Energy, Work, and Heat

e Consider energy and molecules.

e Energy affects how molecules react. In par-
ticular the distribution of energy within a
molecule influences how it behaves both
chemically and physically.

e How do molecules have energy?

e In chemical bonds. The more energy re-
quired to break a bond, the stronger the
bond is.

e In internal motions (such as vibration and
rotation) and electronic excitations.

e As kinetic energy of motion. Temperature
is a way of measuring the average kinetic
energy of a system of molecules at equilib-
rium.

Energy (from a Thermodynamic Perspective)

e Consider the exothermicity of a chemical reac-
tion.

e Food Calories

e Fuel Combustion



e Corrosion
e Decomposition

e Fnergy is considered on a scale related to
changes, not an absolute scale.

e In thermodyamics, two particular forms of en-
ergy are considered:

e ¢ heat

e w work

What is energy?

e What are the properties of energy?
e Cannot be created or destroyed

e Can only change form such as be converted
to heat, work, or internal energy.
First Law of Thermodynamics

e Energy is conserved.

e Energy is not created or destroyed.



What are “Laws of Thermodynamics”?

e The "Laws of Thermodynamics” are a set of
postulates from which theorems and other rela-
tionships may be derived.

The transfer of energy called work
e Work is only associated with the performance
of a thermodynamic process.
e Some "types” of work:
e mechanical
e clectrical
e magnetic
e gravitational
e surface

e In this chapter, work will usually be in the form
of mechanical work being done by or on a sys-
tem.

e What is a system?



Systems
Open - transfers mass and energy to and from
the surroundings.

Closed - does not transfer mass to or from the
surroundings.

Isolated - transfers neither mass or energy to or
from the surroundings.

Surroundings

Since we are dealing with equilibrium thermo-
dynamics, the state variables describing the sur-
roundings may be of interest.

e For example, consider the temperature of a
constant temperature bath. A process car-
ried out at constant temperature is isother-
mal.

The variation of work with the path

Work is a path function.



e How the work is done matters.

work = / F(r)-dr
path

e F(r) is the force vector which varies with r

e Both force and displacement have the same
direction.

e Consider pressure volume work:

e Ideal gas at P, =1 atm confined in cylinder
of volume V; by a piston of area A.

e This ideal piston at x = x¢ has no mass,
no friction, and does not leak.

e Surroundings include a constant tempera-
ture bath at temperature Tj.

e Drop a brick on the piston, instantaneously
increasing the pressure to Py

How much work is done?

e (Consider:
e What is the force?
e What is the displacement?



e The force is:

Mg
Pea: — Pz A
' + 1

or

F(x)=PA+ Mg
e Note that F(x) in this case is a constant
independent of position.

e Note that the direction of the force is down-
ward, thus there is a negative sign since the
x axis is positive upward.

e The displacement is the distance h, which the
distance that the piston moved down when the
brick was dropped on it.

e The initial position of the piston is xg.
e The final position if xg — h.

e Therefore the work is:

w = /path F(r) dr — — /path F(z)dx

xo—h

0

xo—h

:—(PZ-A+Mg)/ dx

Zo



= — (PiA+ Mg) (=h)
w= (P,A+ Mg)h

e The volume change during this process is:

AV = Vf—‘/i — A(CEO—h)—Ax() — —Ah
e Therefore:

w:—(Pz—f——)AV:—PemtAV

Thermodynamic Sign Convention for Work

e Work is positive when work is done on the sys-
tem.

e Work is negative when work is done by the sys-
tem.

e The magnitude of work can be considered as the
area in PV space under the curve representing
the path.

e This area will vary with the path, which is
consistent with work being a path function.



Consider now some different paths from (P;, V;)
to (Pr,Vr). Recall that the process is isother-
mal since there is a constant temperature bath
as surroundings.

e Path 1: Break the brick in half and change
the pressure in two steps.

e Path 2: Crumble the brick to dust and
change the pressure in very small
increments by adding the dust one grain
at a time.

Which path gives the minimum amount of work
to be done on the system?

Reversible Isothermal Work
If the work is carried out in infinitesimal steps
infinitely slowly, then the process is quasi-static.

For such a process, deviations from equilibrium
are infinitesimal.

Therefore all points on the path may be de-
scribed by the equation of state for the system.



e Consider an ideal gas undergoing reversible,
isothermal expansion from (P;,V;) to (P, Vy).
Therefore:

Vi Vi av
w = —/ Psys(V)dV = —nRT/ —
v, vi V

Lf
— —nRT1 —

o If the process is a compression (i.e. V¢
smaller than V;), work is positive and work
is done on the system.

e If the process is an expansion (i.e. V; larger
than V;), work is negative and work is done
by the system.

e Now consider a cyclic process.

e First the gas is compressed isothermally at
Py from V; to Vy.

e Then the gas is expanded at P; from V; to
Vi.

e Therefore there is no overall change in
state.



e What is the work done by or on the system over
this path?

e What if the path were followed in the opposite
direction?

The Transfer of Energy called Heat
e Consider the compression of a gas.

e What would happen if, instead of carrying out
this process in a closed system in contact with
a constant temperature bath, the process were
carried out in an isolated system?

e Would the temperature stay constant?
Why or why not?

e Compared to the isothermal reversible
path, would more or less work be done on
the system?

What is the Thermodynamic Definition
of Temperature?

e Consider an ideal gas at reference temperature.
his reference temperature has to be readily ac-
cessible experimentally. The triple point of wa-

ter is convenient. By definition, the tempera-
ture is 273.16 K.



Consider the PV product of any real gas at this
temperature. Then the temperature can be de-
fined as:

T (PV)r

= lim

273.16  P—0 (PV)a73.16

Consider the compression of an isolated system.

e Will the (PV) product be higher or lower
than that for a reversible isothermal com-
pression starting at the same pressure and
volume and going to the same final volume?

When work is done by or on an isolated system,
the process is called adiabatic.

e In an adiabatic process no energy has been
exchanged with the surroundings.

Adiabatic work from a particular starting point
to a particular final point is independent of the
path.

e Therefore adiabatic work must be a state
function.



Internal Energy
e Internal energy is symbolized by U.

e Defined with respect to work done on an adia-
batic path.

Uy
AU:Uf—Ui:/ dU:/ dw = Wyy
U; adiabatic path

e Can we get to any state (P, V) on an adiabatic
path?

e Not all final states can be reached by an

adiabatic path.

e But if U is a state function, we need to be
able to define AU for the change from any
initial state to any final state. Therefore
we must consider other types of processes,
which can involve the transfer of heat.

e Heat is any form of energy transtferred by a pro-
cess other than work.

e Recall that heat ¢ is a path function.
e Consider heat along at path at constant volume.

e Consider a gas cylinder with the piston
fixed in position.



e Apply a source of energy.
e The temperature will rise.
e This path does not involve work.

e For heat at constant volume, no work is done
since AV = 0.

Ug
AUszf—Uz-:/ dU
U;

/ dq = qv
constant volume path

e Therefore constant volume heat ¢y is
equivalent to the change in the state func-
tion internal energy (AUy ).

Thermodynamic sign convention for heat
e Heat is positive when energy is transferred to
the system from the surroundings.

e Heat is negative when energy is transferred from
the system to the surroundings.



e Internal energy of a system changes due to the
additive effects of heat and work associated with
a thermodynamic process:

dU = dq + dw

or in integrated form:

AU:/ dq—|—/ dw
path path

Cycles

e Associated with a cycle:
e What would be AU?
e What would be the work?
e What would be the heat?

Simple Consequences of the First Law

e The transfer of heat alone often results in a
change in temperature with the change in tem-
perature being proportional to the heat trans-
ferred:

dq = CdT



e The proportionality factor, C'is the heat capac-
ity, which depends on the materials constituting
the system and on the path of the process.

e (' is associated with a constant volume
path.

e ('p is associated with a constant pressure
path.

e For an ideal gas statistical mechanics shows:

3 Cy Cy 3
Cv—2nR or R _HR_Q
5 Cp Cp 5
Cp=gnlt or 4 ="p =7

e Combined with our earlier expression for AU,

we get:
AU = / dq + / dw
path path

:/ Cpatth_/ Pexth
path path



e The expression for AU indicates that U varies

with T and V, i.e. U =U(T,V).

oU oU
dU = | — dT — d
v (aT)V +<<’W>T v

Therefore:

dU = Cpayp dT — Poyy dV

o If AV =0 then:

oU
= | = | dT
=),

dUy = CydT

oU
(ar), =

e Suppose d1' = 0. Then:

oU
dU = (W>T dVv

Therefore:



but
AU = Cpatn, AT — Pegy dV

retains both terms, since in order for
Cpath dT' to be zero, the path must be adia-
batic and both 7" and V' change on an adiabatic
path.

The Joule Expansion
e What about (0U/0V').?

e Joule did some experiments to attempt to mea-
sure it. See Fig. 2.6.

e Constant temperature maintained by a wa-
ter bath.

e Two chamber vessel
e Volume of both chambers known
e One chamber at high P
e Other chamber at P.,; =0
e Chambers separated by stopcock
e Stopcock opened, gas expands against P.,; ~ 0
e Therefore no work done

e No temperature change observed.



e Problems with experimental design:

e Temperature change may have been too
small to observe.

e Make the system bigger
e Make the water bath smaller
e BUT conclusion is valid.

e Rigorously for an ideal gas:

oU
(W)T -0

e In the low pressure limit for a real gas:
lim 8_U = 0
P—0 \ OV T

General Adiabatic Processes

e Consider an adiabatic process.
e Along the path of this process dq = 0.
e Therefore C'dT' = 0, even though dT' # 0.
e Therefore C,q = 0.
e For this path
AUyqg = —PeyrdV = dwgyq



e But for any path:
oU oU
AU = | —= | dT — | dV
(o7 ), 7+ (57),

e We have already shown for an ideal gas

that: -
(W)T -

Therefore, for an ideal gas:

dU = (a—U) AT = CydT = SnRAT
or ), 2

e Thus:

/dUad = AUad = Wad — /CvdT = gnRAT

e Consider an adiabatic process with constant
Pea:t:
Wad — _Pe:ntAV

e With the previous equation this gives:

AV 2 Pyt AV

AT = —P,.;—— =
tC,U 3 nR




e Consider adiabatic expansion against zero ex-
ternal pressure P,.,; = 0:

e Then w,gq = 0, AT = 0 and this is the Joule
experiment run adiabatically.

e Consider an adiabatic process with constant
Pea:t:
Wad = _Pea:tAV
AV 2 P...AV

AT = —-P. ,— =
tCU 3 nR

o If AV is negative, a compression has
occurred and w,q and AT are positive.

o If AV is positive, an expansion has
occurred and w,q and AT are negative.

e When w4 is positive, energy has been put into
the system.

e Since the process is adiabatic, energy can-
not escape as heat.

e Therefore a temperature change occurs, the
magnitude of which is controlled by the
heat capacity.



Adiabatic Reversible Processes in an Ideal Gas

e Assume an ideal gas, therefore PV = nRT
e Reversible, therefore P.yt = Psys + dP

e Adiabatic, therefore dg = 0.

e At all points of this path:

dU = dwad
—nRT
CvdT = —P,,,dV = Ti/ dV
Therefore:
dT dV
OV? = —nR7

Integration over the path yields:



e Recall for an ideal gas that Cy = 3nR/2. Thus:
3 T V
SnRIn (Tf> = —nRIn (Vf)

e Dividing through by nR and recognizing
that In(1/x) = — Inx gives:

3ln Tf = —1In ﬁ = In E
2 T Vi Vi

e Dividing through by 3/2 and recognizing
that alnz = Inz gives:

: : 2/3
In Tf = gln & = In &
T 3 Vi Vi

v\ 2/
T, = T;
g (Vf)

e We now have an equation to describe our re-
versible adiabatic path for an ideal gas.

or

T ‘/;2/3 _ V2/3



e If T"and V are known and since the equation of
state holds along a reversible path, then P can
be determined.

e Substituting PV/nR for T gives:
P; Vi 2/3 Py Vi 2/3
V. = V
( nR ) ’ ( nR /

e Factoring out nR on both sides gives:

5/3 5/3
P, VP = P vy

or
P V?/3 = constant

e The factor 5/3 is usually represented as v can
can be shown to originate from (Cy +nR)/Cy, .
e But Cp = (Cy + nR, thus

_Cr

and
PV7 = constant

TVY~! = constant



e Similarly, substituting nRT/P for V gives a re-
lation between 7" and P:

nRT; 71 nRT'y 71
T; ' =Ty
P; Py

T TJ7
=1 = py—1
P Pf
1 v/(vy—1)
TZ’Y/(’Y ) _ Tf
P; Py

Paths Equivalent to an Adiabatic Path

e Referring to Figure 2.7 on page 50 of Winn, con-
sider the adiabatic reversible path I between an
initial state (F;,V;) and final state (Py, Vy) of
an ideal gas.

e We wish to determine AU; associated with
this change.

e Since U is a state function, we can construct
any alternate path we deem convenient.

e An especially convenient path consists of a
path II from (P;,V;) to final V; along an



isotherm, followed by path III along an iso-
chore (constant volume) to (P, Vy).

e These path segments are especially conve-

nient because it is very easy to determine
AU[] and AU][[.

e For the any isothermal change in state of an

ideal gas, there is no change in U. Therefore
AU]I = 0.

e For a constant volume change in an ideal gas,
the change in U is determined by the constant
volume heat capacity and the temperature
change. Therefore:

AU]]] — Cv(Tf — Ti)
Thus:

AU; = AU +AUrrr= 0 + Cy (Tf—Tz‘)



Closer Look at the Meaning of Adiabaticity

e A real process approaches adiabaticity if it is
carried out sufficiently quickly that the process
is over before heat has had a chance to transfer
to or from the surroundings.

e Examples:

e Expansion of compressed gas from a cylinder.
e The valve can be observed to ”ice” up.

e Air masses in meteorology.

e As air rises, it cools adiabatically since air
itself does not transfer heat readily.

e If the air mass was not dry, this cooling can
lead to precipitation.

A New State Function, Enthalpy

e Constant pressure conditions are encountered
far more frequently than constant volume con-
ditions.

e We already have C), which is the heat ca-
pacity along a path of constant pressure.



e Recall dg, = C,dT.

e Enthalpy is to constant pressure conditions
what internal energy is to constant volume
conditions.

e Consider U + PV. The corresponding total dif-
ferential is:

d(U + PV) = dU + PdV + VdP

= dq — PeyrdV 4+ PdV + VdP

e At constant pressure, dP = 0 and P = P..;.
Therefore:

d(U + PV) = dq — PoyydV + PopydV + VdP

d(U—I—PV)p:qu
H=U+ PV

Consequently,

dHp = dgp = CpdT

OH
(a—T>P =G

and:



If an ideal gas is under consideration, then
PV =nRT
and
H (ideal gas) = U(ideal gas) + PV

or
H=U +nRT.

In differential form this becomes:
dH = dU + nRdT

or:
deT = CvdT + nRdT

Thus:
Cp — CV =nR

for an ideal gas.

Although H(P,T) has been defined with regard
to constant pressure processes, it is a state func-
tion.



e Therefore AH can be calculated for any
change regardless of path followed by the

process.
OH OH
dH = (—) dl" + (—) dP
or ) , oP ) .,
OH
= (C'pdT — dP
pat (8P>T

e Now consider (0H/9T)y:

OH\ _. . (9H\ (9P
or ), " \op ), \oT ),

e What about (0H/0T)p?

e Recall the cyclic rule:

= (30, (), 3,
(o), - () (),
(28, = -or (35),

(A process during which dH = 0 is an isen-
thalp.)



e Therefore:

OH oT oOP
(a—T)V—CP‘CP (a—P)H (a—T)V

— Cp [1 - (g_JDH (g_z;)vl

e How is (0T /OP)y evaluated?

The Joule-Thomson Effect (Fig 2.8)

e Joule and Thomson devised an experiment that
involved constant enthalpy.

e Apparatus is insulated, therefore the pro-
cess is adiabatic.

e Two pistons and a porous wall.

e Start with all the gas on left side of the wall
at (Pu V;, Tz)

e Push the gas through the porous wall with
the left piston, while at the same time with-
drawing the right piston, so as to maintain
constant pressure.



e Reach final state with the gas to the right
side of the wall at (Py, Vy,Ty).

e Adiabatic, therefore ¢ = 0. Thus:
AU = Wad

e The work must be considered in two parts.

e The gas is compressed by the first piston to
the barrier.

e The work associated with this is P;Vj, since
the gas is compressed at constant P; from
V; to zero.

e The gas is expanded by the second piston
at Pr from zero to V.

e Therefore —P¢Vy is the work associated
with this.

o Thus wyq = BV — PyVy = AU.
o But AU =Uy —U,.
e Therefore:
Ui+ PV =Uys + PrVy
H;, = H;

e Since AH = 0, the process is isenthalpic.



e Final temperature is measured at various final
pressures for the same initial pressure and tem-
perature.

e The result is a temperature pressure isen-
thalp.

e The slope of this (9T /OP)y is the Joule-
Thompson coefficient:

o 1y (T, P) =0 for an ideal gas.

e The deviation of ujr (7T, P) from zero con-
tains information about the nonideal be-
haviour of the gas.

e In chapter 3, it will be shown that:

(T, P) = in [T (g_‘;)JD_V]

e Recall the virial equation of state, through
to the second virial coefficient:



This can be rearranged to:
RT 1

PV 1410

If V >> B, then this becomes:

B(T)
v

RT

— =1
PV

Multiplying through by V gives:

RT

— =V — B(T

2 V —B(T)
. RT

V=" +B(T

V=5 4 B(T)
Therefore:

ovy _R (0B

or), P \oT ),
Substituting this into the expression for
Wy yields:

- (), -5



¢ When B = T (0B/9T)p, then pyr = 0.
The temperature at which that occurs is

the Joule-Thomson inversion temperature,
Ty.

e Recall that for the van der Waals virial expres-
sion,

a
B(T)=b— —
(T) BT
e Then at 77,
a a
b— —— =T
RT; ’(RT})
and 4
T :2(—):2T
I b B

e Below 717 gases cool when expanded.
e Above T} gases warm up when expanded.

e Real gases exhibit a range of inversion temper-
atures that depend on initial pressure.

e The van der Waals equation of state pre-
dicts:

~\ 1/2 ~\ 1/2
. 7\ 7\
P=|3[=]| -—1||1-(=

2 2




e Recall

Then

e Recall also:

OH o1 oOP
(a—T)V—CP‘CP (a—P)H (a—T)V

This becomes:

(ar), =0 [~ (ar),

e The differential is:

OH OH
— [ = T — dP
it (aT)pd +<aP>T

which becomes:

dH = deT — Cp,LLJTdP



