T

(
∂P

∂T

)

V

− P
)(

∂V

∂T

)

P

+P

(
∂V

∂T

)

P

or:

CP − CV = T

(
∂P

∂T

)

V

(
∂V

∂T

)

P

• Recall the definition of isobaric bulk thermal ex-
pansivity, α:

α ≡ 1

V

(
∂V

∂T

)

P

• Therefore:

CP − CV = TV α

(
∂P

∂T

)

V

• From the cyclic rule:

(
∂P

∂T

)

V

= −
(
∂V

∂T

)

P

(
∂P

∂V

)

T



• Recall the definition of isothermal bulk com-
pressibility, κ :

κ = − 1

V

(
∂V

∂P

)

T

• Therefore: (
∂P

∂T

)

V

=
α

κ

and

CP − CV =
TV α2

κ

• since κ is positive, CP > CV .

• Consider the Joule-Thomson coefficient:

µJT =

(
∂T

∂P

)

H

• From the chain rule:

(
∂T

∂P

)

H

= − (∂H/∂P )T
(∂H/∂T )P

= − (∂H/∂P )T
CP

• Now need to find an expression for (∂H/∂P )T .



• Starting with the definition of H = U + PV :

dH = dU + PdV + V dP

dU = dH − PdV − V dP

• Substituting in the Master Equation:

TdS − PdV = dH − PdV − V dP
or:

dS =
dH

T
− V

T
dP

• Using the total differential of dH:

dH =

(
∂H

∂T

)

P

dT +

(
∂H

∂P

)

T

dP

we get:

dS =
1

T

(
∂H

∂T

)

P

dT +
1

T

[(
∂H

∂P

)

T

− V
]
dP

• Taking the cross derivatives (which are equal
since a state function has an exact differential:(

∂H

∂P

)

T

= V − T
(
∂V

∂T

)

P

which gives:

µJT =
1

CP

[
T

(
∂V

∂T

)

P

− V
]


